Author Archives: admin


Regenexx, First to Use Stem Cells in Orthopedic Therapy, Marks 15th Anniversary – Yahoo Finance

More than 90,000 procedures performed

BROOMFIELD, Colo., Feb. 12, 2020 /PRNewswire/ --Regenexx, the world's largest, cohesive physician group dedicated to practicing advanced orthobiologics and the first to use stem cells in the treatment of many orthopedic injuries, is celebrating its 15th year since inception.To date, more than 40,000 patients have been treated and the organization has performed more than 90,000 procedures.

In 2005, Dr. Chris Centeno and Dr. John Schultz, physicians in a small two-man pain management clinic in Colorado, were the first in the world to apply stem cells to treat many orthopedic injuries. Two years later they completed a 24 months, IRB-approved research study of the use of both culture-expanded and same-day stem cells to treat knee and hip arthritis as well as low-back degenerative disc disease. Today, there are more than 60 Regenexx affiliates worldwide, including India, Australia, the UK, China, Taiwan and the Cayman Islands.

"Today, Regenexx physicians, specializing in the use of orthobiologics for treating orthopedic injuries, are achieving results thought unimaginable 15 years ago," says Chris Centeno, MD, founder and Chief Medical Officer of Regenexx. "Fifteen years ago, this new specialty focused on using the most advanced regenerative protocols available as an alternative to many orthopedic surgeries and today our patented lab-processing and treatment protocols have allowed us to achieve unmatched results."

Regenexx Corporate is the only program where orthobiologics can get coverage through private health insurance plans. As of Jan 1, 2020, Regenexx Corporate added 50 new self-funded companies that pay for orthobiologic care delivered by Regenexx providers as a way to reduce their orthopedic costs. Regenexx also received the EHIR traction award at Cohort 3 for record number of matches in October of 2019.

Regenexx physiciansmust have specific qualifications around musculoskeletal careand only the most qualified physicians are accepted into the Regenexx network. Once accepted, Regenexx then provides the doctor with hundreds of hours of specialized, hands-on training in the Regenexx interventional orthopedics approach. Regenexx has more than 60 clinic locations worldwide with highly specialized musculoskeletal physicians trained in more than 90 different Regenexx procedures.

"Making the decision between the interventional orthobiologics route and surgery is a real choice for most patients, not something driven by how much they can afford out of pocket," says Dr. Centeno. "We will continue to support and perform the research to make that happen. In the meantime, we expect to save hundreds of millions for our self-funded health plans and disrupt healthcare delivery in the process."

Regenexx Milestones

For a full timeline visit https://regenexx.com/regenexx15/

About RegenexxRegenexx is the leader in advanced interventional orthobiologics through R&D, treatments, techniques, and training that reduce the reliance on surgical orthopedics. We strive to continuously innovate in regenerative advancements to get people better. Our commitment extends to lowering medical spending through our Regenexx Corporate Program, which provides less costly, less invasive, and less risky treatments than traditional orthopedic surgery.

View original content:http://www.prnewswire.com/news-releases/regenexx-first-to-use-stem-cells-in-orthopedic-therapy-marks-15th-anniversary-301003443.html

SOURCE Regenexx

See the original post here:
Regenexx, First to Use Stem Cells in Orthopedic Therapy, Marks 15th Anniversary - Yahoo Finance

What Drives the Domino Effect in Cancer Drug Resistance? – Technology Networks

KAIST researchers have identified mechanisms that relay prior acquired resistance to the first-line chemotherapy to the second-line targeted therapy, fueling a domino effect in cancer drug resistance. Their study featured in the February 7 edition of Science Advances suggests a new strategy for improving the second-line setting of cancer treatment for patients who showed resistance to anti-cancer drugs.

Resistance to cancer drugs is often managed in the clinic by chemotherapy and targeted therapy. Unlike chemotherapy that works by repressing fast-proliferating cells, targeted therapy blocks a single oncogenic pathway to halt tumor growth. In many cases, targeted therapy is engaged as a maintenance therapy or employed in the second-line after front-line chemotherapy.

A team of researchers led by Professor Yoosik Kim from the Department of Chemical and Biomolecular Engineering and the KAIST Institute for Health Science and Technology (KIHST) has discovered an unexpected resistance signature that occurs between chemotherapy and targeted therapy. The team further identified a set of integrated mechanisms that promotes this kind of sequential therapy resistance.

There have been multiple clinical accounts reflecting that targeted therapies tend to be least successful in patients who have exhausted all standard treatments, said the first author of the paper Mark Borris D. Aldonza. He continued, These accounts ignited our hypothesis that failed responses to some chemotherapies might speed up the evolution of resistance to other drugs, particularly those with specific targets.

Aldonza and his colleagues extracted large amounts of drug-resistance information from the open-source database the Genomics of Drug Sensitivity in Cancer (GDSC), which contains thousands of drug response data entries from various human cancer cell lines. Their big data analysis revealed that cancer cell lines resistant to chemotherapies classified as anti-mitotic drugs (AMDs), toxins that inhibit overacting cell division, are also resistant to a class of targeted therapies called epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs).

In all of the cancer types analyzed, more than 84 percent of those resistant to AMDs, representatively paclitaxel, were also resistant to at least nine EGFR-TKIs. In lung, pancreatic, and breast cancers where paclitaxel is often used as a first-line, standard-of-care regimen, greater than 92 percent showed resistance to EGFR-TKIs. Professor Kim said, It is surprising to see that such collateral resistance can occur specifically between two chemically different classes of drugs.

To figure out how failed responses to paclitaxel leads to resistance to EGFR-TKIs, the team validated co-resistance signatures that they found in the database by generating and analyzing a subset of slow-doubling, paclitaxel-resistant cancer models called persisters.

The results demonstrated that paclitaxel-resistant cancers remodel their stress response by first becoming more stem cell-like, evolving the ability to self-renew to adapt to more stressful conditions like drug exposures. More surprisingly, when the researchers characterized the metabolic state of the cells, EGFR-TKI persisters derived from paclitaxel-resistant cancer cells showed high dependencies to energy-producing processes such as glycolysis and glutaminolysis.

We found that, without an energy stimulus like glucose, these cells transform to becoming more senescent, a characteristic of cells that have arrested cell division. However, this senescence is controlled by stem cell factors, which the paclitaxel-resistant cancers use to escape from this arrested state given a favorable condition to re-grow, said Aldonza.

