I was calm. In that exact moment, I thought, Its just one more experiment, says Eduard Alba, the student mechanical engineer who commanded the sperm-injecting device.
The startup company that developed the robot, Overture Life, says its device is an initial step toward automating in vitro fertilization, or IVF, and potentially making the procedure less expensive and far more common than it is today.
Right now, IVF labs are staffed by trained embryologists who earn upwards of $125,000 a year to delicately handle sperm and eggs using ultra-thin hollow needles under a microscope.
But some startups say the entire process could be carried out automatically, or nearly so. Overture, for instance, has filed a patent application describing a biochip for an IVF lab in miniature, complete with hidden reservoirs containing growth fluids, and tiny channels for sperm to wiggle through.
Think of a box where sperm and eggs go in, and an embryo comes out five days later, says Santiago Munn, the prize-winning geneticist who is chief innovation officer at the Spanish company. He believes that if IVF could be carried out inside a desktop instrument, patients might never need to visit a specialized clinic, where a single attempt at getting pregnant can cost $20,000 in the US. Instead, he says, a patients eggs might be fed directly into an automated fertility system at a gynecologists office. It has to be cheaper. And if any doctor could do it, it would be, says Munn.
MIT Technology Review identified a half-dozen startups with similar aims, with names like AutoIVF, IVF 2.0, Conceivable Life Sciences, and Fertilis. Some have roots in university laboratories specializing in miniaturized lab-on-a-chip technology.
So far, Overture has raised the most: about $37 million from investors including Khosla Ventures and Susan Wojcicki, the former CEO of YouTube.
The main goal of automating IVF, say entrepreneurs, is simple: its to make a lot more babies. About 500,000 children are born through IVF globally each year, but most people who need help having kids dont have access to fertility medicine or cant pay for it.
How do we go from half a million babies a year to 30 million? wonders David Sable, a former fertility doctor who now runs an investment fund. You cant if you run each lab like a bespoke, artisanal kitchen, and that is the challenge facing IVF. Its been 40 years of outstanding science and really mediocre systems engineering.
While an all-in-one fertility machine doesnt yet exist, even automating parts of the process, like injecting sperm, freezing eggs, or nurturing embryos, could make IVF less expensive and eventually support more radical innovations, like gene editing or even artificial wombs.
But it wont be easy to fully automate IVF. Just imagine trying to make a robot dentist. Test-tube conception involves a dozen procedures, and Overtures robot so far performs only one of them, and only partially.https://wp.technologyreview.com/wp-content/uploads/2023/04/robot-procedure-notext.mp4An video showing robotic fertilization of an egg at Overture Life Sciences. A vibrating needle pierces the egg, depositing a single sperm cell.
OVERTURE
The concept is extraordinary, but this is a baby step, says Gianpiero Palermo, a fertility doctor at Weill Cornell Medical Center who is credited with developing the fertilization procedure known as intracytoplasmic sperm injection, or ICSI, in the 1990s. Palermo notes that Overtures researchers still relied on some manual assistance for tasks like loading a sperm cell into the injector needle. This is not yet robotic ICSI, in my opinion, he says.
Other doctors are skeptical that robots can, or should, replace embryologists anytime soon. You pick up a sperm, put it in an egg with minimal trauma, as delicately as possible, says Zev Williams, director of Columbia Universitys fertility clinic. For now, humans are far better than a machine, he says.
His center did develop a robot, but it has a more limited aim: dispensing tiny droplets of growth medium for embryos to grow in. Its not good for the embryos if the drop size differs, says Williams. Creating the same drops over and over againthat is where the robot can shine. He calls it a low risk way to introduce automation to the lab.
One obstacle to automating conception is that so-called microfluidicsanother name for lab-on-a-chip technologyhasnt lived up to its hype.
Jeremy Thompson, an embryologist based in Adelaide, Australia, says hes spent his career figuring out how to make the lives of embryos better as they grow in laboratories. But until recently, he says, his tinkering with microfluidic systems yielded an unambiguous result: Bollocks. It didnt work. Thompson says IVF remains a manual process in part because no one wants to trust an embryoa potential personto a microdevice where it could get trapped or harmed by something as tiny as an air bubble.
