Author Archives: admin


Outlook on the Gene Therapy for CNS Disorders Market to 2025 by Application, – News by aeresearch

New Market Research Report on Gene Therapy for CNS Disorders Market size | Industry Segment by Applications (Hospitals, Clinics and Others), by Type (Ex Vivo and In Vivo), By Regional Outlook - Global Industry Analysis, Size, Share, Growth, Opportunity, Latest Trends, and Forecast to 2025.

Regional analysis is another highly comprehensive part of the research and analysis study of the global Gene Therapy for CNS Disorders market presented in the report. This section sheds light on the sales growth of different regional and country-level Gene Therapy for CNS Disorders markets. For the historical and forecast period 2020 to 2025, it provides detailed and accurate country-wise volume analysis and region-wise market size analysis of the global Gene Therapy for CNS Disorders market.

This report on Gene Therapy for CNS Disorders Material Market delivers an in-depth analysis that also comprises an elaborate assessment of this business. Also, segments of the Gene Therapy for CNS Disorders Material market have been evidently elucidated in this study, in addition to a basic overview pertaining to the markets current status as well as size, with respect to the profit and volume parameters.

Request Sample Copy of this Report @ https://www.aeresearch.net/request-sample/64581

Global market focusing on major players of Gene Therapy for CNS Disorders market:

This Gene Therapy for CNS Disorders Market Research/analysis Report Contains Answers to your following questions:

Market segmentation, by product types:

Market segmentation, by applications:

Highlights of Report:

An all-inclusive framework of the geographical terrain:

Request Customization on This Report @ https://www.aeresearch.net/request-for-customization/64581

Read more here:
Outlook on the Gene Therapy for CNS Disorders Market to 2025 by Application, - News by aeresearch

"The results amazed both the doctors and ourselves" – first patient to receive pioneering cancer treatment at MRI – Manchester Evening News

A year ago Janice Baker's future seemed bleak.

A second bout of chemotherapy in February 2019 had failed to erase her cancer.

She was so weak she could not walk.

Janice, from Romiley in Stockport, had been diagnosed with large B-cell lymphoma a type of cancer of the blood and lymph glands in April 2018 after feeling unwell for several months.

But now, she has the vim and energy to look after her grandchild after a remarkable response to a pioneering treatment.

CAR-T cell therapy helps to genetically reprogramme a person's immune system to help them fight cancer.

Janice was the first patient to undergo the therapy at Manchester Royal Infirmary (MRI).

Manchester University NHS Foundation Trust (MFT) was named as one of a very small number of centres in the UK to offer the revolutionary new treatment, widely regarded as the most exciting cancer treatment development in decades, in 2018.

Janice underwent two separate bouts of chemotherapy in August 2018 and February 2019, which didnt manage to successfully treat the cancer.

It was then she was offered CAR-T therapy.

Janice, who was diagnosed with the cancer in the same week her husband Chris was diagnosed with prostate cancer, said; Over the last 18 months my health was very up and down. At my worst I could barely get out of bed. I had to use a wheelchair, lost a lot of weight and hardly left the house, except for hospital appointments.

When I heard I was eligible for CAR-T cell treatment I was thrilled as I had read up about the amazing results and it felt like a real lifeline. My chemotherapy had limited success which was unfortunate but did mean that I was a bit stronger to face the CAR-T treatment.

The treatment itself was actually quite straightforward. The removal and replacement of cells is not that intrusive, and the wonderful staff were very attentive and kept a very close eye on me. There can be a few side effects but, fortunately, I had very few problems and the after effects were quite minimal.

Janice had the CAR-T treatment in May 2019 and was an inpatient for a couple of weeks at the MRI before returning home.

CAR-T (Chimeric Antigen Receptor T-cell) therapy is a personalised medicine used to treat patients with certain types of leukaemia and lymphoma.

It is a highly complex new type of immunotherapy which involves collecting and using the patients own immune cells to target their cancer in a process which is completed over a number of weeks.

