Gene therapy has been headline news in recent years, in part due to the rapid development of biotechnology that enables doctors to administer such treatments. Broadly, gene therapies are techniques used to treat or prevent disease by tweaking the content or expression of cells' DNA, often by replacing faulty genes with functional ones.
The term "gene therapy" sometimes appears alongside misinformation about mRNA vaccines, which include the Pfizer and Moderna COVID-19 vaccines. These vaccines contain mRNA, a genetic cousin of DNA, that prompts cells to make the coronavirus "spike protein." The vaccines don't alter cells' DNA, and after making the spike, cells break down most of the mRNA. Other COVID-19 shots include the viral vector vaccines made by AstraZeneca and Johnson & Johnson, which deliver DNA into cells to make them build spike proteins. The cells that make spike proteins, using instructions from either mRNA or viral vector vaccines, serve as target practice for the immune system, so they don't stick around long. That's very, very different from gene therapy, which aims to change cells' function for the long-term.
Let's take a dive into what gene therapy actually is, addressing some common questions along the way.
DNA is a molecule that stores genetic information, and genes are pieces of genetic information that cells use to make a particular product, such as a protein. DNA is located inside the nucleus of a cell, where it's packaged into chromosomes, and also inside mitochondria, the "power plant" organelles located outside the nucleus.
Although there are mitochondrial diseases that could someday be cured with gene therapy, currently, the term gene therapy refers to treatments that target nuclear genes the genes on the 23 pairs of chromosomes inside the nucleus.
Classically, gene therapy has referred to the process of either "knocking out" a dysfunctional gene or adding a copy of a working gene to the nucleus in order to improve cell function. Gene therapy is currently directed at diseases stemming from a problem with just one gene, or at most a few genes, rather than those that involve many genes.
However, the field of gene therapy is now expanding to include strategies that don't all fall into the classic categories of knocking out bad genes or adding good genes. For example, researchers at Sangamo Therapeutics are developing genetic techniques for treating Parkinson, Alzheimer and Huntington diseases that work by ramping up or suppressing the activity of specific genes.
While the treatments may add genes to body cells, knock out genes or act in some way to change the function of genes, each gene therapy is directed to the cells of particular body tissues. Thus, when scientists and doctors talk about what gene therapy does to DNA, they are not talking about all of the DNA in the body, but only some of it.
Gene therapy can be either ex vivo or in vivo.
Ex vivo gene therapy means that cells are removed from the body, treated and then returned to the body. This is the approach used to treat genetic diseases of blood cells, because bone marrow can be harvested from the patient, stem cells from that bone marrow can be treated with gene therapy for instance, to supply a gene that is missing or not working correctly and the transformed cells can be infused back into the patient.
In vivo gene therapy means that the gene therapy itself is injected or infused into the person. This can be through injection directly to the anatomic site where the gene therapy is needed (a common example being the retina of the eye), or it can mean injection or infusion of a genetic payload that must travel to the body tissues where it is needed.
In both ex vivo and in vivo gene therapy, the genetic payload is packaged within a container, called a vector, before being delivered into cells or the body. One such vector is adeno-associated virus (AAV). This is a group of viruses that exist in nature but have had their regular genes removed and replaced with a genetic payload, turning them into gene therapy vectors.
AAV has been used to deliver gene therapy for many years, because it has a good safety record. It is much less likely to cause a dangerous immune response than other viruses that were used as vectors several decades ago, when gene therapy was just getting started. Additionally, packaging genetic payloads within AAV carriers allows for injected or infused gene therapy to travel to particular body tissues where it is needed. This is because there are many types of AAV, and certain types are attracted to certain tissues or organs. So, if a genetic payload needs to reach liver cells, for example, it can be packaged into a type of AAV that likes to go to the liver.
In the early days of gene therapy, which began in 1989, researchers used retroviruses as vectors. These viruses delivered a genetic payload directly into the nuclear chromosomes of the patient. However, there was concern that such integration of new DNA into chromosomes might cause changes leading to cancer (opens in new tab), so the strategy was initially abandoned. (More recently, scientist have successfully used retroviruses in experimental gene therapies without causing cancer; for example, a retrovirus-based therapy was used to treat infants with "bubble boy disease.")