A few years ago, though, Thompson saw images of a minuscule Eiffel Tower, just one millimeter tall. It had been made using a new type of additive 3D printing, in which light beams are aimed to harden liquid polymers. He decided this was the needed breakthrough, because it would let him build a box or a cage around an embryo.
Since then, a startup he founded, Fertilis, has raised a couple of million dollars to print what it calls see-through pods or micro-cradles. The idea is that once an egg is plopped into one, it can be handled more easily and connected to other devices, such as pumps to add solutions in minute quantities.
Inside one of Fertiliss pods, an egg sits in a chamber no larger than a bead of mist, but the container itself is large enough to pick up with small tongs. Fertilis has published papers showing it can flash-freeze eggs inside the cradles and fertilize them there, too, by pushing in a sperm with a needle.
A human egg is about 0.1 millimeters across, at the limit of what a human eye can see unaided. Right now, to move one, an embryologist will slurp it up into a hollow needle and squirt it out again. But Thompson says that once inside the companys cradles, eggs can be fertilized and grow into embryos, moving through the stations of a robotic lab as if on a conveyor belt. Our whole story is minimizing stress to embryos and eggs, he says.
Thompson hopes someday, when doctors collect eggs from a womans ovaries, theyll be deposited directly into a micro-cradle and, from there, be nannied by robots until theyre healthy embryos. Thats my vision, he says.https://wp.technologyreview.com/wp-content/uploads/2023/04/better-injection.mp4A video taken through a microscope shows a microneedle penetrating eggs held in 3D-printed pods, or cradles. An egg is about 0.1 mm across.
FERTILIS
MIT Technology Review found one company, AutoIVF, a spinout from a Massachusetts General HospitalHarvard University microfluidics lab, that has won more than $4 million in federal grants to develop such an egg-collecting system. It calls the technology OvaReady.
Egg collection happens after a patient is treated with fertility hormones. Then a doctor uses a vacuum-powered probe to hoover up eggs that have ripened in the ovaries. Since theyre floating in liquid debris and encased in protective tissue, an embryologist needs to manually find each one and denude it by gently cleaning it with a glass straw.
An AutoIVF executive, Emre Ozkumur, declined to discuss the projectthe company wants to stay under the radar a little bit longer, he saysbut its grant and patent documents suggest it is testing a device that can spot and isolate eggs and then automatically strip them of surrounding tissue, perhaps by swishing them through something that resembles a microscopic cheese grater.
Once an egg is in hand, doctors need to match it with a sperm cell. To help them pick the right one, Alejandro Chavez-Badiola, a fertility doctor based in Mexico, started a company, IVF 2.0, that developed software to rank and analyze sperm swimming in a dish. Its similar to computer-vision programs that track sports players as they run, collide, and switch directions on a pitch.
The job is to identify healthy sperm by assessing their shape and seeing how well they swim. Motility, says Chavez-Badiola, is the ultimate expression of sperm health and normality. While a person can only keep an eye on a few sperm at one time, a computer doesnt face that limit. We humans are good at channeling our attention to a single point. We can assess five or 10 sperm, but you cant do 50, says Chavez-Badiola.
His IVF clinic is running a head-to-head study of human- and computer-picked sperm, to see which lead to more babies. So far, the computer holds a small edge.
We dont claim its better than a human, but we do claim its just as good. And it never gets tired. A human has to be good at 8 a.m., after coffee, after having an argument on the phone, he says.
Chavez-Badiola says such software will be the brains to command future automated labs. This year, he sold the rights to use his sperm-tracking program to Conceivable Life Sciences, another IVF automation startup being formed in New York where Chavez-Badiola will act as chief product officer. Also joining the company is Jacques Cohen, a celebrated embryologist who once worked at the British clinic where the first IVF baby was born in 1978.https://wp.technologyreview.com/wp-content/uploads/2023/04/Conceivable-720.mp4A computer system developed by IVF 2.0 tracks and grades sperm as they swim, using image-recognition software.
CONCEIVABLE
Conceivable plans to create an autonomous robotic workstation that can fertilize eggs and cultivate embryos, and it hopes to demonstrate all the key steps this year. But Cohen allows that automation could take a while to become reality. It will happen step by step, he says. Even things that seem obvious take 10 years to catch on, and 20 to become routine.
The investors behind Conceivable think they can cash in by expanding the use of IVF. Its nearly certain that the IVF industry could grow to five or 10 times its current size. In the US, fewer than 2% of kids are born this way, but in Denmark, where the procedure is free and encouraged, the figure is near 10%.