Janice added; After two weeks I was feeling encouraged that everything was going well. I was still quite poorly and it has been a long slog but I have slowly been building up my strength.

I had a scan in August, which we hoped would show a significant decline in the cancer, but the results amazed both the doctors and ourselves, as it showed that the cancer cells seem to have gone completely.

Things are now getting back to normal. I have been on holiday, am back to driving my car and, best of all, I have the energy to look after my Grandson. I really feel like I have the opportunity to start planning for the future again.

I had another PET scan in November 2019, which was also clear, so I am feeling really optimistic now.

Dr Eleni Tholouli, Consultant Haematologist and Director of the Adult Stem Cell Transplant and CAR-T Therapy Unit at Manchester Royal Infirmary, and who has been involved in Janices care throughout, said: We are delighted for Janice and her family that she has responded so well to CAR-T therapy. This is a ground-breaking new treatment for adult cancer patients at the MRI which uses the patients own immune cells, allowing us to create a powerful medicine tailored to an individuals needs.

So to see Janice have these incredible results in such a short space of time is really encouraging. This reassures us that we have to continue all the hard work and make this therapy available to more patients.

View post:
"The results amazed both the doctors and ourselves" - first patient to receive pioneering cancer treatment at MRI - Manchester Evening News

Lochaber cyclist pledges to cycle from London to Paris in aid of charity – Press and Journal

When David Wilsons spine snapped, leading to a cancer diagnosis, there were fears he would be left paralysed.

But the cyclist and mountaineer had his back rebuilt and went through gruelling chemotherapy and now, just a year later, he is planning a very physical challenge to raise funds for charity,

The Fort William man, who is 60, has journeyed across the globe to the far reaches of the Himalayas, Greenland, Norway and New Zealand. And now he is cycling from London to Paris.

In the summer of 2018, he was cycling the Great Divide Mountain Bike Trail a 3,083-mile off-road ride from Canada to Mexico when his back began to hurt.

He cut the trip short, putting his injury down to old age and wear and tear.

And in February last year his spine suddenly snapped due to a form of blood cancer called Multiple Myeloma.

Following his devastating diagnosis, Mr Wilson owner of the Limetree Hotel, restaurant and art gallery in Fort William was transferred to hospital in Glasgow where he underwent surgery to rebuild his spine.

He explained: I was taken from the Belford Hospital to Inverness, then transferred from Inverness to Glasgow to the surgeons there and they were able to rebuild my spine by putting in a scaffolding in my back with titanium and screws. That stage was touch and go on whether I would be paraplegic now and being an outdoors geezer I was pretty fed up about that.

Following a successful surgery, the visual artist began to slowly walk again before enduring a rigorous six month cycle of chemotherapy to attack the disease.

On September 20, he then received a stem cell transplant, giving him a new lease of life.

The father-of-two said: I had a very adventurous life.

I have been in situations where death has been very close to me, people have been killed right next to me but I have always felt there was a way in those situations that you could get out of them but with cancer like this particular cancer there is no escape. Youre in the hands of the disease and you have to take your chances when you get them.

Now in remission, Mr Wilson is aiming to defy the odds by cycling 500km from London to Paris in September, arriving in Paris exactly a year following his stem cell treatment.

He has now launched a Just Giving page in the hopes of raising 1,500 for Myeloma UK towards finding a cure for the crippling disease.

Multiple myeloma, also known simply as Myeloma, is a form of blood cancer arising from plasma cells causing problems to various areas of the body such as the spine, skill, pelvis and ribs.

It develops in abnormal plasma cells, which release a large amount of a single type of antibody known as paraprotein which has no useful function.

Myeloma affects where bone marrow is normally active in an adult, such as in the bones of the spine, skull, pelvis, the rib cage, long bones of the arms and legs and the areas around the shoulders and hips.

Each year in the UK, approximately 5,700 people are diagnosed with myeloma.

