In the spring of 2019, neuroscientist Heather Cameron set up a simple experiment. She and her colleagues put an adult rat in the middle of a plastic box with a water bottle at one end. They waited until the rat started drinking and then made a startling noise to see how the animal would respond. The team did this repeatedly with regular rats and with animals that were genetically altered so that they couldnt make new neurons in their hippocampuses, a brain region involved in learning and memory. When the animals heard the noise, those that could make new hippocampal neurons immediately stopped slurping water and looked around, but the animals lacking hippocampal neurogenesis kept drinking. When the team ran the experiment without the water bottle, both sets of rats looked around right away to figure out where the sound was coming from. Rats that couldnt make new neurons seemed to have trouble shifting their attention from one task to another, the researchers concluded.
Aging humans, in whom neurogenesis is thought to decline, often have trouble remembering details that distinguish similar experiences.
Its a very surprising result, says Cameron, who works at the National Institute of Mental Health (NIMH) in Bethesda, Maryland. Researchers studying neurogenesis in the adult hippocampus typically conduct experiments in which animals have had extensive training in a task, such as in a water maze, or have experienced repetitive foot shocks, she explains. In her experiments, the rats were just drinking water. It seemed like there would be no reason that the hippocampus should have any role, she says. Yet in animals engineered to lack hippocampal neurogenesis, the effects are pretty big.
The study joins a growing body of work that challenges the decades-old notion that the primary role of new neurons within the adult hippocampus is in learning and memory. More recently, experiments have tied neurogenesis to forgetting, one possible way to ensure the brain doesnt become overloaded with information it doesnt need, and to anxiety, depression, stress, and, as Camerons work suggests, attention. Now, neuro-scientists are rethinking the role that new neurons, and the hippocampus as a whole, play in the brain.
Most of the research into neurogenesis involves boosting or inhibiting animals generation of new neurons, then training animals on a complex memory task such as finding a treat in a maze, and later retesting the animals. Decreasing neurogenesis tends to hamper the animals ability to remember.
Alzheimers disease, Parkinsons disease
Training mice or rats on a memory task before manipulating neurogenesis has also been found to affect the strength of the trained memory. Boosting neurogenesis reduced the memorys strength, perhaps an extreme form of forgetting that at normal levels avoids the remembering of unnecessary details.
Alzheimers disease and other forms of dementia
Research has linked decreased neurogenesis with more anxious and depressive behaviors in mice. Stress can reduce neurogenesis, ultimately leading mice to be more anxious in future stressful situations.
PTSD, anxiety, depression
Research has linked decreased neurogenesis with trouble switching focus.
Autism
The first hint that adult animal brains may make new neurons appeared in the early 1960s, when MIT neurobiologist Joseph Altman used radioactive labeling to track the proliferation of nerve cells in adult rats brains.Other data published in the 1970s and 1980s supported the conclusion, and in the 1990s, Fred Rusty Gage and his colleagues at the Salk Institute in La Jolla, California, used an artificial nucleotide called bromodeoxyuridine (BrdU) to tag new neurons born in the brains of adult rats and humans. Around the same time, Elizabeth Gould of Princeton University and her collaborators showed that adult marmoset monkeys made new neurons in their hippocampuses, specifically in an area called the dentate gyrus. While some researchers questioned the strength of the evidence supporting the existence of adult neurogenesis, most of the field began to shift from studying whether adult animal brains make new neurons to what role those cells might play.
In 2011, Ren Hen at Columbia University and colleagues created a line of transgenic mice in which neurons generated by neuro-genesis survived longer than in wildtype mice. This boosted the overall numbers of new neurons in the animals brains. The team then tested the modified mices cognitive abilities. Boostingnumbers of newly born neurons didnt improve the mices performances in water mazes or avoidance tasks compared with control mice. But it did seem to help them distinguish between two events that were extremely similar. Mice with more new neurons didnt freeze as long as normal mice when put into a box that was similar to but not exactly the same as one in which theyd experienced a foot shock in earlier training runs.