After moving away from retroviruses, researchers turned to adenoviruses, which offered the advantage of delivering the genetic payload as an episome a piece of DNA that functions as a gene inside the nucleus but remains a separate entity from the chromosomes. The risk for cancer was extremely low with this innovation, but adenovirus vectors turned out to stimulate the immune system in very powerful ways. In 1999, an immune reaction from adenovirus-carrying gene therapy led to the death of 18-year-old Jesse Gelsinger, (opens in new tab) who'd volunteered for a clinical trial.
Gelsinger's death shocked the gene therapy community, stalling the field for several years, but the current gene therapies that have emerged over the years based on AAV are not dangerous. However, they tend to be expensive and the success rate varies, so they typically are used as a last resort for a growing number of genetic diseases.
Gene therapy can treat certain blood diseases, such as hemophilia A, hemophilia B, sickle cell disease, and as of 2022, beta thalassemia (opens in new tab). What these diseases have in common is that the problem comes down to just one gene. This made beta thalassemia and sickle cell disease low-hanging fruits for ex vivo gene therapies that involve removing and modifying bone marrow stem cells, whereas hemophilia A and hemophilia B are treated with in vivo gene therapies that target liver cells. That said, other treatments exist for these blood diseases, so gene therapy is more of a last resort.
Numerous enzyme deficiency disorders also come down to one bad gene that needs to be replaced. Cerebral adrenoleukodystrophy, which causes fatty acids to accumulate in the brain, is one such disorder that can be treated with gene therapy, according to Boston Children's Hospital (opens in new tab). CAR T-cell therapy, which is approved for certain cancers, involves removing and modifying a patient's immune cells and is known as a "cell-based gene therapy." (opens in new tab)
Gene therapy has also been useful in treating hereditary retinal diseases (opens in new tab), for which other treatments have not been useful.
Another group of targets for gene therapy are diseases of the nervous system.
"We are at a remarkable time in the neurosciences, where treatments for genetic forms of neurological disorders are being developed," Dr. Merit Cudkowicz (opens in new tab), the chief of neurologyat Massachusetts General Hospital and a professor at Harvard Medical School, told Live Science.
For example, gene therapies are being developed to treat a pair of genetic diseases called Tay-Sachs disease and Sandhoff disease. Both conditions result from organelles called lysosomes filling up with fat-like molecules called gangliosides. The effects of these diseases (opens in new tab) include delay in reaching developmental milestones, loss of previously acquired skills, stiffness, blindness, weakness and lack of coordination with eventual paralysis. Children born with Tay-Sachs disease and Sandhoff disease generally dont make it past 2 to 5 years of age.
"There has been no routine antenatal or neonatal test for Tay-Sachs and Sandhoff, because there has been no available treatment whatsoever," said Dr. Jagdeep Walia (opens in new tab), a clinical geneticist and head of the Division of Medical Genetics within the Department of Pediatrics and the Kingston Health Sciences Centre and Queen's University in Ontario, Canada. Walia is developing a gene therapy aimed at replacing the gene for Hex A, the enzyme that is deficient in these children. So far, the treatment has shown good efficacy and safety in animal models, but it still needs to be tested in human patients.
The future looks hopeful when it comes to gene therapy overall, on account of new technological developments, including CRISPR gene editing. This is an extremely powerful technique for cutting out parts of DNA molecules and even pasting new parts in analogous to what you do with text in word processing applications. CRISPR is not the first method that scientists have used to edit DNA, but it is far more versatile that other techniques. It is not yet quite ready for in vivo chromosomal manipulation, but it is advancing exponentially.
Perhaps even closer to the horizon is the prospect of delivering larger genetic payloads into cells. One big drawback of the AAV vector is that each virus particle can carry just a small amount of DNA, but recent research has revealed that a different type of virus, called cytomegalovirus, can be adapted to carry gene therapies (opens in new tab) with a much bigger payload than AAV. Not only might this some day expand gene therapy to more diseases requiring larger genes than AAV can carry, but it also could enable more than one gene to be delivered in a single therapy.
