Photo credit: JC Gellidon via Unsplash.
Cells and organisms come pre-equipped with repair mechanisms. It takes foresight to make complex tools and procedures that can restore the functions of other tools. A blind process like evolution can only see the immediate present; it would be unconcerned about what happens next. Repair implies something worth saving. The more delicate the product, the more elaborate the maintenance. Live is both worth saving and it is delicate. Predictably, the persistence of life presupposes elaborate repair systems are at work. The following research findings show just how complex some of these repair mechanisms are.
Here is a kind of repair strategy that truly would require foresight. A skilled orthopedic surgeon can look at a broken bone and, through years of training, know that before setting it, he needs to make the break worse. In a compound fracture, for instance, bending the bone farther can allow splintered bones to be put back together. Additionally, assistants in the operating room can apply materials or medicines while the surgeon holds the fracture open. Something like that happens in the nucleus or our cells, scientists found at Lawrence Berkeley National Lab. Sometimes, when something is broken, the first step to fixing it is to break it even more. A molecular machine named XPG could be dubbed an orthogenic surgeon (ortho- meaning straight).
We saw that XPG makes a beeline for discontinuous DNA places where the hydrogen bonds between bases on each strand of the helix have been disrupted and then it very dramatically bends the strand at that exact location, breaking the interface that connects bases stacked on top of each other, said Susan Tsutakawa, a structural biologist in the Biosciences Area at Lawrence Berkeley National Laboratory (Berkeley Lab) and first author on the work, published this month in PNAS. The bending activity adds to an already impressive arsenal, as XPG was first identified as a DNA chopping enzyme, responsible for cutting out nucleotide bases with chemical and UV radiation damage. [Emphasis added.]
Natural selection would never do this. First of all, how would XPG recognize a problem that doesnt affect it directly, and how would it know to make a beeline for something elses problem? Then, if by some accident of chance it bent the DNA strand, how would it know how to perform the next surgical step? XPG would be out of a job, rushing toward discontinuous DNA like a blind driver on a demolition derby, breaking genes here and there, killing the organism by a thousand cuts. Instead, look what it does:
An unexpected finding from our imaging data is that the flexible parts of the protein which were previously impossible to examine have the ability to recognize perturbations associated with many different types of DNA damage, said co-author Priscilla Cooper, a biochemist senior scientist in the Biosciences Area. XPG then uses its sculpting properties to bend the DNA in order to recruit and load into place the proteins that can fix that type of damage.
The scientists call this a protein with many jobs that is more like a master sculptor than a demolition crew. Without XPG, a person can incur devastating symptoms of diseases. Some of these fatal syndromes caused by faulty XPG are described in the press release. Often single amino acid substitutions can destabilize the entire protein, they say. If that doesnt clinch the case for design, consider also that the Lawrence Berkeley team found that XPG cooperates with other repair machines like BRCA1 and BRCA2. An entire operating-room team has the foresight to perform orthogenic surgery on DNA. The Darwin-free paper is published in PNAS.1
The brain is busier than a city all the time, even in sleep. Amidst all the clamor, one issue cannot be overlooked: how to dispose of dead cells. A recent article at Evolution News described how the cellular morgue takes care of the problem. In the brain, it is even more vital to quickly eliminate dead cells. A team at Yale School of Medicine heard music inside the skull: they found that astrocytes and microglia perform orchestrated roles and respect phagocytic territories during neuronal corpse removal in the brain. Each player knows its part.
Cell death is prevalent throughout life; however, the coordinated interactions and roles of phagocytes during corpse removal in the live brain are poorly understood. We developed photochemical and viral methodologies to induce death in single cells and combined this with intravital optical imaging. This approach allowed us to track multicellular phagocytic interactions with precise spatiotemporal resolution. Astrocytes and microglia engaged with dying neurons in an orchestrated and synchronized fashion. Each glial cell played specialized roles: Astrocyte processes rapidly polarized and engulfed numerous small dendritic apoptotic bodies, while microglia migrated and engulfed the soma and apical dendrites. The relative involvement and phagocytic specialization of each glial cell was plastic and controlled by the receptor tyrosine kinase Mertk Thus, a precisely orchestrated response and cross-talk between glial cells during corpse removal may be critical for maintaining brain homeostasis.