These results dovetailed with others coming out at the time, particularly those showing that aging humans, in whom neurogenesis is thought to decline, often have trouble remembering details that distinguish similar experiences, what researchers call pattern separation. The line of thinking is that the memories that are most likely to be impacted by neurogenesis are memories that are really similar to each other, says Sarah Parylak, a staff scientist in Gages lab at the Salk Institute.
As insights into pattern separation emerged, scientists were beginning to track the integration of new rodent neurons into existing neural networks. This research showed that new neurons born in the dentate gyrus had to compete with mature neurons for connections to neurons in the entorhinal cortex (EC), a region of the brain with widespread neural networks that play roles in memory, navigation, and the perception of time. (See Memories of Time on page 32.) Based on detailed anatomical images, new dentate gyrus neurons in rodents appeared to tap into preexisting synapses between dentate gyrus neurons and EC neurons before creating their own links to EC neurons.
To continue exploring the relationship between old and new neurons, a group led by the Harvard Stem Cell Institutes Amar Sahay, who had worked with Hen on the teams 2011 study, wiped out synapses in the dentate gyruses of mice. The researchers overexpressed the cell deathinducing protein Krppel-like factor 9 in young adult, middle-aged, and old mice to destroy neuronal dendritic spines, tiny protrusions that link up to protrusions of other neurons, in the brain region. Those lost connections led to increased integration of newly made neurons, especially in the two older groups, which outperformed age-matched, untreated mice in pattern-separation tasks. Adult-born dentate gyrus neurons decrease the likelihood of reactivation of those old neurons, Sahay and colleagues concluded, preventing the memories from being confused.
Parylak compares this situation to going to the same restaurant after it has changed ownership. In her neighborhood in San Diego, theres one location where shes dined a few times when the restaurant was serving different cuisine. Its the same location, and the building retains many of the same features, so the experiences would be easy to mix up, she says, but she can tell them apart, possibly because of neurogenesiss role in pattern separation. This might even hold true for going to the same restaurant on different occasions, even if it served the same food.
Thats still speculative at this point. Researchers havent been able to watch neurogenesis in action in a living human brain, and its not at all clear if the same thing is going on there as in the mouse brains they have observed. While many scientists now agree that neurogenesis does occur in adult human brains, there is little consensus about what it actually does. In addition to the work supporting a role for new neurons in pattern separation, researchers have accumulated evidence that it may be more important for forgetting than it is for remembering.
In recent years, images and videos taken with state-of-the-art microscopy techniques have shown that new neurons in the dentate gyrus of the hippocampus go through a series of changes as they link up to existing networks in the brain.
A neural stem cell divides to generate a new neuron (green).
As the new neuron grows, it rotates from a horizontal to a vertical position and connects to an interneuron (yellow) in a space called the hilus that sits within the curve of the dentate gyrus. The young neuron also starts making connections with well-established dentate gyrus neurons (blue) as well as neurons in the hippocampus (red).
Once connections are formed, mature neurons send signals into the new neuron, and the cell starts firing off more of its own signals. At around four weeks of age, the adult-born neuron gets hyperexcited, sending electrical signals much more often than its well-established neuronal neighbors do.
As the new neuron connects with still more neurons, interneurons in the hilus start to send it signals to tamp down its activity.
It seems counterintuitive for neurogenesis to play a role in both remembering and forgetting, but work by Paul Frankland of the Hospital for Sick Children Research Institute in Toronto suggests it is possible. In 2014, his team showed that when mice made more new neurons than normal, they were more forgetful. He and his colleagues had mice run on wheels to boost levels of neurogenesis, then trained the animals on a learning task. As expected, they did better than control mice who hadnt exercised. (See How Exercise Reprograms the Brain, The Scientist, October 2018.) In other animals, the researchers boosted neurogenesis after the mice learned information thought to be stored, at least in the short term, in the hippocampus. When we did that, what we found was quite surprising, Frankland says. We found a big reduction in memory strength.