See the original post here:
Gene therapy: Everything you need to know about the DNA ... - Livescience.com
- Spotlight on Cancer Stem Cell Research – Stem Cell Cafe [Last Updated On: May 22nd, 2011] [Originally Added On: May 22nd, 2011]
- Stem Cells and Controversy – Stem Cell Cafe [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- Lisa Ray asks you to join Stem Cell City – Stem Cell Cafe [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- Michael Savage...Embryonic Stell Cell Research...Part 2 [Last Updated On: August 4th, 2011] [Originally Added On: August 4th, 2011]
- Michael Savage...Embryonic Stell Cell Research...Part 3 [Last Updated On: August 6th, 2011] [Originally Added On: August 6th, 2011]
- Stem Cell Therapy at City of Hope: Building on the Promise [Last Updated On: August 8th, 2011] [Originally Added On: August 8th, 2011]
- Obama on Embryonic Stem Cell Research [Last Updated On: August 9th, 2011] [Originally Added On: August 9th, 2011]
- Medical Treatment by Stem Cells Myth or Reality? Episode 2 - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Stem Cells Regenerate New Finger! - Video [Last Updated On: October 17th, 2011] [Originally Added On: October 17th, 2011]
- MS Patient After Stem Cell Therapy - Video [Last Updated On: October 19th, 2011] [Originally Added On: October 19th, 2011]
- Stem Cell Transplant - Video [Last Updated On: October 19th, 2011] [Originally Added On: October 19th, 2011]
- The EU and stem cell research - Video [Last Updated On: October 20th, 2011] [Originally Added On: October 20th, 2011]
- Dr. Oz to Oprah and Michael J Fox: "The stem cell debate is dead." - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- Politics: President Obama on Stem Cell Research - Video [Last Updated On: December 9th, 2011] [Originally Added On: December 9th, 2011]
- Be still my beating stem cell heart - Video [Last Updated On: December 18th, 2011] [Originally Added On: December 18th, 2011]
- Adult Stem Cell vs Embryonic Stem Cell Research Ethics Video - Video [Last Updated On: December 19th, 2011] [Originally Added On: December 19th, 2011]
- A new hair loss treatment using stem cells ethically, safely and effectively. - Video [Last Updated On: December 31st, 2011] [Originally Added On: December 31st, 2011]
- U-M Would Have To Report Data On Stell Cell Research In New House Bill [Last Updated On: March 30th, 2012] [Originally Added On: March 30th, 2012]
- Stem Cells Restore Man's Vision | The art of cord blood banking [Last Updated On: January 4th, 2013] [Originally Added On: January 4th, 2013]
- Cancer Stem Cells – Video – Stem Cell Cafe [Last Updated On: January 7th, 2013] [Originally Added On: January 7th, 2013]
- Research and Markets: Stem Cell Therapy Market in Asia-Pacific to ... [Last Updated On: January 13th, 2013] [Originally Added On: January 13th, 2013]
- Genea Stem Cells (GSC): 25 new disease specific pluripotent stem ... [Last Updated On: January 14th, 2013] [Originally Added On: January 14th, 2013]
- Court lifts cloud over embryonic stem cells – Stem Cell Cafe [Last Updated On: January 16th, 2013] [Originally Added On: January 16th, 2013]
- Drug targets leukemia stem cells – Stem Cell Cafe [Last Updated On: January 18th, 2013] [Originally Added On: January 18th, 2013]
- CRF to sponsor 8th International Conference on ... - Stem Cell Cafe [Last Updated On: January 19th, 2013] [Originally Added On: January 19th, 2013]
- Bacteria Can Morph Host Cells Into Stem Cells – Stem Cell Cafe [Last Updated On: January 21st, 2013] [Originally Added On: January 21st, 2013]
- Springhill Medical Group-What is Stem Cell Therapy? - Stem Cell Cafe [Last Updated On: January 22nd, 2013] [Originally Added On: January 22nd, 2013]
- Stem Cells – A Medical Dictionary, Bibliography, And Annotated ... [Last Updated On: January 23rd, 2013] [Originally Added On: January 23rd, 2013]