Myeloma mainly affects those over the age of 65, however it has been diagnosed in people much younger.

In the early stages of developing the disease, patients rarely experience side effects and is only diagnosed through routine blood or urine tests.

As the disease progresses, the cancer can cause a range of problems including aches and tender areas in your bones, causes bones to break and fracture easily, kidney problems and repeated infections.

Patients can also become lethargic, weak and short of breath caused as a result of anaemia.

In most diagnosed cases of myeloma it cannot be cured, however, treatment can be given to control the condition and minimise its effects for several years.

Treatment includes anti-myeloma medicines to destroy the cancer cells or control the cancer if patients suffer a relapse as well as a range of medicines to prevent or treat side effects of myeloma.

Read more:
Lochaber cyclist pledges to cycle from London to Paris in aid of charity - Press and Journal

Snake venom can now be made in a lab and that could save many lives – WPMT FOX 43

If youre unlucky enough to have a poisonous snake sink its fangs into you, your best hope is an antivenom, which has been made in the same way since Victorian times.

It involves milking snake venom by hand and injecting it into horses or other animals in small doses to evoke an immune response. The animals blood is drawn and purified to obtain antibodies that act against the venom.

Producing antivenom in this way can get messy, not to mention dangerous. The process is error prone, laborious and the finished serum can result in serious side effects.

Experts have long called for better ways to treat snake bites, which kill some 200 people a day.

Now finally scientists are applying stem cell research and genome mappingto this long-ignored field of research. They hope it will bring antivenom production into the 21st Century and ultimately save thousands, if not hundreds of thousands, of lives each year.

Researchers in the Netherlandshave created venom-producing glands from the Cape Coral Snake and eight other snake species in the lab, using stem cells. The toxins produced by the miniature 3-D replicas of snake glands are all but identical to the snakes venom, the team announced Thursday.

In a parallel breakthrough, scientists in India have sequenced the genome of the Indian cobra,one of the countrys big four snakes that are responsible for most of the50,000 snakebite deaths India sees a year.

Theyve really moved the game on, said Nick Cammack, head of the snakebite team at UK medical research charity Wellcome. These are massive developments because its bringing 2020 science into a field thats been neglected.

Hans Clevers, the principal investigator at the Hubrecht Institute for Developmental Biology and Stem Cell Research in Utrecht, never expected to be using his lab to make snake venom.

A decade ago,he invented the technique to make human organoids miniature organs made from the stem cells of individual patients. Theyve allowed doctors to test the specific effects of drugs safely outside the body, something that has revolutionized and personalized areas such as cancer treatment.

So why did he decide to culture a snake venom gland?

Clevers said it was essentially a whim of three PhD students working in his lab whod grown bored of reproducing mouse and human kidneys, livers and guts. I think they sat down and asked themselves what is the most iconic animal we can culture? Not human or mouse. They said its got to be the snake. The snake venom gland.

They assumed that snakes would have stem cells the same way mice and humans have stems cells but nobody had ever investigated this, said Clevers.

After sourcing some fertilized snake eggs from a dealer, the researchers found they were able to take a tiny chunk ofsnake tissue,containing stem cells, and nurture it in a dish with the same growth factor they used for human organoids albeit at a lower temperature to createthe venom glands. And they found that these snake organoids tiny balls just one millimeter wide produced the same toxins as the snake venom.

Open them up and you have a lot of venom. As far as we can tell, its identical. Weve compared it directly to the venom from the same species of snake and we find the exact same components, said Clevers, who was an author of the paper that published in thejournal Celllast week.

The team compared their lab-made venom with the real thing at the genetic level and in terms of function, finding that muscle cells stopped firing when exposed to their synthetic venom.

The current antivenoms available to us, produced in horses not humans, trigger relatively high rates of adverse reactions, which can be mild, like rash and itch, or more serious, like anaphylaxis. Its also expensive stuff. Wellcome estimate that one vial of antivenom costs $160, and a full course usually requires multiple vials.

