February 15, 2010 (Vol. 30, No. 4)
Vi Chu Ph.D. R&D manager EMD Millipore
Review of Opportunities and Challenges in this Rapidly Expanding Field of Study
The ability to reprogram somatic cells to generate induced pluripotent stem (iPS) cells has generated tremendous interest and discussion since iPS cells were first produced from mouse cells in 2006 and human cells in 2007.
The reversion of differentiated cells to a state resembling embryonic stem cells offers a wealth of opportunities for disease researchers. Interest in iPS cells is expanding rapidly beyond the domain of stem cell experts to researchers modeling complex diseases in vitro and pursuing novel therapeutics.
With iPS cell technology, you can now take a skin biopsy from a patient with a genetic disease such as familial Alzheimer or Lou Gehrig disease and turn their somatic cells into stem cells, explains Chad Cowan, Ph.D., of the Harvard Stem Cell Institute. You can then take those stem cells and turn them into cell types that might be affected in the disease.
Along with the opportunities offered by iPS cells, practical challenges still abound. Culturing stem cells relies on both science and art and defining just what exactly constitutes a stem or iPS cell is stimulating a good deal of discussion.
Having standards for iPS cells could help define the differences between these murine embryonic stem cells and their induced counterparts.
Disease Modeling
Dr. Cowans lab is using iPS cells to support studies of obesity and metabolic disorders. While the lab can easily obtain fat cells from patients, these cells cant be cultured over the long term. We can keep the fat cells alive for a short period of time but that only allows us to do a one-time endpoint assay. It doesnt allow us to tease out the complexities of what might be going wrong in a patient with a metabolic disorder. The ability to make patient-specific fat cells from iPS cells completely changes the game.
With iPS cells, the lab can conduct dozens of assays to identify differences in fat cells from a person with a metabolic disorder such as type 2 diabetes versus a person with normal body weight or someone without diabetes. The ability to take a single genotype and potentially make any of the tissues that might be involved in a metabolic disorder such as hypothalamus, pancreatic beta cells, and hepatocytes, could lead to powerful disease models.
In his lab at the University of California, Santa Barbara, Dennis Clegg, Ph.D., is using iPS cells as one tool to study the loss of vision in age-related macular degeneration (AMD). In AMD, the degeneration of retinal pigment epithelial (RPE) cells appears to cause the death of neighboring rods and cones in the macular region of the central retina.
Dr. Cleggs lab is evaluating the use of iPS-derived RPE cells to treat AMD and using iPS cell lines to create ocular cells, which can be used to study how the eye develops. The real utility of iPS cells is that you can study human cells and processes in ways you couldnt do before, notes Dr. Clegg.
Culture Challenge
iPS cells, in particular those that are human-derived, can be challenging to culture especially for those researchers who havent previously worked with stem cells. The challenges they present are similar to those encountered when culturing human embryonic stem cells, including:
For researchers who havent previously cultured stem cells, I suggest first working with mouse-derived iPS cells. These cells tend to be more robust than human cells and conditions for successful culture are well defined. Many researchers first test their hypotheses using mouse iPS cells and then transition to a human model system.
The technology to create iPS cells is evolving rapidly. The first studies reporting the creation of iPS cells used retroviral vectors to integrate a set of DNA transcription factors directly into the somatic cell genome. Upon activation, these genes convert the cells from their adult, differentiated status to an embryonic-like state. This process required multiple retroviral vectors in order to insert four different viruseseach vector delivering one reprogramming gene into the somatic cells DNA.
Since these first studies were published, researchers have been seeking ways to reprogram somatic cells without using retroviral vectors and avoiding use of transcription factors such as c-Myc that are known oncogenes. Viral delivery of transcription factors can also disrupt normal gene expression when the vectors integrate into the genome. The high number of genomic integrations15 to 20that typically occur when multiple viruses are used for reprogramming poses a safety risk if the cells are to be used for therapeutic purposes.