- StemCells, Inc. to Present at Phacilitate Cell ... - Stem Cell Cafe [Last Updated On: January 24th, 2013] [Originally Added On: January 24th, 2013]
- Stem cells aid recovery from stroke – Stem Cell Cafe [Last Updated On: January 28th, 2013] [Originally Added On: January 28th, 2013]
- Adult Stem Cells Regrow cut off Finger! – Video – Stem Cell Cafe [Last Updated On: February 4th, 2013] [Originally Added On: February 4th, 2013]
- Stem cells is no hype but it is a better hope: Experts – Stem Cell Cafe [Last Updated On: February 6th, 2013] [Originally Added On: February 6th, 2013]
- 3D printing with stem cells could lead to printable organs – Stem ... [Last Updated On: February 6th, 2013] [Originally Added On: February 6th, 2013]
- Monell scientists identify taste stem cells on the tongue – Stem Cell ... [Last Updated On: February 7th, 2013] [Originally Added On: February 7th, 2013]
- Scientists Say 3D Printing Can Create Stem Cells – Video – Stem ... [Last Updated On: February 7th, 2013] [Originally Added On: February 7th, 2013]
- Fish stem cells could light the way to optical breakthroughs – Stem ... [Last Updated On: February 17th, 2013] [Originally Added On: February 17th, 2013]
- Signaling factors may be key to stem cells' healing abilities ... [Last Updated On: February 18th, 2013] [Originally Added On: February 18th, 2013]
- Regenerative medicine and Stem cells Partnering Terms and ... [Last Updated On: February 19th, 2013] [Originally Added On: February 19th, 2013]
- Market Research Report — Therapeutic ... - Stem Cell Cafe [Last Updated On: February 22nd, 2013] [Originally Added On: February 22nd, 2013]
- Cell therapy: New mouse model promises to advance research on ... [Last Updated On: February 22nd, 2013] [Originally Added On: February 22nd, 2013]
- Florida Hospital Pepin Heart Institute, USF partner ... - Stem Cell Cafe [Last Updated On: February 23rd, 2013] [Originally Added On: February 23rd, 2013]
- Schistosome stem cells could explain how the worms survive for so ... [Last Updated On: February 24th, 2013] [Originally Added On: February 24th, 2013]
- Egg cells from Stell Cells: A breakthrough in fertility research | Bionic ... [Last Updated On: February 26th, 2013] [Originally Added On: February 26th, 2013]
- BioMarin Licenses Factor VIII Gene Therapy ... - Stem Cell Cafe [Last Updated On: February 26th, 2013] [Originally Added On: February 26th, 2013]
- 'Holy Grail' of stem cell research discovered – Stem Cell Clinic ... [Last Updated On: March 1st, 2013] [Originally Added On: March 1st, 2013]
- OHSU Doernbecher Scientists First To Grow Liver Stem Cells In ... [Last Updated On: March 1st, 2013] [Originally Added On: March 1st, 2013]
- FRC's Dr. David Prentice Congratulates Kansas ... - Stem Cell Cafe [Last Updated On: March 5th, 2013] [Originally Added On: March 5th, 2013]
- UCLA researchers explore cutting edge of stem cells – Stem Cell Cafe [Last Updated On: March 10th, 2013] [Originally Added On: March 10th, 2013]
- Study finds stem cells in deer antler – Stem Cell Cafe [Last Updated On: March 21st, 2013] [Originally Added On: March 21st, 2013]
- IDIBELL signs agreement with Histocell to use ... - Stem Cell Cafe [Last Updated On: March 29th, 2013] [Originally Added On: March 29th, 2013]
- Stem Cell Therapy Market in Asia-Pacific to 2018 Market Research ... [Last Updated On: March 31st, 2013] [Originally Added On: March 31st, 2013]
- Researchers first to use common virus to 'fortify' adult stem cells ... [Last Updated On: April 2nd, 2013] [Originally Added On: April 2nd, 2013]
- Stem Cells Harvested From Human Gut For First Time - Stem Cell Cafe [Last Updated On: April 6th, 2013] [Originally Added On: April 6th, 2013]