That is the true demand, says Alan Murray, an entrepreneur with a background in software and co-working spaces who cofounded Conceivable with his business partner, Joshua Abram. The challenge is that these wonderful rich and eccentric countries can do it, but the rest of the world cannot. But they have demonstrated the true human need, he says. What they have done with money, we need to do with technology.
Murray estimates the average IVF baby in the US costs $83,000 if you include failed attempts, which are common. He says his companys objective is to lower the cost by 70%, something he says can happen if success rates increase.
But its not a given that robots will reduce the cost of IVF or that any savings will be passed on to patients. Rita Vassena, an advisor to Conceivable and CEO at Fecundis, a fertility science company, says the field has a history of introducing innovations without appreciably increasing pregnancy rates. The trend [is] toward piling up tests and technologies rather than a true effort to lower access barriers, she says.
Last fall, the researchers at Overture and doctors at New Hope published a description of their work with the robot, claiming that two patients had become pregnant. That was done after gaining ethics approval for the study, says John Zhang, founder of New Hope and senior author of the report.
Both those children have now been born, says Jenny Lu, the egg donation coordinator at New Hope. MIT Technology Review was able to speak to the father of one of the children.
Its wild, isnt it, said the father, who asked to remain anonymous. They said up until now it had always been done manually.
He said he and his partner had tried IVF several times before, without success. Both cases of robot injection involved donor eggs, which were provided to the patients for free (they can cost $15,000 otherwise). In each case, after being fertilized and grown into embryos, they were implanted in the uterus of the patient.
Donor eggs are most often used when a patient is older, in her 40s, and cant get pregnant otherwise.
Since automation wont directly solve the problem of aging eggs, an IVF lab-in-a-box wont fix this intractable reason that fertility treatments fail. However, automation could let doctors begin precisely measuring what they do, allowing them to fine-tune their procedures. Even a small increase in success rates could mean tens of thousands of extra babies every year.
Kathleen Miller, chief scientist of Innovation Fertility, a chain of clinics in the southern US, says her centers are now using computer-vision systems to study time-lapse videos of growing embryos and trying to see if any data explain why some become babies and others dont. Were putting it into models, and the question is Tell me something I dont know, she says.
Were going to see an evolution of what an embryologist is, Miller predicts. Right now, they are technicians, but theyre going to be data scientists.
For some proponents of IVF automation, an even wilder future awaits. By giving over conception to machines, automation could speed the introduction of still-controversial techniques such as genome editing, or advanced methods of creating eggs from stem cells.
Although Munn says Overture Life has no plans to modify the genetic makeup of children, he allows it would be a simple matter to use the sperm-injecting robot for that purpose, since it could dispense precise amounts of gene-editing chemicals into an egg. It should be very easy to add to the machine, he says.
Even more speculative technology is on the horizon. Fertility machines could gradually evolve into artificial wombs, with children gestated in scientific centers until birth. I do believe we are going to get there, says Thompson. There is credible evidence that what we thought was impossible is not so impossible.
Others imagine that robots could eventually be shot into outer space, stocked with eggs and sperm held in a glassy state of stasis. After a thousand-year journey to a distant planet, such machines might boot up and create a new society of humans.
Its all part of the goal of creating more people, and not just here on Earth. There are people thinking that humankind should be an interplanetary species, and human lifetimes are not going to be enough to reach out to these worlds, says Chavez-Badiola. Part of the job of a scientist is to keep dreaming.