Professor Kim explained, Before this research, there was no reason to expect that acquiring the cancer stem cell phenotype that dramatically leads to a cascade of changes in cellular states affecting metabolism and cell death is linked with drug-specific sequential resistance between two classes of therapies.

He added, The expansion of our work to other working models of drug resistance in a much more clinically-relevant setting, perhaps in clinical trials, will take on increasing importance, as sequential treatment strategies will continue to be adapted to various forms of anti-cancer therapy regimens.

This study was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF-2016R1C1B2009886), and the KAIST Future Systems Healthcare Project (KAISTHEALTHCARE42) funded by the Korean Ministry of Science and ICT (MSIT). Undergraduate student Aldonza participated in this research project and presented the findings as the lead author as part of the Undergraduate Research Participation (URP) Program at KAIST.

Reference:Aldonza, et al. (2020) Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Science Advances DOI: 10.1126/sciadv.aav7416

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Here is the original post:
What Drives the Domino Effect in Cancer Drug Resistance? - Technology Networks

CRISPR, CAR-T, Consolidation: Top Advanced Therapy Milestones of 2019 – Xconomy

XconomyNational

CRISPR, capacity, and consolidation powered the cell and gene therapy space in 2019, but a proactive focus on patient access topped Falcon Therapeutics CEO Susan Nichols annual roundup.

In what has become one of the most anticipated presentations at the Phacilitate Leaders World Conference, Susan Nichols, CEO of private North Carolina-based cell therapy firm Falcon Therapeutics, laid out the top 10 events of the previous year that shaped the regenerative medicine space, driving conversation, investment, and innovation.

The top spot in 2019 focused on efforts to increase patient access to the life-changing therapies entering the market, withMays approval of Novartis/AveXis Zolgensma(onasemnogene abeparvovec) and its unprecedented $2.1 million (1.9 million) price tag being the catalyst for change.

Nichols number one spot in 2018 centered around reimbursement conversations. Sparks approval of gene therapy Luxturna (voretigene neparvovec) shook 2017, while Europes approval ofex-vivostem cell gene therapy Strimvelis significantly advanced the sector in 2016.

For further context,check out theTop 10 cell and gene therapy milestones of 2018here, but below in reverse order is the full list of the top 10 key events of the previous 12 months, as presented at the conference in Miami, FL:

In December, a jury found Kite Pharma owned by Gilead Sciences (NASDAQ: GILD) guilty of infringing a patent exclusively licensed by Juno Therapeutics owned by Bristol-Myers Squibb (NYSE: BMS) from researchers at the Memorial Sloan Kettering Cancer Center.

The 190 patentrelates to technology used in Kite/Gileads chimeric antigen receptor (CAR) T-cell therapy Yescarta (axicabtagene ciloleucel).

The jurys decision left Gilead to pay $585 million plus 27.6% in royalties, totaling $752 million, to Bristol and Sloan Kettering, resolving a case filed a day after Yescarta won approval in October 2017.

But in a post-script that could well feature on Nichols 2020 list,it has been suggested the emboldening of Bristol has led the firm to file a motion last month to include punitive damages that would raise Gileads penalty to $1.5 billion.

Vertex (NASDAQ: VRTX) and CRISPR Therapeutics (NASDQ: CRSP) opened clinical trials in b-thalassemia and sickle cell disease to replace the defective genes that case these disorders andin November, the firms announced positive efficacy data from the first two patients treated with the investigational therapy CTX001.

Meanwhile, Editas Medicine (NASDAQ: EDIT) and Allergan initiated clinical trials for their CRISPR-based candidate AGN-151587 (EDIT-101), aimed at treating Leber congenital amaurosis 10 (LCA10), an inherited form of blindness.

The significance is CRISPR therapies have finally arrived in the clinic, Nichols said.

8) Pharma and biotech inhouse manufacturing

With a lack of third-party capacity especially for viral vector production, 2019 saw numerous investments by major cell and gene therapy players to grow their internal networks. Some of the examples Nichols pointed out include:

Susan Nichols, CEO of Falcon Therapeutics, spoke at Phacilitate in Miami, Florida in January

Positive data from Decembers American Association of Hematology (ASH) meeting in San Diego, CA was a further boon for the sector, said Nichols.

Johnson & Johnsons (NYSE: JNJ) JNJ-4528, a CAR-T Cell Therapy Directed Against B-Cell Maturation Antigen (BCMA), reported a 100% remission rate and response from its Phase Ib/II CARTITUDE-1 trial. 69% of patients showed complete remission or better.

The candidate licensed fromNanjing Legend in a $350 million deal will move into a full Phase II study this year.

ASH also brought positive news from bluebird and Bristol-Myers Squibb, which saw a 73.4% overall response rate in a Phase II KarMMa trial of its BCMA-targeted CAR-T candidate idecabtagene vicleucel.

The $950 million deal,announced in September, adds Semma Therapeutics a firm focusing on using stem-cell derived human islets as a possible cure for type 1 diabetes to Vertex growing regenerative medicine portfolio.

For Vertex, the deal represented its entry into the cell therapy space, complementing its move into gene editing just months prior with theacquisition of Exonics and a research expansion with CRISPR Therapeutics.

But for the industry, the investment in a company developing a cell therapy for a large indication other than cancer is of major significance, said Nichols.

As mentioned before, Astellas acquired Audentes for $3 billion, but the Japanese pharma firm also bought South San Francisco-basedCAR technology developer Xyphos Biosciencesas part of an end-of-year buying spree.

According to Nichols, these deals by Astellas are a signifier that medium pharma may be using advanced therapies to grow and expand.

With a wealth of therapies moving through the clinic, capacity is at a premium and 2019 saw contract development and manufacturing organizations (CDMOs) scrabbling to secure capabilities.

Thermo Fisher Scientific (NYSE: TMO) acquiredBrammer Bio for $1.7 billion, then Catalent (NYSE: CTLT) paid $1.2 billion toadd Paragon Bioservicesto its CDMO offering. Both marked the first move into gene therapy services by the two large contract manufacturers. Nichols noted the size of the deals as being somewhat impressive.