- "Nanokicking" Stem Cells Offers Cheaper And Easier Way To Grow ... [Last Updated On: April 7th, 2013] [Originally Added On: April 7th, 2013]
- Adhesive force differences enable separation of stem cells to ... [Last Updated On: April 8th, 2013] [Originally Added On: April 8th, 2013]
- Embryonic-like stem cells collected from adults to grow bone – Stem ... [Last Updated On: April 8th, 2013] [Originally Added On: April 8th, 2013]
- Pro-lifers eye Kansas for top study of stem cells; no embryo use at ... [Last Updated On: April 12th, 2013] [Originally Added On: April 12th, 2013]
- StemCells, Inc. Enters Agreement to Receive $19.3 ... - Stem Cell Cafe [Last Updated On: April 12th, 2013] [Originally Added On: April 12th, 2013]
- 'Smart' stem cells repair damage from heart failure – Stem Cell Cafe [Last Updated On: April 12th, 2013] [Originally Added On: April 12th, 2013]
- First-in-humans study introduces next generation ... - Stem Cell Cafe [Last Updated On: April 13th, 2013] [Originally Added On: April 13th, 2013]
- Stem Cells Show Promise in Heart Failure Patients – Stem Cell Cafe [Last Updated On: April 15th, 2013] [Originally Added On: April 15th, 2013]
- IDIBELL signs agreement with Histocell to use … – Stem Cell Cafe ... [Last Updated On: April 16th, 2013] [Originally Added On: April 16th, 2013]
- Circuit Court OKs Funding of Embryonic Stem Cell Research ... [Last Updated On: April 16th, 2013] [Originally Added On: April 16th, 2013]
- Pros And Cons Of Stem Cell Research [Last Updated On: April 16th, 2013] [Originally Added On: April 16th, 2013]
- Adult stem cells offer ethical, effective cures, speakers say ... - First [Last Updated On: April 17th, 2013] [Originally Added On: April 17th, 2013]
- Preliminary Research, Led By Dr. Vincent Giampapa, Finds Aged ... [Last Updated On: April 17th, 2013] [Originally Added On: April 17th, 2013]
- Voices Against Brain Cancer Comments on New Study Claiming Fat ... [Last Updated On: April 20th, 2013] [Originally Added On: April 20th, 2013]
- UCLA Researchers Develop New Method for Purifying Stem Cells ... [Last Updated On: April 23rd, 2013] [Originally Added On: April 23rd, 2013]
- Scientist identifies protein molecule used to ... - Stem Cell Cafe [Last Updated On: April 25th, 2013] [Originally Added On: April 25th, 2013]
- Human Stem Cells Injected In Mice Restore Memory, Learning ... [Last Updated On: April 25th, 2013] [Originally Added On: April 25th, 2013]
- Explore the Forefront of iPS Cell Research ... - Stem Cell Cafe [Last Updated On: April 26th, 2013] [Originally Added On: April 26th, 2013]
- Stem Cell Therapy Market in Asia-Pacific to 2018 ... [Last Updated On: April 28th, 2013] [Originally Added On: April 28th, 2013]
- Dr. Farshid Guilak: Can stem cells help those with arthritis? – Stem ... [Last Updated On: April 28th, 2013] [Originally Added On: April 28th, 2013]
- AKC Canine Health Foundation Releases Webinar ... - Stem Cell Cafe [Last Updated On: April 28th, 2013] [Originally Added On: April 28th, 2013]
- German stem cells give new life to cancer patient in Gujarat – Stem ... [Last Updated On: April 29th, 2013] [Originally Added On: April 29th, 2013]
- Stem Cell Therapy Market in Asia-Pacific to 2018 ... - Stem Cell Cafe [Last Updated On: April 30th, 2013] [Originally Added On: April 30th, 2013]
- Study confirms that mesenchymal stem cells may help treat cancer ... [Last Updated On: April 30th, 2013] [Originally Added On: April 30th, 2013]
- Adults lack stem cells for making new eggs, research shows – Stem ... [Last Updated On: April 30th, 2013] [Originally Added On: April 30th, 2013]
- Stemedica Issued U.S. Patent For Ectodermal Stem Cells – Stem ... [Last Updated On: April 30th, 2013] [Originally Added On: April 30th, 2013]
- Clarifying the effect of stem cell therapy on cancer – Stem Cell Cafe [Last Updated On: May 2nd, 2013] [Originally Added On: May 2nd, 2013]