Even if the people who need it can afford it most snakebite victims live in rural Asia and Africa the world has less than half of the antivenom stock it needs, according to Wellcome.Plus antivenoms have been developed for only around 60% of the worlds venomous snakes.

In this context, the new research could have far-reaching consequences, allowing scientists to create a biobank of snake gland organoids from the 600 or so venomous snake species that could be used to produce limitless amounts of snake venom in a lab, said Clevers.

The next step is to take all that knowledge and start investigating new antivenoms that take a more molecular approach, said Clevers.

To create an antivenom, genetic information and organoid technology could be used to make the specific venom components that cause the most harm and from them produce monoclonal antibodies, which mimic the bodys immune system, to fight the venom, a method already used in immunotherapy treatments for cancer and other diseases.

Its a great new way to work with venom in terms of developing new treatments and developing antivenom. Snakes are very difficult to look after, Cammack said, who was not involved with the research.

Clevers said his lab now plans to make venom gland organoids from the worlds 50 most venomous animals and they will share this biobank with researchers worldwide. At the moment, Clevers said they are able to produce the organoids at a rate of one a week.

But producing antivenomis not an area that pharmaceutical companies have traditionally been keen to invest in,Clevers said

Campaigners often describe snakebites as a hidden health crisis, with snakebites killing more people than prostrate cancer and choleraworldwide, Cammack said.

Theres no money in the countries that suffer. Dont underestimate how many people die. Sharks kill about 20 per year. Snakes kill 100,000 or 150,000, said Clevers.

Im a cancer researcher essentially and I am appalled by the difference in investment in cancer research and this research.

One challenge to making synthetic antivenom is the sheer complexity of how a snake disables its prey. Its venom contains several different components that have different effects.

Researchers in India have sequenced the genome of the Indian Cobra, in an attempt to decode the venom.

Published in thejournal Nature Geneticsearlier this month,its the most complete snake genome assembled and contains the genetic recipe for the snake venom, establishing the link between the snakes toxins and the genes that encode them. Its not a straightforward cocktail the team identified 19 genes out of 139 toxin genes as the ones responsible for causing harm in humans.

Its the first time a very medically important snake has been mapped in such detail, said Somasekar Seshagiri, president of SciGenom Research Foundation, a nonprofit research center in India.

It creates the blueprint of the snake and helps us get the information from the venom glands. Next, his team will map the genomes of the saw-scaled viper, the common krait and the Russells viper the rest of Indias big four.This could help make antivenom from the glands as it will be easier to identify the right proteins.

In tandem, both breakthroughs will also make it easier to discover whether some of the potent molecules contained in snake venom are themselves worth prospecting as drugs allowing snakes to make their mark on human health in a different way to how nature intended by saving lives.

Snake venom has been used to make drugsthat treat hypertension (abnormally high blood pressure) and heart conditions such as angina.

As well as being scary, venom is amazingly useful, Seshagari said.

Follow this link:
Snake venom can now be made in a lab and that could save many lives - WPMT FOX 43

Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for…

Bladder cancer (BC) is a complex and highly heterogeneous stem cell disease associated with high morbidity and mortality rates if it is not treated properly. Early diagnosis with personalized therapy and regular follow-up are the keys to a successful outcome. Cancer stem cells (CSCs) are the leading power behind tumor growth, with the ability of self-renewal, metastasis, and resistance to conventional chemotherapy. The fast-developing CSC field with robust genome-wide screening methods has found a platform for establishing more reliable therapies to target tumor-initiating cell populations. However, the high heterogeneity of the CSCs in BC disease remains a large issue. Therefore, in the present review, we discuss the various types of bladder CSC heterogeneity, important regulatory pathways, roles in tumor progression and tumorigenesis, and the experimental culture models. Finally, we describe the current stem cell-based therapies for BC disease.

