Lessons from inducible pluripotent stem cell models on neuronal senescence in aging and neurodegeneration – Nature.com


Lpez-Otn, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243278 (2023).

Article PubMed Google Scholar

Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585621 (1961).

Article CAS PubMed Google Scholar

Harley, C. B., Vaziri, H., Counter, C. M. & Allsopp, R. C. The telomere hypothesis of cellular aging. Exp. Gerontol. 27, 375382 (1992).

Article CAS PubMed Google Scholar

Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813827 (2019).

Article CAS PubMed Google Scholar

Copp, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99118 (2010).

Article PubMed PubMed Central Google Scholar

Herdy, J. R. et al. Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimers disease. Cell Stem Cell 29, 16371652 (2022).

Article Google Scholar

Ng, P. Y., McNeely, T. L. & Baker, D. J. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J. 290, 13261339 (2023).

Article CAS PubMed Google Scholar

van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439446 (2014).

Article ADS PubMed PubMed Central Google Scholar

Crouch, J., Shvedova, M., Thanapaul, R., Botchkarev, V. & Roh, D. Epigenetic regulation of cellular senescence. Cells 11, 672 (2022).

Article CAS PubMed PubMed Central Google Scholar

Kowald, A., Passos, J. F. & Kirkwood, T. B. L. On the evolution of cellular senescence. Aging Cell 19, e13270 (2020).

Article CAS PubMed PubMed Central Google Scholar

Miwa, S., Kashyap, S., Chini, E. & von Zglinicki, T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 132, e158447 (2022).

Article CAS PubMed PubMed Central Google Scholar

Muoz-Espn, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 11041118 (2013).

Article PubMed Google Scholar

Gibaja, A. et al. TGF2-induced senescence during early inner ear development. Sci. Rep. 9, 5912 (2019).

Article ADS PubMed PubMed Central Google Scholar

Reichel, W., Hollander, J., Clark, J. H. & Strehler, B. L. Lipofuscin pigment accumulation as a function of age and distribution in rodent brain. J. Gerontol. 23, 7178 (1968).

Article CAS PubMed Google Scholar

Moreno-Garca, A., Kun, A., Calero, O., Medina, M. & Calero, M. An overview of the role of lipofuscin in age-related neurodegeneration. Front. Neurosci. 12, 464 (2018).

Article PubMed PubMed Central Google Scholar

Xu, P. et al. The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Mol. Neurodegener. 17, 5 (2022).

Article CAS PubMed PubMed Central Google Scholar

Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat. Commun. 13, 4827 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Ogrodnik, M. et al. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 20, e13296 (2021).

Article CAS PubMed PubMed Central Google Scholar

Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578582 (2018).

Article ADS CAS PubMed PubMed Central Google Scholar

Musi, N. et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17, e12840 (2018).

Article PubMed PubMed Central Google Scholar

Rocha, L. R. et al. Early removal of senescent cells protects retinal ganglion cells loss in experimental ocular hypertension. Aging Cell 19, e13089 (2020).

Article CAS PubMed Google Scholar

Zhang, P. et al. Senolytic therapy alleviates A-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimers disease model. Nat. Neurosci. 22, 719728 (2019).

Article CAS PubMed PubMed Central Google Scholar

Chinta, S. J. et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinsons disease. Cell Rep. 22, 930940 (2018).

Article CAS PubMed PubMed Central Google Scholar

Gonzales, M. M. et al. Senolytic therapy to modulate the progression of Alzheimers disease (SToMP-AD): a pilot clinical trial. J. Prev. Alzheimers Dis. 9, 2229 (2022).

CAS PubMed Google Scholar

Dehkordi, S. K. et al. Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology. Nat. Aging 1, 11071116 (2021).

Article PubMed PubMed Central Google Scholar

Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).

Article PubMed PubMed Central Google Scholar

Geng, Y. Q., Guan, J. T., Xu, X. H. & Fu, Y. C. Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochem. Biophys. Res. Commun. 396, 866869 (2010).

Article CAS PubMed Google Scholar

Bhanu, M. U., Mandraju, R. K., Bhaskar, C. & Kondapi, A. K. Cultured cerebellar granule neurons as an in vitro aging model: topoisomerase II as an additional biomarker in DNA repair and aging. Toxicol. In Vitro 24, 19351945 (2010).