In other signs of CDMO consolidation, Hitachi Chemical Advanced Therapeutics Solutions (HCATS) entered Europe byacquiring German cell therapy manufacturing firm apceth Biopharma, and Tennessee-based cell therapy firm Cognateacquired Swedish DNA and viral vector manufacturer Cobra Biologics.

2019 also saw a flood of licensing deals with large upfront payments.

Roche (OTCGX: RHHBY) is paying more than $1 billion upfrontfor the rights to Sarepta Therapeutics (NASDAQ: SRPT) Duchenne muscular dystrophy (DMD) gene therapy outside of the US.

Genentech entered a $300 million with Adaptive Bio (NASDAQ: ADPT) for access to its T-receptor discovery and immune profiling platform, though the deal could be worth up to $2 billion.

And Vertex, as previously mentioned, inked a $175 million deal with CRISPR Therapeutics for its gene therapy pipeline.

We saw medium pharma grow. We saw major licensing deals. We saw CDMO consolidation. But we also saw Big Pharmas buying power with the sector making a significant impact on the cell and gene therapy space in 2019.

The biggest deal sawBristol buy Celgenefor a whopping $74 billion, bringing with it several CAR-T programs.

But Roches $4.8 billionacquisition of Spark Therapeutics which has already seen commercial success with Luxturna was also significant, as was Biogens (NASDAQ: BIIB) $877 million purchase ofNightstar Therapeutics, Pfizers stake-in and optionto buy out Vivet, and Bayers acquisition of the remaining shares ofBlueRock Therapeutics.

These signal that Big Pharma is optimistic to M&A in the advance therapy space and the value that these therapies can bring, said Nichols.

The business model for this new breed of curative medicines is significantly different to that of traditional pharma and biologics, and patient access poses a challenge. With the arrival of Zolgensma and its $2.1 million price tag, the conversations have changed, and all elements of the industry have been forced to address how to manage patient access.

Zolgensma represents a life or death drug for 68% of pediatric patients with SMA1. The patients must be dosed before the age of two, yet only around ten states offer screening before this age.

We need to work as an industry to ensure reimbursement and access is in sync with approvals, said Nichols. However, she added, we must move the conversation to state level and bring state Medicaid and insurance companies to the core of the conversation.

The year saw positive signs that change is happening.

Nichols noted that patient advocacy voices are loud across all disease indications pushing for access to these next-generation medicines. Meanwhile Novartis suggested lottery-style free drug program despitesome criticism demonstrates industry itself is looking for innovative ways to improve access.

This article first appeared in Bioprocess Insider on January 27.

Image: iStock/PashaIgnatov

Dan Stanton is Xconomy's managing editor and is based in France. You can reach him at dan.stanton@knect365.com.

See the original post:
CRISPR, CAR-T, Consolidation: Top Advanced Therapy Milestones of 2019 - Xconomy

Science team designs a new CAR they say may work much better than BCMAs in fighting multiple myeloma – Endpoints News

Right now the big R&D play in the multiple myeloma field is centered around a raft of experimental BCMA approaches, including CAR-Ts. But a scientific team at the University of Utah says they may have found a better approach.

Focusing on the high rate of relapse using current therapies, as well as the waning efficacy of the clinical CAR-Ts, a team at the Huntsman Cancer Institute at the University of Utah built a new CAR focused on CD229.

That target, they say, goes after a molecule that endures through the course of the disease on the surface of cancer cells, including myeloma stem cells at the root of relapse.

We were dismayed that although some of our patients respond quite well to currently available immunotherapies, they relapsed as early as one year after treatment, says physician-scientist Djordje Atanackovic. We thought if we could target every last cancer cell in a patients body, including the cancer stem cell, this could make the critical difference and yield more durable, deeper responses to treatment.

The study was published in Nature Communications.

Working with a protein engineer, the team produced an antibody that could hook onto CD229, an essential part of their new CAR-T. And it checked out in preclinical animal and cell models leaving plenty of work ahead in the clinic if this ever gets to the marketplace.

Read more here:
Science team designs a new CAR they say may work much better than BCMAs in fighting multiple myeloma - Endpoints News

Health care professionals offer insight to stem cell injection claims – WOWT

OMAHA, Neb. (WOWT) -- Imagine the pain from nerve damage so severe you can hardly move, but hope for relief is being offered by a company pitching stem cell injections that dont come cheap

Ron Elliott may be willing to endure financial pain.

Elliott, a Neuropathy sufferer said, It could be $5,000 or so and whether insurance would cover any of it or not.

Thats the low-end cost of stem cell injections pitched by Vitality Nebraska in advertised seminars at metro area hotel conference rooms.

Vitality Nebraska presentation said, The reason this works so well is because of the source of the stem cells were using, very young vital capable cells from Dr. Riordans lab.

Neil Riordans resume lists a leading stem cell laboratory in Panama.

Many pain sufferers, mostly senior citizens attend the seminars and our request to record was denied, so Dr. James Billups wore a hidden camera.

The next day after the needle went in there it made me feel better, read the presentation.

Dr. James Billups said, They make broad claims on the ability to do this. Everything they presented was anecdotal and anecdotal is not science.

In a statement to Six on Your Side Vitality, Nebraska states, each patient is evaluated by a licensed practitioner to see if regenerative medicine is a viable option. We do not make any promises or guarantees.

Some of the worlds leading research in the use of stem cells for treatment is being done here at the University of Nebraska Medical Center. We brought the seminar video here to get a second and third opinion.

Dr. James Armtage an Oncologist said, You need to know for example with stem cells how are the cells being made, there are standards for the use of these things.

Dr. Lynell Klassen an Immunologist said, Its hard for me to understand how those cells would actually stay around long enough to repurpose itself and transform and reprogram in order to be a functioning cell.

See the original post here:
Health care professionals offer insight to stem cell injection claims - WOWT

AlloVir Receives the European Medicines Agency PRIME Designation for Viralym-M, an Allogeneic, Off-the-Shelf, Multi-Virus Specific T-Cell Therapy -…

Feb. 12, 2020 12:00 UTC

Viralym-M pivotal and proof-of-concept studies to be initiated in 2020 for treatment and prevention of severe and life-threatening viral diseases

CAMBRIDGE, Mass.--(BUSINESS WIRE)-- AlloVir, a late-clinical stage T-cell immunotherapy company, today announced that the European Medicines Agency (EMA) has granted PRIority MEdicines (PRIME) designation to Viralym-M (ALVR105), the companys lead allogeneic, off-the-shelf, multi-virus specific T-cell therapy, for the treatment of serious infections with BK virus, cytomegalovirus, human herpes virus-6, Epstein Barr virus, and/or adenovirus in allogeneic hematopoietic stem cell transplantation (HSCT) recipients.