Cells. 2020 Jan 17*** epublish ***

Amira Abugomaa, Mohamed Elbadawy, Hideyuki Yamawaki, Tatsuya Usui, Kazuaki Sasaki

Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan., Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.

PubMed http://www.ncbi.nlm.nih.gov/pubmed/31963556

The rest is here:
Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for...

Early onset Parkinsons might begin in the womb: Prevention a possibility – The New Daily

An intriguing experiment has led researchers to conclude that people who develop early-onset Parkinsons disease between the age of 21 and 50 may have been born with abnormal brain cells that go undetected for decades.

These disordered cells allow gradual accumulation of the -synuclein protein that forms abnormal deposits in the brain, and dysregulated lysosomal proteins that ordinarily play a role in clearing abnormal proteins from cells.

The researchers from Cedars-Sinai Medical Center say they are investigating an FDA approved skin cancer drug they believe might help correct these abnormalities before they become symptomatic.

In other words, they suggest that early-onset Parkinsons the form of the disease that Michael J. Fox was diagnosed with at the age of 29 may be treatable or even prevented. Its an astonishing claim.

To perform the study, the research team generate pluripotent stem cells master cells that can potentially produce any cell or tissue the body needs to repair itself from blood cells of three patients with young-onset Parkinsons disease.

The patients were aged 30-39 and had no known familial history of the disease and no Parkinsons disease mutations.

When generated in the laboratory, these master cells called induced pluripotent stem cells (iPSCs). In their experiment, the Cedars-Sinai researchers described this process as taking adult blood cells back in time to a primitive embryonic state.

The team used the stem cells to produce dopamine neurons from each patient and then cultured them in a dish and analysed the neurons functions.

In Parkinsons patients, brain neurons that make dopamine a neurotransmitter that works to coordinate muscle movement become impaired or die.

Our technique gave us a window back in time to see how well the dopamine neurons might have functioned from the very start of a patients life, said Dr Clive Svendsen, PhD, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, and the studys senior author.

According to a statement from Cedars-Sinai, the researchers detected two key abnormalities in the dopamine neurons in the dish:

Dr Svendsen said the experiment allowed the researchers to see the very first signs of young-onset Parkinsons.

It appears that dopamine neurons in these individuals may continue to mishandle alpha-synuclein over a period of 20 or 30 years, causing Parkinsons symptoms to emerge.

The investigators went further, using their iPSC to test a number of drugs that might reverse the lab-born abnormalities.

They found that that one drug, PEP005 already approved by the Food and Drug Administration for treating pre-cancers of the skin reduced the elevated levels of alpha-synuclein in both the dopamine neurons in the dish and in laboratory mice.

The drug also countered another abnormality they found in the patients dopamine neurons elevated levels of an active version of an enzyme called protein kinase C. However, the role of this enzyme version in Parkinsons is not clear.

The drug PEP005 is only available in gel form and the researchers plans to investigate how it might be delivered to the brain to potentially treat or prevent young-onset Parkinsons.

In Parkinsons disease, the symptoms including slowness of movement, rigid muscles, tremors, loss of balance and impaired mood control get worse over time. In most cases, the exact cause of neuron failure is unclear, and there is no known cure.

Just about every week, a new insight into the disease is published. Last week, The New Daily reported on new research that found living less than 50 metres from a major road or less than 150 metres from a highway has been linked to significantly higher incidence of dementia and Parkinsons disease.

In 2018, we published an exciting Australian study that suggested subject to clinical testing the inflammation of the brain that causes so much of the progressive damage in Parkinsons disease (PD) could be halted by taking a single pill each day.

Both these studies might eventually prove to be correct. But its a long wait for the more than 10 million sufferers worldwide and their families.

This latest study could be a game-changer. But it could just as easily wither on the vine. Still, better to take heart than not.

Most patients are 60 or older when they are diagnosed, about 10 per cent are between 21 and 50 years old. .