His team was puzzled by the result. Adding to the confusion, the researchers had observed a larger effect in memory impairment with mice that learned, then exercised, than they had seen in memory improvement when the mice ran first and then learned. As he dug into the literature, Frankland realized the effect was what other neuroscientists had called forgetting. He found many theoretical papers based on computational modeling that argued that as new neurons integrate into a circuit, the patterns of connections in the circuit change, and if information is stored in those patterns of connections, that information may be lost. (See Memory Munchers on page 21.)
The notion surprised other neuroscientists, mainly because up to that point theyd had two assumptions related to neurogenesis and forgetting. The first was that generating new neurons in a normal animal should be good for memory. The second was that forgetting was bad. The first assumption is still true, Frankland says, but the second is not. Many people think of forgetting as some sort of failure in our memory systems, he explains. Yet in healthy brains theres tons of forgetting happening all of the time. And, in fact, its important for memory function, Frankland says. It would actually be disadvantageous to remember everything we do.
Experiments have tied neurogenesis to forgetting, anxiety, depression, stress, and attention.
Parylak says this idea of forgetting certainly has provoked a lot of discussion. Its unclear, for example, whether the mice in Franklands experiments are forgetting, or if they are identifying a repeat event as something novel. This is the point, she explains, where doing neurogenesis research in humans would be beneficial. You could ask a person if theyd actually forgotten or if they are making some kind of extreme discrimination.
Despite the questions regarding the results, Frankland and his colleagues continued their work, testing mices forgetfulness with all types of memories, and more recently they asked whether the forgetting effect jeopardized old and new memories alike. In experiments, his team gave mice a foot shock, then boosted hippocampal neurogenesis (with exercise or a genetic tweak to neural progenitor cells), and put the mice in the same container theyd been shocked in. With another group of mice, the researchers waited nearly a month after the foot shock before boosting neurogenesis and putting the mice back in the container. Boosting the number of new neurons, the team found, only weakened the newly made memory, but not one that had been around for a while. This makes a lot of sense, Frankland says. As our memories of everyday events gradually get consolidated, they become less and less dependent on the hippocampus, and more dependent on another brain region: the cortex. This suggests that remote memories are less sensitive to changes in hippocampal neurogenesis levels.
The hippocampus tracks whats happened to you, Frankland says. Much of thats forgotten because much of it is inconsequential. But every now and then something interesting seems to happen, and its these eventful memories that seem to get backed up in other areas of the brain.
Researchers think neurogenesis helps the brain distinguish between two very similar objects or events, a phenomenon called pattern separation. According to one hypothesis, new neurons excitability in response to novel objects diminishes the response of established neurons in the dentate gyrus to incoming stimuli, helping to create a separate circuit for the new, but similar, memory.
At NIMH, one of Camerons first studies looking at the effects of neurogenesis tested the relationship between new neuronal growth and stress. She uncovered the connection studying mice that couldnt make new neurons and recording how they behaved in an open environment with food at the center. Just like mice that could still make new neurons, the neuro-genesis-deficient mice were hesitant to go get the food in the open space, but eventually they did. However, when the animals that couldnt make new neurons were stressed before being put into the open space, they were extremely cautious and anxious, whereas normal mice didnt behave any differently when stressed.
Cameron realized that the generation of new neurons also plays a role in the brain separate from the learning and memory functions for which there was growing evidence. In her experiments, we were looking for memory effects and looked for quite a while without finding anything and then stumbled onto this stress effect, she says.
The cells in the hippocampus are densely packed with receptors for stress hormones. One type of hormone in particular, glucocorticoids, is thought to inhibit neurogenesis, and decreased neurogenesis has been associated with depression and anxiety behaviors in rodents. But there wasnt a direct link between the experience of stress and the development of these behaviors. So Cameron and her colleagues set up an experiment to test the connection.