Their research is published in Science Advances.2 This paper was also Darwin-free except for an opening pinch of incense in the first sentence, Cell death is an evolutionarily conserved and ubiquitous process a useless offering that contributes nothing to the science except to show that evolution was not observed.
Every human life has value, even those with genetic defects (and which human being does not suffer from several?). Whats important to the argument for intelligent design from foresight is how carefully the body practices preventative medicine on the developing embryo. Scientists at Caltech point out,
The first few days of embryonic development are a critical point for determining the failure or success of a pregnancy. Because relatively few cells make up the embryo during this period, the health of each cell is vital to the health of the overall embryo. But often, these young cells have chromosomal aneuploidies meaning, there are too many or too few chromosome copies in the cell. Aneuploid cells lead to the failure of the pregnancy, or cause developmental defects such as Down syndrome later in gestation.
Fortunately, these young embryos perform their own quality control before most genetic abnormalities become established:
Researchers have found that the prevalence of aneuploidy is drastically lower as the embryo grows and develops. Using mouse embryos, scientists from the laboratory of Magdalena Zernicka-Goetz, Caltechs Bren Professor of Biology and Biological Engineering, now show that this is because embryos are able to rid themselves of abnormal cells just before and soon after implantation into the uterus, thereby keeping the whole embryo healthy.
It is remarkable that embryos can do this, says Zernicka-Goetz. It reflects their plasticity that gives them the power to self-repair.
The scientists found a double-protection mechanism. Not only are aneuploidy cells detected and eliminated, but healthy cells are stimulated to proliferate, compensating for the loss of unhealthy cells. The research paper, which also fails to give credit to evolution for this wonderful example of foresight and design, appeared in Nature Communications on June 11.3
Even plants, lacking eyes and brains, know how to repair damage. Plants have a handicap that makes repair more difficult: their repair teams cannot migrate to the site of the injury. Austrian scientists discovered a clever way that a plant can send repair enzymes to the rescue when a stem gets wounded.
Plants are sessile organisms that cannot evade wounding or pathogen attack, and their cells are encapsulated within cell walls, making it impossible to use cell migration for wound healing like animals. Thus, regeneration in plants largely relies on the coordination of targeted cell expansion and oriented cell division. Here we show in the root that the major growth hormone auxin is specifically activated in wound-adjacent cells, regulating cell expansion, cell division rates, and regeneration-involved transcription factor ERF115. These wound responses depend on cell collapse of the eliminated cells presumably perceived by the cell damage-induced changes in cellular pressure. This largely broadens our understanding of how wound responses are coordinated on a cellular level to mediate wound healing and prevent overproliferation.
The research is published in PNAS.4 Its satisfying to say, again, that their paper did not give any credit to evolution. This is one way design wins by default: repeated failures of Darwinists to show up for the game constitutes abdication.
The concept of repair presupposes foresight.5 How would a blind, unguided process recognize a problem? Even if a working plant or animal were granted a hypothetical existence by evolution, the easiest thing for natural selection to do when a problem occurs is to let the organism die. Uncaring selection owes it no further existence. As these examples show (and there are many, many more), life comes equipped with repair teams that are even more complex than expected. It is remarkable that embryos can do this, Caltech scientists said. Yale scientists watched a precisely orchestrated response to cell death in the brain. Lawrence Berkeley scientists did not expect to see a master sculptor in the nucleus already known to have an impressive arsenal of abilities able to surgically straighten DNA before their eyes. These are the emotional responses of people astonished by design beyond their dreams. If they attribute these wonders to evolution, their silence speaks volumes.