PRIME designation offers an accelerated regulatory pathway for Viralym-M in Europe, under the EMAs program to accelerate review of promising therapies targeting unmet medical needs. Designation for Viralym-M was granted based on data from a positive Phase 2 proof-of-concept study that showed greater than 90% of patients who failed conventional treatment and received Viralym-M had a complete or partial clinical response based on predefined criteria, with most patients achieving complete resolution of major clinical symptoms. These data were published in the Journal of Clinical Oncology (Tzannou, JCO, 2017). AlloVir plans to initiate Phase 3 pivotal and Phase 2 proof-of-concept studies with Viralym-M in 2020 targeting six common, devastating viral pathogens.

AlloVir previously received Regenerative Medicine Advanced Therapy (RMAT) designation from the U.S. Food and Drug Administration (FDA) for Viralym-M for the treatment of hemorrhagic cystitis (HC) caused by BK virus in adults and children following allogeneic HSCT. The company holds worldwide development and commercialization rights to Viralym-M. AlloVir is dedicated to developing and delivering transformative cell therapies for patients suffering from life-threatening viral diseases.

For immunocompromised patients, viral diseases can cause devastating and life-threatening consequences and todays PRIME designation acknowledges the urgent medical need for these patients, said David Hallal, Chief Executive Officer of AlloVir and co-founder of ElevateBio. We believe Viralym-M has the potential to fundamentally transform the lives of patients with viral diseases by substantially reducing or preventing disease morbidity and dramatically improving patient outcomes. We look forward to advancing pivotal and proof-of-concept studies for Viralym-M in multiple indications this year, and we hope that PRIME designation by the European Medicines Agency speeds our efforts to get treatment to patients in need.

The PRIME program aims to optimize development plans and speed up evaluation of medicines that may offer a major therapeutic advantage over existing treatments or benefit patients without treatment options. The PRIME designation is awarded by the EMA to promising medicines that target an unmet medical need. To be eligible and accepted for PRIME, a medicine has to show its potential to benefit patients with unmet medical needs based on early clinical data coupled with non-clinical data. Through the PRIME program, the EMA offers enhanced support to medicine developers including early interaction and dialogue, and a pathway for accelerated evaluation by the agency. The program is intended to optimize development plans and expedite the review and approval process so that these medicines may reach patients as early as possible.

About Opportunistic Viral Diseases

In healthy individuals, virus-specific T-cells (VSTs) from the bodys natural defense system provide protection against numerous disease-causing viruses. However, in patients with a weakened immune system these viruses may be uncontrolled. Viral diseases are common, with potentially devastating and life-threatening consequences in immunocompromised patients. For example, up to 90% of patients will reactivate at least one virus following an allogeneic stem cell transplant and two-thirds of these patients reactivate more than one virus, resulting in significant and prolonged morbidity, hospitalization and premature death. Typically, when viruses infect immunocompromised patients, standard antiviral treatment does not address the underlying problem of a weakened immune system and therefore, many patients suffer with life-threatening outcomes such as multi-organ damage and failure, and even death.

About Viralym-M (ALVR105)

Viralym-M is the lead investigational therapy in AlloVirs pipeline of allogeneic, off-the shelf multi-virus specific T-cell therapies designed to treat active viral diseases in immunocompromised patients, including in patients following HSCT, solid organ transplant, or in patients suffering with primary immunodeficiencies, cancer, or HIV. In a positive Phase 2 proof-of-concept study, published in the Journal of Clinical Oncology (Tzannou, JCO, 2017), greater than 90% of patients who failed conventional treatment and received Viralym-M demonstrated a complete or partial clinical response, and most exhibited complete resolution of major clinical symptoms. Viralym-M has the potential to fight or prevent a range of severe and life-threatening viral diseases in patients while they are immunocompromised.

About AlloVir

AlloVir (formerly ViraCyte), founded in 2013 by researchers at Baylor College of Medicines Center for Cell and Gene Therapy, is the leader in the development of novel cell therapies with a focus on restoring and maintaining virus-specific T-cell immunity in patients suffering from, or at risk for, life-threatening viral diseases. The companys technology platforms deliver commercially scalable solutions by leveraging off-the-shelf, allogeneic, multi-virus specific T-cells targeting devastating viral pathogens for patients under viral attack. AlloVirs technology and manufacturing process enables the potential for the treatment and/or prevention of up to six devastating viruses with its lead allogeneic product, Viralym-M (ALVR105), and allows potentially hundreds of patients to be treated with virus-specific T-cells manufactured from a single donor, using a proprietary cell selection strategy to match the companys bank of donor-derived cell lines to patients. AlloVir is advancing multiple mid- and late-stage clinical trials across its product portfolio.

AlloVir is an ElevateBio portfolio company. More information can be found at allovir.com.

About ElevateBio

ElevateBio, LLC, is a Cambridge-based biotechnology company, established to create and operate a broad portfolio of cell and gene therapy companies with leading academic researchers, medical centers and entrepreneurs. ElevateBio builds single- and multi-product companies by providing scientific founders with fully integrated bench-to-bedside capabilities including world-class scientists, manufacturing facilities, drug developers and commercial expertise. ElevateBio BaseCamp, a company-owned Cell and Gene Therapy Center of Innovation, will serve as the R&D, process development and manufacturing hub across the entire ElevateBio portfolio while also supporting selected strategic partners. For more information, please visit https://www.elevate.bio.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200212005062/en/

Read more:
AlloVir Receives the European Medicines Agency PRIME Designation for Viralym-M, an Allogeneic, Off-the-Shelf, Multi-Virus Specific T-Cell Therapy -...

New Report Counters Claims on the Origin of Gastric Cancer – The Scientist

Chief cells lie at the base of the stomachs gastric glands, and in healthy individuals they are responsible for secreting enzymes required for digestion. Scientists have proposed that, in the face of injury or genetic mutations, these cells revert back to stem cellsor dedifferentiateand give rise to abnormal changes in tissue called metaplasia, a precancerous state.