Recently, Boston University scientists developed a highly efficient method for creating iPS cells from mouse fibroblasts using a single viral vector instead of the multiple viruses typically required for reprogramming. Four commonly used vectors are incorporated into a single lentiviral vector containing all four genes.
If iPS cells are to be used for therapeutic purposes, permanent integration of transcription factors into the genome becomes a problem. Alternative approaches to reprogramming include use of adenoviral delivery as the adenovirus does not integrate into the genome and transient transfection with transcription factors. Ultimately, it may be possible to use proteins or small molecules to direct the reprogramming process.
Standards, Anyone?
The rapid development and continued evolution of iPS technology has sparked discussions about the need for establishing standards to guide the field.
As researchers seek new methods to create iPS cells without genetic modification and the use of these cells to develop disease models continues to expand rapidly, questions arise as to whether these cells have the same properties and potential as embryonic stem cells. How can a researcher know for certain that he or she has generated iPS cells? Is there a minimum set of criteria for assessing whether a somatic cell is fully pluripotent or only partially reprogrammed?
Adding to this complexity, researchers also seek to understand the variation between iPS cell lines derived from a common somatic source.
Dr. Cleggs lab is looking at the similarities and differences between iPS cell lines derived from human fetal RPE cells. The question we were trying to address, describes Dr. Clegg, is if we take those cells down to iPS cells and just let them spontaneously differentiate, will they have some sort of epigenetic memory and tend to re-differentiate back into RPE or something else?
The first line we looked at snapped back in large quantities to RPE cells, reports Dr. Clegg. But each subsequent line we looked at was different. Thats an important lesson for people to understandeach iPS line thats generated is slightly different, just like each embryonic stem cell line is slightly different. They have different propensities for differentiation. They may have different epigenetics. They may have different expression patterns.
Were still learning to define what is the best iPS cell, notes Dr. Cowan. The best function identically to an embryonic stem cell. It remains pluripotent, expands, and self-renews and it can differentiate into the types of tissues youre interested in.
An article by Maherali and Hochedlinger (Cell Stem Cell Protocol Review, December 4, 2008) suggests a minimal set of criteria that should be fulfilled in order to ascertain that a genuine iPS cell has been generated. The criteria include:
With human iPS cells, pluripotency can be assessed based on teratoma formation, which is a specific type of tumor containing cells from all three germ layers.
Researchers are also probing the similarity of iPS cell and embryonic cells through microarray studies, high-throughput sequencing, assessment of DNA methylation status at pluripotent cell specific genes, and by examining a range of protein biomarkers.
As our understanding of the similarities and differences between iPS cells and embryonic stem cells grows, new tools to identify and compare these cell types are needed. For example, live-cell imaging can be used to distinguish between human iPS cells and partially reprogrammed cells.
While standards provide a good basis of comparison, Dr. Cowan suggests that standards can be restrictive. The standards are naturally evolving. We certainly need to maintain a minimum standard and recognize the standard will change over time. Within a year or two, there will probably be a new set of guidelines available. But there may be times when you may not want to make something that is an embryonic cell.
In fact, it may be more to your advantage to somehow uniquely trap a cell so that it is lineage-committed to something that can replicate in culture indefinitely but really only thinks of itself as lung, for example, and so would only ever differentiate back to lung cell types.
While a great deal remains to be learned about iPS cells, they represent a powerful new research tool. In addition to their potential impact on the field of regenerative medicine, use of iPS cells to dissect complicated diseases at the cellular level will provide valuable new insights supporting drug discovery. As we learn more about the nature of iPS cells, standards will certainly evolve and new tools will become available to facilitate efficient creation and routine culture.
Vi Chu, Ph.D. (vi_chu@millipore.com), is R&D manager, stem cell/cell biology at Millipore.