More:
The first babies conceived with a sperm-injecting robot have been born - MIT Technology Review
- Stem Cell Research Article, Embryonic Cells Information ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Practical Problems with Embryonic Stem Cells [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- What are embryonic stem cells? [Stem Cell Information] [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Embryonic stem cell - Science Daily [Last Updated On: May 7th, 2015] [Originally Added On: May 7th, 2015]
- What is Wrong With Embryonic Stem Cell Research? [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- Destructive Embryonic Stem Cell Research | Antiochian ... [Last Updated On: June 13th, 2015] [Originally Added On: June 13th, 2015]
- NIH Human Embryonic Stem Cell Registry - Research Using ... [Last Updated On: June 22nd, 2015] [Originally Added On: June 22nd, 2015]
- Embryonic Stem Cell Research Pros and Cons | HRF [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Embryonic stem cells: where do they come from and what can ... [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Embryonic Stem Cells - HowStuffWorks [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Pros & Cons of Embryonic Stem Cell Research [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Children's Hospital Boston Glossary - Stem cell [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- 1. Embryonic Stem Cells [Stem Cell Information] [Last Updated On: August 23rd, 2015] [Originally Added On: August 23rd, 2015]
- Embryonic stem cell - ScienceDaily [Last Updated On: August 23rd, 2015] [Originally Added On: August 23rd, 2015]
- Researchers control embryonic stem cells with light [Last Updated On: August 30th, 2015] [Originally Added On: August 30th, 2015]
- Embryonic stem cells controlled with light: Study reveals ... [Last Updated On: August 30th, 2015] [Originally Added On: August 30th, 2015]
- Embryonic stem cell research: an ethical dilemma | Europe ... [Last Updated On: September 5th, 2015] [Originally Added On: September 5th, 2015]
- Scientists reveal how stem cells defend against viruses [Last Updated On: September 22nd, 2015] [Originally Added On: September 22nd, 2015]
- An Overview of Stem Cell Research | The Center for ... [Last Updated On: October 3rd, 2015] [Originally Added On: October 3rd, 2015]
- Scientific Experts Agree Embryonic Stem Cells Are ... [Last Updated On: October 8th, 2015] [Originally Added On: October 8th, 2015]
- Myths and Misconceptions About Stem Cell Research ... [Last Updated On: October 12th, 2015] [Originally Added On: October 12th, 2015]
- Embryonic Stem Cell Maintenance & Differentiation (Human) [Last Updated On: October 23rd, 2015] [Originally Added On: October 23rd, 2015]
- Are embryonic stem cells and artificial stem cells equivalent? [Last Updated On: October 31st, 2015] [Originally Added On: October 31st, 2015]
- What are human embryonic stem cells used for? | Europe's stem ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- Stem Cell Basics I. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Stem Cell Basics III. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Pros and Cons of Stem Cell Research - thebalance.com [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic Stem Cells and the Germ Cell Lineage | InTechOpen [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Cloning/Embryonic Stem Cells - National Human Genome Research ... [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic stem cell research - alsa.org [Last Updated On: September 22nd, 2016] [Originally Added On: September 22nd, 2016]
- Embryonic Stem Cells | Stem Cells Freak [Last Updated On: October 4th, 2016] [Originally Added On: October 4th, 2016]
- Embryonic Stem Cells | stemcells.nih.gov [Last Updated On: October 9th, 2016] [Originally Added On: October 9th, 2016]
- Embryonic stem cell - Wikipedia [Last Updated On: October 17th, 2016] [Originally Added On: October 17th, 2016]
- Stem-cell therapy - Wikipedia [Last Updated On: October 19th, 2016] [Originally Added On: October 19th, 2016]
- Stem cell - Wikipedia [Last Updated On: October 23rd, 2016] [Originally Added On: October 23rd, 2016]
- What are embryonic stem cells or ES cells? [Last Updated On: October 25th, 2016] [Originally Added On: October 25th, 2016]
- Embryonic Stem Cell Research - rtl.org [Last Updated On: November 8th, 2016] [Originally Added On: November 8th, 2016]
- Guest View: No to embryonic stem cells - htrnews.com [Last Updated On: November 9th, 2016] [Originally Added On: November 9th, 2016]
- Blood-Forming Stem Cell Transplants - National Cancer Institute [Last Updated On: December 5th, 2016] [Originally Added On: December 5th, 2016]
- How Embryonic Stem Cells Become Tissue Specific | TFOT [Last Updated On: December 12th, 2016] [Originally Added On: December 12th, 2016]
- Embryonic Stem Cell Research - An Ethical Dilemma [Last Updated On: December 12th, 2016] [Originally Added On: December 12th, 2016]
- Scientists reprogram embryonic stem cells to expand their ... [Last Updated On: January 15th, 2017] [Originally Added On: January 15th, 2017]
- Embryonic Stem Cell Research Threatened - Hartford Courant [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- Embryonic stem (ES) cells - eurostemcell.org [Last Updated On: February 5th, 2017] [Originally Added On: February 5th, 2017]