When the team blocked neurogenesis in adult mice and then restrained the animals to moderately stress them, their elevated glucocorticoid levels were slow to recover compared with mice that had normal neurogenesis. The stressed mice that could not generate new neurons also acted oddly in behavioral tests: they avoided food when put in a new environment, became immobile and increasingly distressed when forced to swim, and drank less sugary water than normal mice when it was offered to them, suggesting they dont work as hard as normal mice to experience pleasure. Impaired adult neurogenesis, the experiments showed, played a direct role in developing symptoms of depression, Cameron says.
The notion that neurogenesis and stress might be tied directly to our mental states led Cameron to look back into the literature, where she found many suggestions that the hippocampus plays a role in emotion, in addition to learning and memory. Even Altman, who unexpectedly identified neurogenesis in adult rodents in the 1960s, and colleagues suggested as much in the 1970s. Yet the argument has only appeared sporadically in the literature since then. Stress is complicated, Cameron says; its hard to know exactly how stressful experiences affect neurogenesis or how the generation of new neurons will influence an animals response to stress. Some types of stress can decrease neurogenesis while others, such as certain forms of intermittent stress, can increase new neuronal growth. Last year, Cameron and colleagues found that generating new neurons helps rats used to model post-traumatic stress disorder recover from acute and prolonged periods of stress.
Neurogenesis appears to play a role in both remembering and forgetting.
Her work has also linked neurogenesis to other characteristics of rodent behavior, including attention and sociability. In 2016, with Gould at Princeton and a few other collaborators, she published work suggesting that new neurons are indeed tied to social behavior. The team created a hierarchy among rats, and then deconstructed those social ranks by removing the dominant male. When the researchers sacrificed the animals and counted new neurons in their brains, the rats from deconstructed hierarchies had fewer new neurons than those from control cages with stable ranks. Rats with uncertain hierarchies and fewer new neurons didnt show any signs of anxiety or reduced cognition, but they werent as inclined as control animals to spend time with new rats put into their quarters, preferring to stick with the animals they knew. When given a drugoxytocinto boost neurogenesis, they once again began exploring and spending time with new rats that entered their cages.
The study from Camerons lab on rats ability to shift their attention grew out of the researchers work on stress, in which they observed that rodents sometimes couldnt switch from one task to the next. Turning again to the literature, Cameron found a study from 1969 that seemed to suggest that neurogenesis might affect this task-switching behavior. Her team set up the water bottle experiments to see how well rats shifted attention. Inhibiting neurogenesis in the adult mice led to a 50 percent decrease in their ability to switch their focus from drinking to searching for the source of the sound.
This paper is very interesting, says J. Tiago Gonalves, a neuroscientist at Albert Einstein College of Medicine in New York who studies neurogenesis but was not involved in the study. It could explain the findings seen in some behavioral tasks and the incongruences between findings from different behavioral tasks, he writes in an email to The Scientist. Of course, follow-up work is needed, he adds.
Cameron argues that shifting attention may be yet another behavior in which the hippocampus plays an essential role but that researchers have been overlooking. And there may be an unexplored link between making new neurons and autism or other attention disorders, she says. Children with autism often have trouble shifting their attention from one image to the next in behavioral tests unless the original image is removed.
Its becoming clear, Cameron continues, that neurogenesis has many functions in the adult brain, some that are very distinct from learning and memory. In tasks requiring attention, though, there is a tie to memory, she notes. If youre not paying attention to things, you will not remember them.
Many, though not all, neuroscientists agree that theres ongoing neurogenesis in the hippocampus of most mammals, including humans. In rodents and many other animals, neurogenesis has also been observed in the olfactory bulbs. Whether newly generated neurons show up anywhere else in the brain is more controversial.
There had been hints of new neurons showing up in the striatum of primates in the early 2000s. In 2005,Heather Cameronof the National Institute of Mental Health and colleagues corroborated those findings, showing evidence of newly made neurons in therat neocortex, a region of the brain involved in spatial reasoning, language, movement, and cognition, and in the striatum, a region of the brain involved in planning movements and reacting to rewards, as well as self-control and flexible thinking (J Cell Biol, 168:41527). Nearly a decade later, using nuclear-bomb-test-derivedcarbon-14 isotopesto identify when nerve cells were born,Jonas Frisnof the Karolinska Institute in Stockholm and colleagues examined the brains of postmortem adult humans and confirmed thatnew neurons existed in the striatum(Cell, 156:107283, 2014).