Here is the original post:
Induced Pluripotent Stem Cell Overview - genengnews.com
- 10. The Promise of Induced Pluripotent Stem Cells (iPSCs ... [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- What are induced pluripotent stem cells? [Stem Cell ... [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 6 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 2 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 5 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 3 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 4 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- Embryonic and induced pluripotent stem cells Part 1 - Video [Last Updated On: May 5th, 2015] [Originally Added On: May 5th, 2015]
- piggyBac transposition reprograms fibroblasts to induced ... [Last Updated On: May 8th, 2015] [Originally Added On: May 8th, 2015]
- Induced Pluripotent Stem Cells (IPSCs) - HowStuffWorks [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Pluripotency of Induced Pluripotent Stem Cells [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced stem cells - Wikipedia, the free encyclopedia [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced Pluripotent Stem Cells (iPS) | UCLA Broad Stem ... [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- iPS cells and reprogramming: turn any cell of the body ... [Last Updated On: June 2nd, 2015] [Originally Added On: June 2nd, 2015]
- induced pluripotent stem cells - RCN Corporation [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Generating Mice from Induced Pluripotent Stem Cells | Protocol [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Stem Cell Key Terms | California's Stem Cell Agency [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Cell potency - Wikipedia, the free encyclopedia [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- Induced pluripotent stem cell therapy - Wikipedia, the ... [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Glossary [Stem Cell Information] [Last Updated On: August 15th, 2015] [Originally Added On: August 15th, 2015]
- STEMCELL Technologies Inc. Enters a Licensing Agreement ... [Last Updated On: August 29th, 2015] [Originally Added On: August 29th, 2015]
- Pluripotent Stem Cells 101 | Boston Children's Hospital [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- COMPLETE 2015-16 INDUCED PLURIPOTENT STEM CELL INDUSTRY REPORT [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- Complete 2015-16 Induced Pluripotent Stem Cell Industry ... [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- Derivation of Ethnically Diverse Human Induced Pluripotent ... [Last Updated On: October 21st, 2015] [Originally Added On: October 21st, 2015]
- Purest yet liver-like cells generated from induced ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- World Induced Pluripotent Stem Cells Market - Opportunities ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- Induced Pluripotent Stem Cells Market 2016: Hepatocytes ... [Last Updated On: September 18th, 2016] [Originally Added On: September 18th, 2016]
- The Promise of Induced Pluripotent Stem Cells (iPSCs ... [Last Updated On: September 23rd, 2016] [Originally Added On: September 23rd, 2016]
- Induced Pluripotent Stem Cells: 10 Years After the ... [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Induced Pluripotent Stem Cell Initiative | California's ... [Last Updated On: October 7th, 2016] [Originally Added On: October 7th, 2016]
- Stem Cell Basics VI. | stemcells.nih.gov [Last Updated On: October 12th, 2016] [Originally Added On: October 12th, 2016]
- Induced stem cells - Wikipedia [Last Updated On: October 18th, 2016] [Originally Added On: October 18th, 2016]
- Induced Pluripotent Stem Cells (iPS) - UCLA Broad Stem Cell [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Induced Pluripotent Stem Cells: A New Frontier for Stem ... [Last Updated On: October 27th, 2016] [Originally Added On: October 27th, 2016]
- Induced pluripotent stem cells and Parkinson's disease ... [Last Updated On: October 27th, 2016] [Originally Added On: October 27th, 2016]
- Generation of Induced Pluripotent Stem Cells with ... [Last Updated On: November 3rd, 2016] [Originally Added On: November 3rd, 2016]
- Generation of Neural Crest-Like Cells From Human ... [Last Updated On: November 14th, 2016] [Originally Added On: November 14th, 2016]
- Induced pluripotent stem-cell therapy - Wikipedia [Last Updated On: November 18th, 2016] [Originally Added On: November 18th, 2016]
- Generation of germline-competent induced pluripotent stem ... [Last Updated On: November 22nd, 2016] [Originally Added On: November 22nd, 2016]
- Induced pluripotent stem cell models from X-linked ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Live Cell Imaging of Induced Pluripotent Stem Cell ... [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Induced Pluripotent Stem Cells - cellapplications.com [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- Why Induced Pluripotent Stem Cells Are Vital for Glaucoma ... [Last Updated On: December 3rd, 2016] [Originally Added On: December 3rd, 2016]