Young-onset Parkinsons is especially heartbreaking because it strikes people at the prime of life, said Dr Michele Tagliati, director of the Movement Disorders Program, vice chair and professor in the Department of Neurology at Cedars-Sinai, and co-author of the study.

This exciting new research provides hope that one day we may be able to detect and take early action to prevent this disease in at-risk individuals.

Read more:
Early onset Parkinsons might begin in the womb: Prevention a possibility - The New Daily

Global Stem Cell Banking Market Analysis, Trends, and Forecasts 2019-2025 – ResearchAndMarkets.com – Business Wire

DUBLIN--(BUSINESS WIRE)--The "Stem Cell Banking - Market Analysis, Trends, and Forecasts" report has been added to ResearchAndMarkets.com's offering.

The global market for Stem Cell Banking is projected to reach US$9.9 billion by 2025, driven by their growing importance in medicine given their potential to regenerate and repair damaged tissue.

Stem cells are defined as cells with the potential to differentiate and develop into different types of cells. Different accessible sources of stem cells include embryonic stem cells, fetal stem cells, peripheral blood stem cells, umbilical cord stem cells, mesenchymal stem cells (bmMSCs) and induced pluripotent stem cells. Benefits of stem cells include ability to reverse diseases like Parkinsons by growing new, healthy and functioning brain cells; heal and regenerate tissues and muscles damaged by heart attack; address genetic defects by introducing normal cells; reduce mortality among patients awaiting donor organs for transplant by regenerating healthy cells and tissues as an alternative to donated organs. While currently valuable in bone marrow transplantation, stem cell therapy holds huge potential in treating a host of common chronic diseases such as diabetes, heart disease (myocardial infarction), Parkinsons disease, spinal cord injury, arthritis, and amyotrophic lateral sclerosis. The technology has the potential to revolutionize public health.

The growing interest in regenerative medicine which involves replacing, engineering or regenerating human cells, tissues or organs, will push up the role of stem cells. Developments in stem cells bioprocessing are important and will be key factor that will influence and help regenerative medicine research move into real-world clinical use. The impact of regenerative medicine on healthcare will be comparable to the impact of antibiotics, vaccines, and monoclonal antibodies in current clinical care. With global regenerative medicine market poised to reach over US$45 billion 2025, demand for stem cells will witness robust growth.

Another emerging application area for stem cells is in drug testing in the pharmaceutical field. New drugs in development can be safely, accurately, and effectively be tested on stem cells before commencing tests on animal and human models. Among the various types of stem cells, umbilical cord stem cells are growing in popularity as they are easy and safe to extract. After birth blood from the umbilical cord is extracted without posing risk either to the mother or the child. As compared to embryonic and fetal stem cells which are saddled with safety and ethical issues, umbilical cord is recovered postnatally and is today an inexpensive and valuable source of multipotent stem cells. Until now discarded as waste material, umbilical cord blood is today acknowledged as a valuable source of blood stem cells. The huge gap between newborns and available cord blood banks reveals huge untapped opportunity for developing and establishing a more effective banking system for making this type of stem cells viable for commercial scale production and supply. Umbilical cord and placenta contain haematopoietic blood stem cells (HSCs). These are the only cells capable of producing immune system cells (red cells, white cells and platelet).

HSCs are valuable in the treatment of blood diseases and successful bone marrow transplants. Also, unlike bone marrow stem cells, umbilical cord blood has the advantage of having 'off-the-shelf' uses as it requires no human leukocyte antigen (HLA) tissue matching. Developments in stem cell preservation will remain crucial for successful stem cell banking. Among the preservation technologies, cryopreservation remains popular. Development of additives for protecting cells from the stresses of freezing and thawing will also be important for the future of the market. The United States and Europe represent large markets worldwide with a combined share of 60.5% of the market. China ranks as the fastest growing market with a CAGR of 10.8% over the analysis period supported by the large and growing network of umbilical cord blood banks in the country. The Chinese government has, over the years, systematically nurtured the growth of umbilical cord blood (UCB) banks under the 'Developmental and Reproductive Research Initiation' program launched in 2008. Several hybrid public-private partnerships and favorable governmental licensing policies today are responsible for the current growth in this market.