This idea emerged more than a decade ago from the observation of a specific type of metaplasia in stomach tissue called spasmolytic polypeptide-expressing metaplasia (SPEM), which appeared to originate from chief cells. Over the years, the body of evidence supporting this hypothesis has grown. But some scientists still question whether chief cells truly give rise to the precursors of cancer.

Yoku Hayakawa, a professor of gastroenterology at the University of Tokyo in Japan, is one of the skeptics. He says there have been technical limitations with the previous work, such as the lack of specificity of chief cell markers, and the use of transgenic mouse models that required tamoxifen, a drug that can induce injury and inflammation, to activate the oncogenic Krasgene.

In a study published last week(February 4) in Gastroenterology, Hayakawa and his colleagues investigate some of these issuesand conclude that their findings tip the scales against the chief cell hypothesis.

To address some of the limitations of previous research, Hayakawa and his colleagues identified a new, more-specific chief cell maker that targets the estrogen receptor GPR30 and established a mouse model of gastric metaplasia that activates Kras within the stomach without tamoxifen. When they induced a cancer-causing mutation in the mice, they found that most of the GPR30-expressing chief cells died instead of reverting their identity to stem cells. The team reported similar results when they injured the stomach using drugs or Helicobacter pylori,a bacterium known to increase the risk for cancer.

These findings counter results from previous studies supporting the chief cell hypothesis, Hayakawa tells The Scientist.They think chief cells are dedifferentiated, but [they are] lost.

The team did find stem cells that gave rise to metaplasia in the spots where the chief cells had died. But based on lineage tracing experiments with their Kras-activatedmice, the authors conclude that these cells were not derived from chief cells, but had instead migrated from higher up in the gland. This observation is consistent with a long-standing idea that stem cells from elsewhere in the gland are responding to replenish the dead chief cells, Hayakawa tells The Scientist. The epithelium has to regenerate to maintain homeostasis. So, in this case, stem cells actually expand and try to give rise to chief cells, which are lost.

According to Hayakawa, although these findings dont rule out that chief cells may give rise to metaplasia in rare cases, they suggest that gastric stem cells from the upper part of the gland are the main source of metaplasia in the stomach. The data clearly suggests stem cells or progenitors give rise to metaplasia but chief cells do not, he says.

Jason Mills, whose lab at Washington University School of Medicine has published several studies supporting the hypothesis that dedifferentiated chief cells can give rise to metaplasia, is not convinced. A key limitation of this study, he says, is that the authors conclusions depend largely on the assertion that GRP30labels all chief cells and only chief cells, which he does not think has been adequately demonstrated. (He notes there are differences in GPR30expression patterns in some of the papers figures, indicating that chief cells arent consistently or uniformly labeled.)

Mills adds that the results from this study arent actually too far off from those obtained in his own work, which has also revealed a subset of chief cells that do not undergo metaplasia. However, while his lab demonstrated that there are other chief cells that do give rise to SPEM, Hayakawas team concludes that the cells that give rise to the metaplasia in their experiments must not be chief cells. If you focus on the positive rather than the negative [in their results], we probably would not be too far off in our conclusions about chief cell behavior, he says.

Linda Samuelson of the University of Michigan says that a tamoxifen-independent mouse model of gastric metaplasia is an important contribution to the field. However, she, too, disagrees that this study rules out the chief cell dedifferentiation hypothesis. Its likely that both hypothesesa precancerous state arising from either stem cells or dedifferentiated chief cellsare correct, Samuelson tells The Scientist.She adds that the differences in outcome likely depend on factors such as how metaplasia is induced and the method used to track the cellular changes.

Regardless of whether the chief cell hypothesis turns out to be true, the question of how SPEM gives rise to gastric cancer remains unanswered, Hayakawa says. James Goldenring, who studies gastric cancer at Vanderbilt University Medical Center and is among those who originally proposed that chief cell dedifferentiation can give rise to SPEM, agrees that this an open question. But hes not convinced that his hypothesis should be discarded. It took me at least 10 years to get people to actually even admit that SPEM existed. So its perhaps ironic that were now arguing over how its created, he says. I guess thats better than where it started out, right? Weve taken the discussion to a different level.

M. Hata et al., GPR30-expressing gastric chief cells do not dedifferentiate but are eliminated via PDK-dependent cell competition during development of metaplasia,Gastroenterology,doi:10.1053/j.gastro.2020.01.046, 2020.

Diana Kwon is a Berlin-based freelance journalist. Follow her on Twitter @DianaMKwon.

Read the original:
New Report Counters Claims on the Origin of Gastric Cancer - The Scientist

BrainStorm Cell Therapeutics and FDA Agree to Potential NurOwn Regulatory Pathway for Approval in ALS – GlobeNewswire

NEW YORK, Feb. 11, 2020 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics, Inc., (NASDAQ:BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, today announced that the Company recently held a high level meeting with the U.S. Food and Drug Administration (FDA) to discuss potential NurOwn regulatory pathways for approval in ALS. Repeated intrathecal administration of NurOwn (autologous MSC-NTF cells) is currently being evaluated in a fully enrolled Phase 3 pivotal trial in ALS (NCT03280056).

In the planned meeting with senior Center for Biologics Evaluation and Research (CBER) leadership and several leading U.S. ALS experts, the FDA confirmed that the fully enrolled Phase 3 ALS trial is collecting relevant data critical to the assessment of NurOwn efficacy. The FDA indicated that they will look at the "totality of the evidence" in the expected Phase 3 clinical trial data. Furthermore, based on their detailed data assessment, they are committed to work collaboratively with BrainStorm to identify a regulatory pathway forward, including opportunities to expedite statistical review of data from the Phase 3 trial.

Both the FDA and BrainStorm acknowledged the urgent unmet need and the shared goal of moving much needed therapies for ALS forward as quickly as possible.

This is a key turning point in ourworktowardprovidingALSpatientswith a potential new therapy,said ChaimLebovits, President and CEO ofBrainStorm. We commend the FDA foritscommitmentto the ALS communityandtofacilitating the development, and we ultimately hope, the approvalofNurOwn.The entire BrainStorm team is grateful for the ongoing and conscientious collaboration in the quest to beat ALS.