Read more from the original source:
In Cells and Whole Organisms, Repair Mechanisms Imply Foresight, Not Evolution - Discovery Institute
- Stem Cell Research Article, Embryonic Cells Information ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Practical Problems with Embryonic Stem Cells [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- What are embryonic stem cells? [Stem Cell Information] [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Embryonic stem cell - Science Daily [Last Updated On: May 7th, 2015] [Originally Added On: May 7th, 2015]
- What is Wrong With Embryonic Stem Cell Research? [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- Destructive Embryonic Stem Cell Research | Antiochian ... [Last Updated On: June 13th, 2015] [Originally Added On: June 13th, 2015]
- NIH Human Embryonic Stem Cell Registry - Research Using ... [Last Updated On: June 22nd, 2015] [Originally Added On: June 22nd, 2015]
- Embryonic Stem Cell Research Pros and Cons | HRF [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Embryonic stem cells: where do they come from and what can ... [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Embryonic Stem Cells - HowStuffWorks [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Pros & Cons of Embryonic Stem Cell Research [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Children's Hospital Boston Glossary - Stem cell [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- 1. Embryonic Stem Cells [Stem Cell Information] [Last Updated On: August 23rd, 2015] [Originally Added On: August 23rd, 2015]
- Embryonic stem cell - ScienceDaily [Last Updated On: August 23rd, 2015] [Originally Added On: August 23rd, 2015]
- Researchers control embryonic stem cells with light [Last Updated On: August 30th, 2015] [Originally Added On: August 30th, 2015]
- Embryonic stem cells controlled with light: Study reveals ... [Last Updated On: August 30th, 2015] [Originally Added On: August 30th, 2015]
- Embryonic stem cell research: an ethical dilemma | Europe ... [Last Updated On: September 5th, 2015] [Originally Added On: September 5th, 2015]
- Scientists reveal how stem cells defend against viruses [Last Updated On: September 22nd, 2015] [Originally Added On: September 22nd, 2015]
- An Overview of Stem Cell Research | The Center for ... [Last Updated On: October 3rd, 2015] [Originally Added On: October 3rd, 2015]
- Scientific Experts Agree Embryonic Stem Cells Are ... [Last Updated On: October 8th, 2015] [Originally Added On: October 8th, 2015]
- Myths and Misconceptions About Stem Cell Research ... [Last Updated On: October 12th, 2015] [Originally Added On: October 12th, 2015]
- Embryonic Stem Cell Maintenance & Differentiation (Human) [Last Updated On: October 23rd, 2015] [Originally Added On: October 23rd, 2015]
- Are embryonic stem cells and artificial stem cells equivalent? [Last Updated On: October 31st, 2015] [Originally Added On: October 31st, 2015]
- What are human embryonic stem cells used for? | Europe's stem ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Stem Cell Basics I. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Stem Cell Basics III. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Pros and Cons of Stem Cell Research - thebalance.com [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic Stem Cells and the Germ Cell Lineage | InTechOpen [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Cloning/Embryonic Stem Cells - National Human Genome Research ... [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic stem cell research - alsa.org [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic Stem Cells | Stem Cells Freak [Last Updated On: October 4th, 2016] [Originally Added On: October 4th, 2016]
- Embryonic Stem Cells | stemcells.nih.gov [Last Updated On: October 9th, 2016] [Originally Added On: October 9th, 2016]
- Embryonic stem cell - Wikipedia [Last Updated On: October 17th, 2016] [Originally Added On: October 17th, 2016]
- Stem-cell therapy - Wikipedia [Last Updated On: October 19th, 2016] [Originally Added On: October 19th, 2016]
- Stem cell - Wikipedia [Last Updated On: October 23rd, 2016] [Originally Added On: October 23rd, 2016]
- What are embryonic stem cells or ES cells? [Last Updated On: October 25th, 2016] [Originally Added On: October 25th, 2016]
- Embryonic Stem Cell Research - rtl.org [Last Updated On: November 8th, 2016] [Originally Added On: November 8th, 2016]
- Guest View: No to embryonic stem cells - htrnews.com [Last Updated On: November 9th, 2016] [Originally Added On: November 9th, 2016]
- Blood-Forming Stem Cell Transplants - National Cancer Institute [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- How Embryonic Stem Cells Become Tissue Specific | TFOT [Last Updated On: December 12th, 2016] [Originally Added On: December 12th, 2016]
- Embryonic Stem Cell Research - An Ethical Dilemma [Last Updated On: December 12th, 2016] [Originally Added On: December 12th, 2016]
- Scientists reprogram embryonic stem cells to expand their ... [Last Updated On: January 15th, 2017] [Originally Added On: January 15th, 2017]