Companies Mentioned

Key Topics Covered:

I. METHODOLOGY

II. EXECUTIVE SUMMARY

1. MARKET OVERVIEW

2. FOCUS ON SELECT PLAYERS

3. MARKET TRENDS & DRIVERS

4. GLOBAL MARKET PERSPECTIVE

III. MARKET ANALYSIS

GEOGRAPHIC MARKET ANALYSIS

UNITED STATES

CANADA

JAPAN

CHINA

EUROPE

FRANCE

GERMANY

ITALY

UNITED KINGDOM

REST OF EUROPE

ASIA-PACIFIC

REST OF WORLD

IV. COMPETITION

V. CURATED RESEARCH

For more information about this report visit https://www.researchandmarkets.com/r/9b2ra3

Read the original:
Global Stem Cell Banking Market Analysis, Trends, and Forecasts 2019-2025 - ResearchAndMarkets.com - Business Wire

The Future of Antivenom May Involve Mini Lab-Grown Snake Glands – Smithsonian.com

For the first time, scientists have grown miniature, venom-producing glands in the lab using coral snake embryos, according to a news study published in the journal Cell. Why might researchers want to create artificial venom glands, you ask?

The project was initially aimed to establish proof-of-concept more than anything else. Three graduate students at the Hubrecht Institute in the Netherlands had wondered: If lab-grown organs could be made that acted like mouse and human tissues, would it work for other animals, like reptiles?

Luckily, they were working in molecular geneticist Hans Clevers lab. Clevers is a prominent expert in stem cell research who pioneered research on the lab-grown organ imitationscalled organoidsa decade ago. Since then, researchers have created miniature human kidneys, livers, and brains in petri dishes.

On Fridays, members of the Clevers Lab are allowed to work on unstructured projects. To put their question to the test, Clevers students Yorick Post, Jens Puschhof, and Joep Beumer, would need a source of reptilian stem cells. As it happened, one of the researchers knew a guy: a snake breeder who could supply them with fertilized eggs, as STAT News Andrew Joseph reports.

They started with the egg of a Cape coral snake, removing the embryos venom glands and placing them in a dish. Then, they followed nearly the same protocol as they did with human cells, giving the cells ample supply of growth-inducing chemicals and storing them at a comfortable temperatureabout 89 degrees Fahrenheit, about ten degrees lower than the temperature used for human cells.

Soon, the plates held one-millimeter-long white blobs producing dangerous venom. With the organoids alive and well, the researchers told Clevers what theyd done, Leslie Nemo at Discover reports. If theyd told him beforehand, he would have told them it probably wouldnt work, Clevers tells the Atlantics Ed Yong. The chemicals they used were designed for human stem cells, and very little was known about stem cells in snakes. Still, the researchers were able to grow organoids from nine species of snakes.

Its a breakthrough, University of Costa Rica snake venom toxicologist Jos Mara Gutirrez, who was not involved in the study, tells Erin Malsbury at Science magazine. This work opens the possibilities for studying the cellular biology of venom-secreting cells at a very fine level, which has not been possible in the past, Malsbury says.

By looking closely at the organoids, Clevers team gained new insight into how multiple kinds of cells work together to produce the specific mixture of toxins and proteins that results in fully-developed venom.

Venomous snake bites kill between 81,000 and 138,000 people every year, according to the World Health Organization, and cause three times as many amputations and disabilities. The antidote to a snakebite is an antivenom, but each of thousands of venomous snakes have a different biteeach requiring a unique treatment. Even snakes of the same species can produce a slightly different venoms if they live in different regions.