Ralph Kern, MD, MHSc, Chief Operating Officer and Chief Medical Officer, stated, The entire team at BrainStorm has collectively worked to ensure that we conduct the finest, science-based clinical trials. We had the opportunity to communicate with Senior Leadership at the FDA and discuss how we can work together to navigate the approval process forward along a novel pathway. We appreciate their willingness and receptiveness to consider innovative approaches as we all seek to better serve the urgent unmet medical needs of the ALS community.

Brian Wallach, Co-Founder of I AM ALS stated: There is nothing more important to those living with ALS than having access to therapies that effectively combat this fatal disease. We have been working with BrainStorm for months now because we believe that NurOwn is a potentially transformative therapy in this fight. We were privileged to represent the patient voice at this meeting and are truly grateful to the company and the FDA for this critical agreement. This is a truly important moment of hope and we look forward to seeing both the Phase III data and the hopeful approval of NurOwn as soon as is possible.

About NurOwnNurOwn (autologous MSC-NTF cells) represent a promising investigational approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. NurOwn is currently being evaluated in a Phase 3 ALS randomized placebo-controlled trial and in a Phase 2 open-label multicenter trial in Progressive MS.

About BrainStorm Cell Therapeutics Inc.BrainStorm Cell Therapeutics Inc.is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwnCellular Therapeutic Technology Platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement as well as through its own patents, patent applications and proprietary know-how. Autologous MSC-NTF cells have received Orphan Drug status designation from theU.S. Food and Drug Administration(U.S.FDA) and theEuropean Medicines Agency(EMA) in ALS. BrainStorm has fully enrolled the Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six sites in the U.S., supported by a grant from theCalifornia Institute for Regenerative Medicine(CIRM CLIN2-0989). The pivotal study is intended to support a BLA filing for U.S.FDAapproval of autologous MSC-NTF cells in ALS. BrainStorm received U.S.FDAclearance to initiate a Phase 2 open-label multi-center trial of repeat intrathecal dosing of MSC-NTF cells in Progressive Multiple Sclerosis (NCT03799718) inDecember 2018and has been enrolling clinical trial participants sinceMarch 2019. For more information, visit the company'swebsite.

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

CONTACTS

Corporate:Uri YablonkaChief Business OfficerBrainStorm Cell Therapeutics Inc.Phone: 646-666-3188uri@brainstorm-cell.com

Media:Sean LeousWestwicke/ICR PRPhone: +1.646.677.1839sean.leous@icrinc.com

Or

Katie Gallagher | Account Director, PR and MarketingLaVoieHealthScience Strategic CommunicationsO: 617-374-8800 x109M: 617-792-3937kgallagher@lavoiehealthscience.com

Read more:
BrainStorm Cell Therapeutics and FDA Agree to Potential NurOwn Regulatory Pathway for Approval in ALS - GlobeNewswire

Global Gene Therapy Market Worth Reach USD 6892 Million By 2027 – TheInfobiz

Facts and Factors Market Researchhas published a new report titled Gene Therapy Market By Type (Germ Line Gene Therapy and Somatic Gene Therapy), By Vector Type (Viral Vectors, Non-Viral Vectors, and Human Artificial Chromosome), and By Therapy Area (Cancer, Neurological Diseases, Infectious Diseases, Genetic Disorders, Rheumatoid Arthritis, and Others): Global Industry Perspective, Comprehensive Analysis, and Forecast, 2018 2027.

According to the report, the globalgene therapy market was valued at approximately USD 919 million in 2018 and is expected to reach a value of around USD 6,892 million by 2027, at a CAGR of around 25.1% between 2019 and 2027.

Gene therapy is the kind of experimental method that makes use of genes for treating or preventing disease by inserting foreign genetic material like DNA or RNA into the persons cells. Scientists are studying gene therapy for treating various kinds of immuno-deficiencies, Parkinsons disease, HIV, and cancer by using myriad approaches. Today, many of the approaches to gene therapy are undergoing most intensive & rigorously testing. This includes replacing the mutated gene causing disease with the healthy gene copy. Another approach includes knocking out or inactivating a mutated gene operating improperly. Yet another approach includes a new gene into the body to combat the disease.

Request for Free Sample Report @ https://www.fnfresearch.com/sample/gene-therapy-market-by-type-germ-line-gene

(The sample of this report is readily available on request).

This Free report sample includes:

New product approval & commercialization to drive the market trends

Between the periods from 2012 to 2018, nearly five single-use gene treatments received approval from the U.S. FDA for treating a rare form of genetic disorders. Moreover, gene treatments that have received approval are being tested by pharmaceutical firms in the market. Apart from this, current approvals of gene therapy products across the U.S., as well as European countries for treating a plethora of life-threatening diseases, are anticipated to steer the growth of gene therapy industry over the forecast timeline. Moreover, gene therapy can also be used for treating neurodegenerative disorders like Alzheimer, amyotrophic lateral sclerosis, and spinal muscular atrophy.

Furthermore, many of the reputed pharma firms like Bristol-Myers Squibb, BioMarin, and Pfizer are investing massively into the research activities pertaining to gene therapy. Apart from this, a rise in the occurrence of cancer is prompting the demand to treat the disease. Gene therapy is one of the key treatment kinds that will propel the market growth over the forecast period. However, inadequate reimbursement policies pertaining to the one-time gene treatments will downgrade market expansion.

Inquire more about this report before purchase @ https://www.fnfresearch.com/inquiry/gene-therapy-market-by-type-germ-line-gene(You may enquire a report quote OR available discount offers to our sales team before purchase).

In addition to this, conducting of randomized controlled trials can pose a threat to the expansion of the gene therapy industry as a result of the gene therapy features & projected patient population. Nevertheless, the ability of the gene therapy to eliminate the number of ailments with faulty or missing genes like hemophilia A will promote the market growth over the forecast period and thereby nullify the negative impact of hindrances on the business growth.

Somatic gene therapy to dominate the type segment

The growth of the segment over the forecast timeline is credited to the ability to treat the targeted cells in the patient population. The treatment is not passed to future generations and is restricted to only the patient who receives the somatic gene therapy. Moreover, it is used for treating a huge number of disorders like cystic fibrosis, cancer, and muscular dystrophy.