Those results are great, Cameron says. They support her idea that there are different types of neurons being born in the brain throughout life. The problem is theyre very small cells, theyre very scattered, and therere very few of them. So theyre very tough to see and very tough to study.
See the article here:
What Do New Neurons in the Brains of Adults Actually Do? - The Scientist
- Stem cell research: The debate over embryonic and adult ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- 4. The Adult Stem Cell [Stem Cell Information] [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- What are adult stem cells? [Stem Cell Information] [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Stem Cell Information - National Institutes of Health [Last Updated On: May 21st, 2015] [Originally Added On: May 21st, 2015]
- Stem Cell Science Reviews and Adult Stem Cell Nutrition ... [Last Updated On: May 23rd, 2015] [Originally Added On: May 23rd, 2015]
- Adult Stem Cell Breakthrough Surgery for Avascular ... [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Millions More Adult Stem Cells from 2 Stem Cell Enhancer ... [Last Updated On: May 27th, 2015] [Originally Added On: May 27th, 2015]
- Induced pluripotent stem cell - Wikipedia, the free ... [Last Updated On: May 30th, 2015] [Originally Added On: May 30th, 2015]
- Adult Stem Cells - HowStuffWorks [Last Updated On: June 4th, 2015] [Originally Added On: June 4th, 2015]
- Adult Stem Cells' Role in Disease Management and Anti-Aging [Last Updated On: June 13th, 2015] [Originally Added On: June 13th, 2015]
- Adult Stem Cells 101 | Boston Children's Hospital [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- The Case for Adult Stem Cell Research [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- Stem Cell Research Facts - Adult Stem Cell Success [Last Updated On: July 8th, 2015] [Originally Added On: July 8th, 2015]
- Adult Stem Cells - Research - Stem Cell Biology and ... [Last Updated On: August 17th, 2015] [Originally Added On: August 17th, 2015]
- WHERE DO WE GET ADULT STEM CELLS? - Stem cell [Last Updated On: August 25th, 2015] [Originally Added On: August 25th, 2015]
- Stem Cells Market Analysis by Product (Adult Stem Cells ... [Last Updated On: September 1st, 2015] [Originally Added On: September 1st, 2015]
- Adult Stem Cells Effective Against MS | National Review Online [Last Updated On: October 5th, 2015] [Originally Added On: October 5th, 2015]
- Why are Adult Stem Cells Important? | Boston Children's ... [Last Updated On: October 5th, 2015] [Originally Added On: October 5th, 2015]
- How are Adult Stem Cells Turned into Treatments? | Boston ... [Last Updated On: October 26th, 2015] [Originally Added On: October 26th, 2015]
- Adult vs. Embryonic Stem Cells - Brown University [Last Updated On: October 26th, 2015] [Originally Added On: October 26th, 2015]
- Inducible Site-Specific Recombination in Neural Stem ... [Last Updated On: August 24th, 2016] [Originally Added On: August 24th, 2016]
- Adult Stem Cells: The Best Kept Secret In Medicine | The ... [Last Updated On: August 27th, 2016] [Originally Added On: August 27th, 2016]
- Adult Stem Cells: The Best Kept Secret In Medicine ... [Last Updated On: August 31st, 2016] [Originally Added On: August 31st, 2016]
- Stem Cell Basics V. | stemcells.nih.gov [Last Updated On: September 27th, 2016] [Originally Added On: September 27th, 2016]
- Treatment for Chronic Obstructive Pulmonary Disease Dallas [Last Updated On: January 1st, 2017] [Originally Added On: January 1st, 2017]
- Adult Stem Cells and Regeneration | HHMI BioInteractive [Last Updated On: January 1st, 2017] [Originally Added On: January 1st, 2017]
- Stem Cells Market - Global Industry Analysis, Size, Share ... [Last Updated On: January 1st, 2017] [Originally Added On: January 1st, 2017]