- Researchers engineer new thyroid cells - Science Daily [Last Updated On: February 8th, 2017] [Originally Added On: February 8th, 2017]
- Yes There's Hope, But Treating Spinal Injuries With Stem Cells Is Not A Reality Yet - IFLScience [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- SEQUEIRA: Stem cell research must remain in foreground - University of Virginia The Cavalier Daily [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Stem cells: a miracle cure or playing God? - The Student [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- How does the Catholic Church resolve new bioethical questions? - The Tidings [Last Updated On: February 11th, 2017] [Originally Added On: February 11th, 2017]
- Possible key to regeneration found in planaria's origins - Phys.Org [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Novel Nanofiber Matrix Improves Stem Cell Production - R & D Magazine [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Your brain's got rhythm: Synthetic brain mimics - Science Daily [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Nanofiber matrix sends stem cells sprawling in all directions - New Atlas [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Vitamins and aminoacids regulate stem cell biology - Phys.Org [Last Updated On: February 16th, 2017] [Originally Added On: February 16th, 2017]
- How does the Catholic Church resolve new bioethical questions? - Catholic Free Press [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- New Nanofiber Matrix Enhances Stem Cell Production - Drug Discovery & Development [Last Updated On: February 17th, 2017] [Originally Added On: February 17th, 2017]
- Transplanted Human Embryonic Stem Retinal Pigment Cells Survive 22 months in a Human Recipient - MedicalResearch.com (blog) [Last Updated On: February 18th, 2017] [Originally Added On: February 18th, 2017]
- Iowa GOP takes aim at research - The Daily Iowan [Last Updated On: February 21st, 2017] [Originally Added On: February 21st, 2017]
- Nanofiber Matrix Improves Stem Cell Growth - Asian Scientist Magazine [Last Updated On: February 22nd, 2017] [Originally Added On: February 22nd, 2017]
- The clone armies never happened, but Dolly the sheep still changed the world - Quartz [Last Updated On: February 23rd, 2017] [Originally Added On: February 23rd, 2017]
- Harvard scientist worries we're 'reverting to a pre-Enlightenment form of thinking' - Washington Post [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- 20 Years After Dolly the Sheep, Potential of Cloning Remains Unclear - FOX40 [Last Updated On: February 25th, 2017] [Originally Added On: February 25th, 2017]
- Harvard scientist worries we're 'reverting to a pre-Enlightenment form of thinking' - SCNow [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Stem cells derived neuronal networks grown on a chip as an alternative to animal testing - Science Daily [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Facts About Cloning - Live Science [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Exclusive: CBMG CEO Talks Stem-Cell Therapies, Cancer Treatments, Financials & The Chinese Market - Benzinga [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial Mouse Embryo Created in Culture - Technology Networks [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial embryo grown in a dish from two types of stem cells - New Scientist [Last Updated On: March 3rd, 2017] [Originally Added On: March 3rd, 2017]
- Artificial mouse embryo created out of stem cells - BioNews [Last Updated On: March 7th, 2017] [Originally Added On: March 7th, 2017]
- Scientists Have Created the First Artificial Embryo Without Using an ... - Gizmodo [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Artificial Mouse 'Embryo' Created from Stem Cells for First Time - Laboratory Equipment [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- Role of Stem Cell Reprogramming Factor Uncovered - Technology Networks [Last Updated On: March 8th, 2017] [Originally Added On: March 8th, 2017]
- COMMENTARY: Saving a 10-year-old's life but at what cost? - Globalnews.ca [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- No egg? No sperm? No problem. First artificial embryo made from stem cells - Genetic Literacy Project [Last Updated On: March 10th, 2017] [Originally Added On: March 10th, 2017]
- For The First Time Ever, Scientists Have Successfully Created An ... - Wall Street Pit [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Treating sickle cell disease with gene therapy - Jamaica Observer [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Here's the first 3D glimpse of how DNA is packaged up in a single cell - Ars Technica [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- The craftsmanship of mimicking embryogenesis in a dish - BioNews [Last Updated On: March 13th, 2017] [Originally Added On: March 13th, 2017]
- Stem Cells Used to Create Artificial Embryo for the First Time Ever - TrendinTech [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]
- Scientists create first 3D structure of active DNA - The Indian Express [Last Updated On: March 15th, 2017] [Originally Added On: March 15th, 2017]