Fresh, purified fat stem cells grow bone faster, better


LOS ANGELES UCLA stem cell scientists who purified a subset of stem cells from fat tissue and used the stem cells to grow bone discovered that the bone formed faster and was of higher quality than bone grown using traditional methods.

The finding may one day eliminate the need for painful bone grafts that use material taken from patients during invasive procedures.

Adipose, or fat, tissue is thought to be an ideal source of mesenchymal stem cells cells capable of developing into bone, cartilage, muscle and other tissues because such cells are plentiful in the tissue and easily obtained through procedures like liposuction, said Dr. Chia Soo, vice chair of research for the UCLA Division of Plastic and Reconstructive Surgery.

Soo and Bruno Pault, the co-senior authors on the project, are members of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Traditionally, cells taken from fat had to be cultured for weeks to isolate the stem cells which could become bone, and their expansion increases the risk of infection and genetic instability. A fresh, non-cultured cell composition called stromal vascular fraction (SVF) also is used to grow bone. However, SVF cells taken from adipose tissue are a highly heterogeneous population that includes cells that aren't capable of becoming bone.

Pault and Soo's team used a cell-sorting machine to isolate and purify human perivascular stem cells (hPSC) from adipose tissue and showed that those cells worked far better than SVF cells in creating bone. They also showed that a growth factor called NELL-1, discovered by Dr. Kang Ting of the UCLA School of Dentistry, enhanced bone formation in their animal model.

"People have shown that culture-derived cells could grow bone, but ours are a fresh cell population, and we didn't have to go through the culture process, which can take weeks," Soo said. "The best bone graft is still your own bone, but that is in limited supply and sometimes not of good quality. What we show here is a faster and better way to create bone that could have clinical applications."

The study was published Monday (June 11) in the early online edition of Stem Cells Translational Medicine, a new peer-reviewed journal that seeks to bridge stem cell research and clinical trials.

In the animal model, Soo and Pault's team put the hPSCs with NELL-1 in a muscle pouch, a place where bone is not normally grown. They then used X-rays to determine that the cells did indeed become bone.

"The purified human hPSCs formed significantly more bone in comparison to the SVF by all parameters," Soo said. "And these cells are plentiful enough that patients with not much excess body fat can donate their own fat tissue."

See the original post:
Fresh, purified fat stem cells grow bone faster, better

Related Posts