Request Customized Copy of Report @ https://www.fnfresearch.com/customization/gene-therapy-market-by-type-germ-line-gene(We customize your report according to your research need. Ask our sales team for report customization).

Cancer to lead the therapy area segment over the forecast period

The segmental expansion is attributed to a large number of pipeline drugs registered over the past few years along with increasing occurrence of cancer as a result of genetic changes.

North America to dominate the overall regional market share during the forecast timespan

North American market, which accrued revenue of USD 380 million in 2018, is set to contribute majorly towards the overall market revenue by 2027. The regional market surge is credited to robust healthcare amenities, high per capita healthcare spending, and improvement in the reimbursement policies.

The key players included in this market are Advanced Cell & Gene Therapy, Audentes Therapeutics, Benitec Biopharma, Biogen, Blubird Bio, Inc., Bristol-Myers Squibb Company, CHIESI Farmaceutici SPA, Eurofins Scientific, Geneta Science, Genzyme Corporation, Gilead, GlaxoSmithKline PLC, Human Stem Cells institute, Novartis AG, Orchard Therapeutics, Pfizer Inc., Sangamo therapeutics, Spark therapeutics, and Voyager Therapeutics.

Browse the fullGene Therapy Market By Type (Germ Line Gene Therapy and Somatic Gene Therapy), By Vector Type (Viral Vectors, Non-Viral Vectors, and Human Artificial Chromosome), and By Therapy Area (Cancer, Neurological Diseases, Infectious Diseases, Genetic Disorders, Rheumatoid Arthritis, and Others): Global Industry Perspective, Comprehensive Analysis, and Forecast, 2018 2027Report athttps://www.fnfresearch.com/gene-therapy-market-by-type-germ-line-gene

This report segments the gene therapy market as follows:

Global Gene Therapy Market: By Type Segment Analysis

Global Gene Therapy Market: By Vector Type Segment Analysis

Global Gene Therapy Market: By Therapy Area Segment Analysis

Global Gene Therapy Market: Regional Segment Analysis

About Us:

Facts & Factors is a leading market research organization offering industry expertise and scrupulous consulting services to clients for their business development. The reports and services offered by Facts and Factors are used by prestigious academic institutions, start-ups, and companies globally to measure and understand the changing international and regional business backgrounds. Our clients/customers conviction on our solutions and services has pushed us in delivering always the best. Our advanced research solutions have helped them in appropriate decision-making and guidance for strategies to expand their business.

Contact Us:

Facts & Factors

Global Headquarters

Level 8, International Finance Center, Tower 2,8 Century Avenue, Shanghai,Postal 200120, ChinaTel: +86 21 80360450

Email:sales@fnfresearch.com

Web:https://www.fnfresearch.com

Read the original here:
Global Gene Therapy Market Worth Reach USD 6892 Million By 2027 - TheInfobiz

Cell-based meat in focus: In conversation with Meatable, Finless Foods, New Age Meats – FoodNavigator-USA.com

Despite all the hype, most startups in the space are still working in a laboratory (as opposed to a factory), although several have recently raised more substantial sums (Memphis Meats: $161m, Future Meat Technologies: $14m, Wild Type: $12.5m, Aleph Farms: $12m, Meatable: $10m) to support the construction of pilot-scale facilities.

Maastricht-based Mosa Meat which is gearing up for a small scale commercial launch in 2022 assuming it has cleared regulatory hurdles - recently joined forces with Nutreco (which has invested an undisclosed sum in the firm along with Lower Carbon Capital) to work on growth media; San Diego-based BlueNalu has also partnered with Nutreco; while Jerusalem-basedFuture Meat Technologies plans to release hybrid products in 2021 and a second line of 100% cell-based ground meat products suitable for burgers and nuggets at a cost of less than $10 per pound in 2022.

However, the recent $161m investment in Memphis Meats - which says it has a pretty clear path to achieving cost parity with conventional meat has given the whole sector a confidence boost, says Krijn de Nood, CEO at Dutch cell-based meat startup Meatable.

Its a huge positive for the industry, it shows there are very serious investors that have done their due diligence and think this is really going to happen.

Meatable - which is working with porcine and bovine induced pluripotent stem cells [iPSCs] recently raised $10m from existing investors and a couple of new angel investors, and a grant from the European Commission, which we are pretty proud of, says de Nood.

While this is dwarfed by Memphis Meats latest round, it was a meaningful vote of confidence in a sector where most startups have not raised more than a couple of million, he says.

Defendibility is definitely important to investors and we have IP around the differentiation of the cells, the hardware we use to grow the meat in, on reducing the costs on a lot of components. We have one patent thats granted, and a couple of others in the making.

Were comfortable that by late summer we can present our first prototype product, a tenderloin. Were aiming to present a product that has a meat-like texture with fat and muscle, with edible scaffolding, although I cannot disclose the materials at this point.

In the beginning of 2022 we should have a small pilot facility online, enabling some consumers to get familiar with our product. By 2025, we hope to have an industry scale facility online when we can become more cost competitive with traditional meat.

He adds:Weve worked on stabilizing the cell lines, culturing them in suspension and optimizing the proliferation speed.

Our cells can grow in an FBS-free [fetal bovine serum-free]medium and weve made good progress on reducing dependency on expensive growth factors.

As for market entry, Meatable is currently building a dossier to make a Novel Food application [to access the EU market], but also exploring the potential of market entry in Singapore, he says.

Cell-based fish co Finless Foods, which has a team of 11 people in Emeryville California, raised $3.5m in 2018, but is now gearing up to raise a series A round, says CEO Mike Selden.

While the startup co-founded by Selden and Brian Wyrwas, molecular biologists who met at theUniversity of Massachusetts, Amherst has experimented with multiple species, they have focused on Bluefin tuna because its under threat (populations today are a fraction of what they were in the 1960s) and because its expensive (reaching price parity with a broiler chicken could take far longer).

Investors are looking for a unique IP angle, as well as well-rounded teams and proof youre doing regulatory the right way and not just moving fast and breaking things, says Selden.

Now were gearing up for a Series A, we think there are some interesting things we can file [patent]and not have stolen from us, but were never going to file our media formulation [which would remain a trade secret].