- Adult Stem Cell Banking Information from Celltex Therapeutics [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- Storing Stem Cells In Teeth For Your Familys Future Health [Last Updated On: January 27th, 2017] [Originally Added On: January 27th, 2017]
- A*STAR scientists identify role of key stem cell factor in gastric cancer progression - Biotechin.Asia [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- Adult Stem Cells Save Woman Ravaged by Lupus, Now She Can be a Mom - LifeNews.com [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- Scientists Turn Back the Clock on Adult Stem Cells Aging ... [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- Unanimous Advice To FDA: Approve Landmark CAR-T Cancer Therapy - Xconomy [Last Updated On: July 13th, 2017] [Originally Added On: July 13th, 2017]
- Regenerative Medicine: The Future of Medicine is Here Miami's ... - Miami's Community Newspapers [Last Updated On: July 13th, 2017] [Originally Added On: July 13th, 2017]
- Only as Old as the Brain's Stem Cells Feel - Genetic Engineering & Biotechnology News [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- Stem cells in brain located by scientists could help reverse ageing process - The Independent [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- Hypothalamic Stem Cells Control Aging in Mice - Sci-News.com [Last Updated On: July 31st, 2017] [Originally Added On: July 31st, 2017]
- Stem Cells Offer New Solutions for Lung Disease - Miami's Community Newspapers [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- Gene editing used to repair diseased genes in embryos - NHS Choices [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- Advancells Announces Successful Reversal of Multiple Sclerosis Through Adult Stem Cell Therapy - New Kerala [Last Updated On: August 4th, 2017] [Originally Added On: August 4th, 2017]
- Is stem cell injection the cure-all miracle? - Health24 [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- Orphan Black is ending, but how far has human cloning come? - The Verge [Last Updated On: August 13th, 2017] [Originally Added On: August 13th, 2017]
- Adult brain's fear HQ can grow new cells - Cosmos [Last Updated On: August 16th, 2017] [Originally Added On: August 16th, 2017]
- Adult brains produce new cells in previously undiscovered area - Medical Xpress [Last Updated On: August 16th, 2017] [Originally Added On: August 16th, 2017]
- The Adult Brain Can Regenerate Neurons in an Unexpected Area, Says New Study - ScienceAlert [Last Updated On: August 22nd, 2017] [Originally Added On: August 22nd, 2017]
- ASC Biosciences, Inc. to appear on the "Informed" series hosted by Rob Lowe - Markets Insider [Last Updated On: August 22nd, 2017] [Originally Added On: August 22nd, 2017]
- Want to live longer? Forever Labs wants to help, using your stem cells - Digital Trends [Last Updated On: August 22nd, 2017] [Originally Added On: August 22nd, 2017]
- ORGANOID - Science Magazine [Last Updated On: August 23rd, 2017] [Originally Added On: August 23rd, 2017]
- Are stems cells really the fountain of youth? - Star2.com - Star2.com [Last Updated On: September 1st, 2017] [Originally Added On: September 1st, 2017]
- Ethical Stem Cells Relieve Parkinson's in Monkeys - National Review [Last Updated On: September 1st, 2017] [Originally Added On: September 1st, 2017]
- Stem Cell Market Analysis 2022: Latest Trends, Top Manufactures and Business Opportunities - satPRnews (press release) [Last Updated On: September 3rd, 2017] [Originally Added On: September 3rd, 2017]
- FDA Grants Orphan Drug Status to Cellect's ApoGraft for Acute GvHD and Chronic GvHD - Markets Insider [Last Updated On: September 6th, 2017] [Originally Added On: September 6th, 2017]
