Cardiac stem cells from heart disease patients may be harmful – Medical Xpress


June 15, 2017

Patients with severe and end-stage heart failure have few treatment options available to them apart from transplants and "miraculous" stem cell therapy. But a new Tel Aviv University study finds that stem cell therapy may, in fact, harm heart disease patients.

The research, led by Prof. Jonathan Leor of TAU's Sackler Faculty of Medicine and Sheba Medical Center and conducted by TAU's Dr. Nili Naftali-Shani, explores the current practice of using cells from the host patient to repair tissueand contends that this can prove deleterious or toxic for patients. The study was recently published in the journal Circulation.

"We found that, contrary to popular belief, tissue stem cells derived from sick hearts do not contribute to heart healing after injury," said Prof. Leor. "Furthermore, we found that these cells are affected by the inflammatory environment and develop inflammatory properties. The affected stem cells may even exacerbate damage to the already diseased heart muscle."

Tissue or adult stem cells"blank" cells that can act as a repair kit for the body by replacing damaged tissueencourage the regeneration of blood vessel cells and new heart muscle tissue. Faced with a worse survival rate than many cancers, many heart failure patients have turned to stem cell therapy as a last resort.

"But our findings suggest that stem cells, like any drug, can have adverse effects," said Prof. Leor. "We concluded that stem cells used in cardiac therapy should be drawn from healthy donors or be better genetically engineered for the patient."

Hope for improved cardiac stem cell therapy

In addition, the researchers also discovered the molecular pathway involved in the negative interaction between stem cells and the immune system as they isolated stem cells in mouse models of heart disease. After exploring the molecular pathway in mice, the researchers focused on cardiac stem cells in patients with heart disease.

The results could help improve the use of autologous stem cellsthose drawn from the patients themselvesin cardiac therapy, Prof. Leor said.

"We showed that the deletion of the gene responsible for this pathway can restore the original therapeutic function of the cells," said Prof. Leor. "Our findings determine the potential negative effects of inflammation on stem cell function as they're currently used. The use of autologous stem cells from patients with heart disease should be modified. Only stem cells from healthy donors or genetically engineered cells should be used in treating cardiac conditions."

The researchers are currently testing a gene editing technique (CRISPER) to inhibit the gene responsible for the negative inflammatory properties of the cardiac stem cells of heart disease patients. "We hope our engineered stem cells will be resistant to the negative effects of the immune system," said Prof. Leor.

Explore further: Adult stem cell types' heart repair potential probed

More information: Nili Naftali-Shani et al, Left Ventricular Dysfunction Switches Mesenchymal Stromal Cells Toward an Inflammatory Phenotype and Impairs Their Reparative Properties Via Toll-Like Receptor-4Clinical Perspective, Circulation (2017). DOI: 10.1161/CIRCULATIONAHA.116.023527

Journal reference: Circulation

Provided by: Tel Aviv University

New University of Otago research is providing fresh insights into how a patient's adult stem cells could best be used to regenerate their diseased hearts.

Genetically engineered human cardiac stem cells helped repair damaged heart tissue and improved function after a heart attack, in a new animal study.

Scientists use mathematical modeling to simulate human mesenchymal stem cell delivery to a damaged heart and found that using one sub-set of these stem cells minimises the risks associated with this therapy. The study, published ...

An international team of researchers, funded by Morris Animal Foundation, has shown that adipose (fat) stem cells might be the preferred stem cell type for use in canine therapeutic applications, including orthopedic diseases ...

A*STAR researchers and colleagues have developed a method to isolate and expand human heart stem cells, also known as cardiac progenitor cells, which could have great potential for repairing injured heart tissue.

(HealthDay)A new method for delivering stem cells to damaged heart muscle has shown early promise in treating severe heart failure, researchers report online July 27 in Stem Cells Translational Medicine.

Researchers at Karolinska Institutet in Sweden have obtained the first 3D snapshots of a sperm protein attached to a complementary egg coat protein at the beginning of fertilisation. The study, which reveals a common egg ...

As we bask in the summer heat, it is easy to take for granted that humans are also prepared for the cold of winter, with overcoats in the closet and home heating systems ready to be fired up as an added assurance against ...

Organs-on-Chips (Organ Chips) are emerging as powerful tools that allow researchers to study the physiology of human organs and tissues in ways not possible before. By mimicking normal blood flow, the mechanical microenvironment, ...

Monash University's Biomedicine Discovery Institute (BDI) researchers have collaboratively developed a therapeutic approach that dramatically promotes the growth of muscle mass, which could potentially prevent muscle wasting ...

As a molecular biologist, Kaori Noridomi gets an up-close view of the targets of her investigations. But when she began studying the molecular structures of a rarely diagnosed autoimmune disorder, myasthenia gravis, she decided ...

Researchers from Imperial College London and colleagues have found a potential way to target the receptors that specifically control appetite in mouse brains, potentially without causing other side effects.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read the original here:
Cardiac stem cells from heart disease patients may be harmful - Medical Xpress

Related Posts