As to how Finless stacks up vs the competition, he says, I wont pretend to know exactly what all of the others are doing; there are something like 40 cell-based meat companies and six cell-based seafood companies that Im aware have been funded. But I do think were not only competitive but actually I think youll see in the next few months at the forefront, as we release more information about what weve been working on.

Were the tuna people, so it will be very difficult to work on tuna outside of Finless Foods, plus we can take varieties of seafood that Americans have no real access to and localize them to the American market; things that are only eaten in Japan because no ones figured out how to farm, or theyre only available in small quantities in the wild.

Right now, Finless is focused on muscle and fat cells, says Selden. Its easy to have the muscle and fat cells turn into connective tissue, so we dont need a separate culture for fibroblasts.

As for getting the cells to proliferate indefinitely (so you dont keep having to go back to the source), he says, The concept of immortalization isnt super-relevant for seafood; fish cells naturally have an extremely high amount of telomerase [an enzyme which helps prevent the shortening of the telomeres, repetitive DNA sequences at the ends of chromosomes].

Put more simply, every time cells divide, their telomeres shorten, which eventually prompts them to stop dividing and die, he explains. Telomerase prevents this decline in some kinds of cells by lengthening telomeres, which is why people interested in slowing cellular aging are so interested in it.

It basically means we dont have to do genetic engineering to immortalize the cells.

As for the growth medium that feeds the cells, he notes, We currently have multiple cell lines and bluefin populations that are growing out in completely serum-free media, no FBS, no FCS (fetal calf serum). The key ingredients are salts, sugars and proteins. Right now, were getting these proteins from recombinant microbial systems [ie. expressing proteins in microbes such as bacteria, yeasts and other hosts].

There is some research thats happening both inside of Finless Foods and out, on what I consider to be better, more efficient ways of doing that, but I wont pretend that its come to fruition yet at least internally, but I know that others have had success such as [Tokyo-based cell-based meat co]Integriculture, which has been able to use conditioned media [spent cell culture media that includes secreted factors that have accumulated in the medium over time, including growth factors] instead [of recombinant growth factors] to feed their cells.

At Finless Foods, he explained, Our costs have come down massively, but as were working on Bluefin tuna [a very expensive fish]we dont face quite the same challenges [as companies trying to make, say, cell-based chicken, beef or pork].

Asked about bioreactors, he says, Were creating different divisions of the company working on different types of bioreactors to see what scales up the best, but as of right now, weve had more success in single systems, where the proliferation happens in one bioreactor and instead of moving the cells to a different bioreactor for the differentiation phase, you basically just replace the media from growth media to differentiation media and leave the cells in the same tank.

As for different ways to culture cells in the growth/proliferation phase, he says, one division of the company is working on suspension culture, where the infrastructure is already in place; while the other is working on attachment culture [where cells attach to food grade materials], which has never been scaled up, but has the potential for higher efficiencies. In suspension we have some experiments where the cells are attached to beads and others where the cells are just free-floating.

Were also exploring both approaches [suspension and attachment] in the differentiation phase, but there isnt a scenario where the cells are proliferating in a single cell suspension, but then differentiating attached.

When it comes to creating more structured, steak-like products, its potentially easier to recreate the structure/texture of tuna, which is more like a gel, compared with something like beef steak, he notes.

The first wave of cell-based products is going to attract a premium, which makes launching at a small scale in high-end restaurants - a place where consumers may be more willing to try something novel - a good way to test the waters, he says.

We definitely face more regulatory and technical challenges than plant-based meat companies,but brands such as Impossible Foods and Beyond Meat have paved the way for us to some extent by getting consumers - but also chefs - open to the idea of eating meat without slaughtering animals. Theyve also made foodtech cool and sexy, so were really grateful for that.

Asked about terminology, which has proved a bone of contention in the nascent industry, he said:I like the term cell-based because its neutral and accurate. Yes, we know that everything is made of cells[including meat from slaughtered animals], but we think its the best term out there.

I dont really get the term cultivated meat[a term emerging from Mattson/GFI research last year],but if there was a ton of evidence to support it, or if stakeholders in the animal ag industry were all behind it, I could be convinced, as Im not super ideological about this.

But the North American Meat Institute has signed off on cell-based and the government seems pretty OK with using it [editor's note: USDA and FDA have yet to issue any formal declaration on terminology].

At fellow startup New Age Meats,which has just raised $2.7m in a round led by ff Venture Capital to fund its cell-based pork operation, founder Brian Spears says investors are looking for clear evidence that yields are going up, and costs are going down.

While investors understand that cell-based meat is a longer-term bet than plant-based meat, and fits more into the high risk, high reward category given its novelty, the total addressable market for both is clearly enormous provided the products are good and the price is right says Spears, a chemical engineer with a background in industrial automation.

Were very focused on automation, data science and bioprocess, and showing that the cost of making cultivated meat is continuing to decrease. Weve got a high throughput platform that optimizes media, and weve validated different types of bioreactors, one of which was 200 liters, which I think is the biggest bioreactor that has been made specifically for cultivated meat.

While the nascency of the industry has meant most cell-based meat companies are vertically integrated, more third parties are now creating platforms to help cell-based meat startups, he says:

Weve seen a lot of players step in, so 3M has a whole team dedicated to optimizing media for cultivated meat, while Black & Veatch is interested in working with companies on industrial scale manufacturing.

New Age Meats is looking at pork belly, bacon, and sausages, some of which present greater technical challenges than others, says Spears.

In all cases, he says, [animal]fat is crucial, its where the flavor is, the mouthfeel, the smell. Just growing muscle and then adding a plant-based fat gives you a very different experience. Right now the most, straightforward solution if youre making a simple product like a sausage is to grow muscle and fat cells separately, and then combine them at the end, but there are pros and cons to each method.

Asked about more structured products such as pork belly, he said:There are a lot of ways to create a 3D structure; people think you have to make this edible scaffolding or matrix, flow the cells in, they adhere to it and they grow and mature on that, but there are other methods of doing this.

There are some processes New Age Meats could patent, but at this point, given the expense, its not top of the priority list, says Spears, who has adopted the term cultivated meat.

Patents give an easy signal to investors, but some of the patents in this space are absolutely worthless.

Go here to see the original:
Cell-based meat in focus: In conversation with Meatable, Finless Foods, New Age Meats - FoodNavigator-USA.com