- Embryonic Stem Cell Research Threatened - Hartford Courant [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- Embryonic stem (ES) cells - eurostemcell.org [Last Updated On: February 5th, 2017] [Originally Added On: February 5th, 2017]
- Researchers engineer new thyroid cells - Science Daily [Last Updated On: February 8th, 2017] [Originally Added On: February 8th, 2017]
- Yes There's Hope, But Treating Spinal Injuries With Stem Cells Is Not A Reality Yet - IFLScience [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- SEQUEIRA: Stem cell research must remain in foreground - University of Virginia The Cavalier Daily [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Stem cells: a miracle cure or playing God? - The Student [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How does the Catholic Church resolve new bioethical questions? - The Tidings [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Possible key to regeneration found in planaria's origins - Phys.Org [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Novel Nanofiber Matrix Improves Stem Cell Production - R & D Magazine [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Your brain's got rhythm: Synthetic brain mimics - Science Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Nanofiber matrix sends stem cells sprawling in all directions - New Atlas [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Vitamins and aminoacids regulate stem cell biology - Phys.Org [Last Updated On: February 16th, 2017] [Originally Added On: February 16th, 2017]
- How does the Catholic Church resolve new bioethical questions? - Catholic Free Press [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- New Nanofiber Matrix Enhances Stem Cell Production - Drug Discovery & Development [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- Transplanted Human Embryonic Stem Retinal Pigment Cells Survive 22 months in a Human Recipient - MedicalResearch.com (blog) [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- Iowa GOP takes aim at research - The Daily Iowan [Last Updated On: February 21st, 2017] [Originally Added On: February 21st, 2017]
- Nanofiber Matrix Improves Stem Cell Growth - Asian Scientist Magazine [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- The clone armies never happened, but Dolly the sheep still changed the world - Quartz [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- Harvard scientist worries we're 'reverting to a pre-Enlightenment form of thinking' - Washington Post [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- 20 Years After Dolly the Sheep, Potential of Cloning Remains Unclear - FOX40 [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- Harvard scientist worries we're 'reverting to a pre-Enlightenment form of thinking' - SCNow [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Stem cells derived neuronal networks grown on a chip as an alternative to animal testing - Science Daily [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Facts About Cloning - Live Science [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Exclusive: CBMG CEO Talks Stem-Cell Therapies, Cancer Treatments, Financials & The Chinese Market - Benzinga [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial Mouse Embryo Created in Culture - Technology Networks [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial embryo grown in a dish from two types of stem cells - New Scientist [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial mouse embryo created out of stem cells - BioNews [Last Updated On: March 7th, 2017] [Originally Added On: March 7th, 2017]
- Scientists Have Created the First Artificial Embryo Without Using an ... - Gizmodo [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Artificial Mouse 'Embryo' Created from Stem Cells for First Time - Laboratory Equipment [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Role of Stem Cell Reprogramming Factor Uncovered - Technology Networks [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- COMMENTARY: Saving a 10-year-old's life but at what cost? - Globalnews.ca [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- No egg? No sperm? No problem. First artificial embryo made from stem cells - Genetic Literacy Project [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- For The First Time Ever, Scientists Have Successfully Created An ... - Wall Street Pit [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Treating sickle cell disease with gene therapy - Jamaica Observer [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Here's the first 3D glimpse of how DNA is packaged up in a single cell - Ars Technica [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- The craftsmanship of mimicking embryogenesis in a dish - BioNews [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Stem Cells Used to Create Artificial Embryo for the First Time Ever - TrendinTech [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]
- Scientists create first 3D structure of active DNA - The Indian Express [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]