- Stem Cell Glossary - stemcells.nih.gov [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- Clinical potential of human-induced pluripotent stem cells ... [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- Induced stem cells - Wikiversity [Last Updated On: December 17th, 2016] [Originally Added On: December 17th, 2016]
- Induced pluripotent stem cell Wikipedia StemCell Therapy [Last Updated On: December 17th, 2016] [Originally Added On: December 17th, 2016]
- Embryonic stem (ES) cells and induced pluripotent stem ... [Last Updated On: January 17th, 2017] [Originally Added On: January 17th, 2017]
- Induced Pluripotent Stem Cell Repository | California's ... [Last Updated On: January 23rd, 2017] [Originally Added On: January 23rd, 2017]
- induced pluripotent stem cells - eurostemcell.org [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- When C9ORF72 Silences U2, Spliceosomes Can't Find What They ... - Alzforum [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- The Stem Cell Revolution - Seeking Alpha [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Evotec in neurology iPSC drug discovery collaboration with stem-cell specialist Censo - FierceBiotech [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Treating Asthma with Stem Cells | Technology Networks - Technology Networks [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Embryonic stem cells to be available for medical use in Japan by next March - The Japan Times [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- This Study Could Help Extend the Human Lifespan - Futurism [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- Grnenthal Group: Launch of the Project - Modelling Neuron-glia Networks Into a Drug Discovery Platform for Pain ... - PR Newswire (press release) [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- The Global Market for Induced Pluripotent Stem Cells (iPSCs) should reach $3.6 Billion in 2021, Increasing at a CAGR ... - Business Wire (press... [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- SBP Scientist Receives Prestigious WM Keck Foundation Grant - Newswise (press release) [Last Updated On: July 11th, 2017] [Originally Added On: July 11th, 2017]
- Is it time to start worrying about conscious human mini-brains? - PLoS Blogs (blog) [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- A New Epigenetic Barrier to Induced Pluripotent Stem Cells - WhatIsEpigenetics.com [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- What are induced pluripotent stem cells or iPS cells? - Stem ... [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- Stem Cell Glossary - Closer Look at Stem Cells [Last Updated On: August 2nd, 2017] [Originally Added On: August 2nd, 2017]
- CRISPR Corrects Disease Mutation in Human Embryos - Genetic Engineering & Biotechnology News (blog) [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- World's 1st trial of drug developed from iPS cells to begin - Japan ... - Japan Today [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- ASU grad students' lab skills help earn funding for cutting-edge biomedical research - Arizona State University [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- How Food Preservatives May Disrupt Human Hormones - Laboratory Equipment [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- Dopaminergic neurons derived from iPSCs in non-human primate model - Phys.Org [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- Artificial Blood Vessels Mimic Rare Accelerated Aging Disease - Duke Today [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells Market Demands, Trends, Growth ... - MilTech [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- induced pluripotent stem cell (iPS cell) | biology ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells: Global Markets Report 2017-2021 [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- MESO-BRAIN initiative receives 3.3million to replicate brain's neural networks through 3D nanoprinting - Cordis News [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Global Induced Pluripotent Stem Cells Market: HTF Market [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Induced Pluripotent Stem Cells in Global Effort to ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- How Do We Get Pluripotent Stem Cells? | Boston Children's ... [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Fertile offspring produced from sterile mice using iPS cells - Kyodo News Plus [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- Brain Spheroids Hatch Mature Astrocytes | ALZFORUM - Alzforum [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]
- Breakthrough in Gene Editing Comes as Scientists Correct Disease-Causing Mutation in Human Embryo - TrendinTech [Last Updated On: August 20th, 2017] [Originally Added On: August 20th, 2017]