Unlocking the secrets of stem cell generation


14 hours ago Professor Thomas Preiss discusses gene networks during stem cell reprogramming with his JCSMR colleagues Dr Jen Clancy and Dr Hardip Patel. Credit: Stuart Hay.

International scientists have carried out the most detailed study of how specialised body cells can be reprogrammed to be like cells from the early embryo.

The findings are a major advance in stem cell science and could help usher in a new era of regenerative medicine, where a small sample of a patient's cells could be used to grow new tissues and organs for transplant.

"This kind of work will speed up the development of treatments for many illnesses that currently have no cure," said Professor Thomas Preiss from The John Curtin School of Medical Research.

"It could one day lead to treatments for age-related macular degeneration, Parkinson's, Alzheimer's, spinal cord injury, stroke, diabetes, blood and kidney diseases, and many others which are associated with tissue damage and cell loss."

Professor Preiss and the team at ANU were part of the international consortium known as Project Grandiose, which mapped the detailed molecular process involved in the generation of induced pluripotent stem cells (iPS).

The discovery that body cells can in principle be coaxed to become iPS cells led to the award of the Nobel Prize for Physiology or Medicine in 2012. Since then there has been a surge in global research to better understand iPS cell reprogramming, as it might help avoid the ethically-sensitive use of embryo-derived cells.

"The race is on to make reprogramming a safe and efficient process so that the resulting stem cells can be broadly applied in therapies," Professor Preiss said.

This video is not supported by your browser at this time.

"We have described in unprecedented detail the molecular changes that cells undergo as they reprogram into stem cells and also discovered a new kind of pluripotent cell that can be seen as a prototype for therapeutic cell production."

Read the original post:
Unlocking the secrets of stem cell generation

Related Posts