- Presto Therapeutics Recruits Top Names For Advisory Boards - Business Wire (press release) [Last Updated On: September 6th, 2017] [Originally Added On: September 6th, 2017]
- Researchers point way to improved stem cell transplantation therapies - Medical Xpress [Last Updated On: September 8th, 2017] [Originally Added On: September 8th, 2017]
- Clarkson professor awarded $420000 grant to study development of intestinal stem cells using zebrafish vertebrate ... - North Country Now [Last Updated On: September 8th, 2017] [Originally Added On: September 8th, 2017]
- 4. The Adult Stem Cell | stemcells.nih.gov [Last Updated On: September 19th, 2017] [Originally Added On: September 19th, 2017]
- Adult Stem Cells in Greenville, SC [Last Updated On: September 23rd, 2017] [Originally Added On: September 23rd, 2017]
- How Adult Stem Cells Can Help Stop Pain and Reverse Aging [Last Updated On: September 23rd, 2017] [Originally Added On: September 23rd, 2017]
- Adult Stem Cell Therapy in Cancer, MSCTC - KUMC [Last Updated On: October 13th, 2017] [Originally Added On: October 13th, 2017]
- Your Stem Cell Questions Answered - webmd.com [Last Updated On: October 13th, 2017] [Originally Added On: October 13th, 2017]
- What are Adult Stem Cells? | Adult Stem Cell Treatment [Last Updated On: July 2nd, 2018] [Originally Added On: July 2nd, 2018]
- 5 Benefits to Using Adult Stem Cells in Cancer Research [Last Updated On: July 5th, 2018] [Originally Added On: July 5th, 2018]
- Sources of Adult Stem Cells - Stem Cell Institute [Last Updated On: July 5th, 2018] [Originally Added On: July 5th, 2018]
- Adult Stem Cell Therapy 101, MSCTC [Last Updated On: July 5th, 2018] [Originally Added On: July 5th, 2018]
- Adult Stem Cell Research Leaving Embryos Behind - CBS News [Last Updated On: July 24th, 2018] [Originally Added On: July 24th, 2018]
- Stem Cells, Characteristics, Properties, Different ... [Last Updated On: July 29th, 2018] [Originally Added On: July 29th, 2018]
- Difference between Adult and Embryonic Stem Cells [Last Updated On: July 29th, 2018] [Originally Added On: July 29th, 2018]
- Types of Adult Stem Cells Stem Cell Institute StemCell ... [Last Updated On: July 29th, 2018] [Originally Added On: July 29th, 2018]
- Understanding Adult and Embryonic Stem Cell Research [Last Updated On: August 13th, 2018] [Originally Added On: August 13th, 2018]
- Stem Cell Therapy and Stem Cell Injection Provider Finder ... [Last Updated On: August 19th, 2018] [Originally Added On: August 19th, 2018]
- Fact Sheet: Adult Stem Cell Research and Transplants ... [Last Updated On: September 16th, 2018] [Originally Added On: September 16th, 2018]
- stem cell | Definition, Types, Uses, Research, & Facts ... [Last Updated On: September 16th, 2018] [Originally Added On: September 16th, 2018]
- What Are The Similarities And Differences Between Embryonic ... [Last Updated On: September 30th, 2018] [Originally Added On: September 30th, 2018]
- Induced pluripotent stem cell - Wikipedia [Last Updated On: November 8th, 2018] [Originally Added On: November 8th, 2018]
- Adult Stem Cells Show Anti-Aging Potential - genengnews.com [Last Updated On: November 28th, 2018] [Originally Added On: November 28th, 2018]
- 6 Pros and Cons of Adult Stem Cells | Green Garage [Last Updated On: December 2nd, 2018] [Originally Added On: December 2nd, 2018]
- Conditions and Diseases Treated | Adult Stem Cell Therapy [Last Updated On: December 12th, 2018] [Originally Added On: December 12th, 2018]
- What is Adult Stem Cell Therapy? | Okyanos Center for ... [Last Updated On: January 19th, 2019] [Originally Added On: January 19th, 2019]
- Adult Stem Cells // Center for Stem Cells and Regenerative ... [Last Updated On: February 1st, 2019] [Originally Added On: February 1st, 2019]
- What are adult stem cells? - StemExpress Donor Center [Last Updated On: February 1st, 2019] [Originally Added On: February 1st, 2019]