Article PubMed Google Scholar

de Mera-Rodrguez, J. A. et al. Endogenous pH 6.0 -galactosidase activity is linked to neuronal differentiation in the olfactory epithelium. Cells 11, 298 (2022).

Article PubMed PubMed Central Google Scholar

Piechota, M. et al. Is senescence-associated -galactosidase a marker of neuronal senescence? Oncotarget 7, 8109981109 (2016).

Article PubMed PubMed Central Google Scholar

Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 9961004 (2012).

Article CAS PubMed Google Scholar

Moreno-Blas, D. et al. Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy. Aging 11, 61756198 (2019).

Article CAS PubMed PubMed Central Google Scholar

Bigagli, E. et al. Long-term neuroglial cocultures as a brain aging model: hallmarks of senescence, microRNA expression profiles, and comparison with in vivo models. J. Gerontol. A Biol. Sci. Med. Sci. 71, 5060 (2016).

Article CAS PubMed Google Scholar

Kang, H. T., Lee, K. B., Kim, S. Y., Choi, H. R. & Park, S. C. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS ONE 6, e23367 (2011).

Article ADS CAS PubMed PubMed Central Google Scholar

Wong, A., Kieu, T. & Robbins, P. D. The Ercc1/ mouse model of accelerated senescence and aging for identification and testing of novel senotherapeutic interventions. Aging 12, 2448124483 (2020).

Article CAS PubMed PubMed Central Google Scholar

Yousefzadeh, M. J. et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 19, e13094 (2020).

Article CAS PubMed PubMed Central Google Scholar

de Waard, M. C. et al. Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathol. 120, 461475 (2010).

Article CAS PubMed PubMed Central Google Scholar

Doll, M. E. et al. Broad segmental progeroid changes in short-lived Ercc1/7 mice. Pathobiol. Aging Age Relat. Dis. 1, 10.3402/pba.v1i0.7219(2011).

Sepe, S. et al. Inefficient DNA repair Is an aging-related modifier of Parkinsons disease. Cell Rep. 15, 18661875 (2016).

Article CAS PubMed PubMed Central Google Scholar

Pachajoa, H. et al. HutchinsonGilford progeria syndrome: clinical and molecular characterization. Appl. Clin. Genet. 13, 159164 (2020).

Article CAS PubMed PubMed Central Google Scholar

Machiela, E. et al. The interaction of aging and cellular stress contributes to pathogenesis in mouse and human huntington disease neurons. Front Aging Neurosci. 12, 524369 (2020).

Article CAS PubMed PubMed Central Google Scholar

Baek, J. H. et al. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum. Mol. Genet. 24, 13051321 (2015).

Article CAS PubMed Google Scholar

Arendt, T., Rdel, L., Grtner, U. & Holzer, M. Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimers disease. Neuroreport 7, 30473049 (1996).

Article CAS PubMed Google Scholar

McShea, A., Harris, P. L., Webster, K. R., Wahl, A. F. & Smith, M. A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimers disease. Am. J. Pathol. 150, 19331939 (1997).

CAS PubMed PubMed Central Google Scholar

Wang, B. et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nat. Aging 1, 962973 (2021).

Article PubMed PubMed Central Google Scholar

Hu, W. et al. Direct conversion of normal and Alzheimers disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17, 204212 (2015).

Article CAS PubMed Google Scholar

Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705718 (2015).

Article CAS PubMed PubMed Central Google Scholar

Yoo, A. S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228231 (2011).

Article ADS CAS PubMed PubMed Central Google Scholar

Capano, L. S. et al. Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. Cell Stem Cell 29, 918932 (2022).

Article CAS PubMed PubMed Central Google Scholar

Zhang, C. et al. Establishing RNAge to score cellular aging and rejuvenation paradigms and identify novel age-modulating compounds. Preprint at bioRxiv https://doi.org/10.1101/2023.07.03.547539 (2023).

Sun, Z. et al. Endogenous recapitulation of Alzheimers disease neuropathology through human 3D direct neuronal reprogramming. Preprint at bioRxiv https://doi.org/10.1101/2023.05.24.542155 (2023).

Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147 (1998).

See original here:
Lessons from inducible pluripotent stem cell models on neuronal senescence in aging and neurodegeneration - Nature.com

Related Posts