Right now, antivenoms are produced using much the same process as was invented in the 19th century: a live snake is milked for its venom, that venom is injected into a horse. Horses have been used for antivenom production for years because of their docile nature and big veins, as Douglas Main wrote for Popular Mechanics in 2016. They are first injected with adjuvant, which stimulates their immune system to produce enough antibodies to neutralize the venom. Then, researchers take a sample of their blood and separate the antivenom from other component of blood, like plasma, in a centrifuge.

Clevers now hopes to create a bank of dozensand eventually thousandsof organoids from dangerous snakes and other reptiles that could aid in the effort to manufacture effective antivenoms.

"We could just sample one tissue once, and we have a source of [that snakes] venom for eternity," Clevers tells Discover.

Clevers is working with the Dutch biologist Freek Vonk, who he calls the Dutch Steve Irwin, to get samples of the snake species he hopes to include in the venom gland biobank. (Vonk works at Naturalis Biodiversity Center in Leiden and also has some excellent Dutch science tunes available on Spotify.)

With venom from organoids more easily available, the hope is to skip the horse in the antitoxin-production process. Researchers could instead use the organoid-produced venom to test an array of molecules for neutralizing abilities.

It will be interesting to see how the cost of producing venom using this system compares to the cost of purchasing venom milked from live snakes, since cost of antivenom is a key impediment to its wider use in countries where snakebite is a huge issue, like India and Nigeria, as Bangor University molecular zoologist Anita Malhotra tells the Atlantic.

Antivenoms made from lab-grown venom glands are likely years away, but the organoids could also be a big step for studying toxin production in more detail than previously possible. With the cells isolated from the rest of the snake, researchers might be able to look at how they can produce toxic chemicals without damaging themselves, for example.

Clevers tells Discover, We do the most interesting work when we dont have a proposal and just try things.

Continued here:
The Future of Antivenom May Involve Mini Lab-Grown Snake Glands - Smithsonian.com

Fighting cancer with every step to Patagonia – Essex News Daily

Photo Courtesy of Michael MankowichAbove, Michael Mankowich and his wife, Kathleen, in Patagonia

NUTLEY, NJ When Nutley resident Michael Mankowichs lower back started to bother him, he figured it was a souvenir from his earlier athletic days. Mike, 58, had been a top-notch wrestler at 132 pounds at Long Islands Commack North High School. Hed been an all-American, in fact, as well as a two-time all-Ivy, three-time New York state champ and three-time EIWA tournament placer as a wrestler at Cornell University. An old wrestlers injury was all it was, he figured, a physical reminder of a quick takedown of an opponent 40 years long forgotten.

But the pain did not go away.

Mike began to see a doctor and a chiropractor, and eventually he got an MRI. The news he received at Memorial Sloan Kettering Cancer Center in February 2017 was not good. He was diagnosed with multiple myeloma, a cancer that attacks the blood plasma cells responsible for creating disease-fighting antibodies.

They figured it out quickly at Sloan, he said recently, seated with his wife, Kathleen, in their Rutgers Place home. I kept it from Kathleen.

With this news, he became withdrawn, and his wife realized something was wrong. Mike told her what he had learned, and, as so often happens when a couple puts their heads together, they found some reason for hope: multiple myeloma is a blood disease in the bone marrow and, as such, does not metastasize.

Thats where all the action takes place, in the bone marrow, Mike said. You have to keep your chin up.

For treatment, he became part of a six-month chemotherapy clinical study. Mike was glad to be in the study, because most multiple myeloma patients go on chemotherapy for three months and then undergo a stem-cell transplant. He, however, would not.

A stem-cell transplant blows out the immune system, he said.

Kathleen, an administrative coordinator at Felician University School of Nursing, said her husband, a real estate management employee, did not break stride and never missed the commute to New York City during the clinical study.

A member of Nutley High Schools Class of 1976, Kathleen got on the computer.

When your spouse is diagnosed with an incurable cancer, you do a bit of research, she said.

She discovered the Multiple Myeloma Research Foundation website and learned it was founded 30 years earlier by a woman named Kathy Giusti, who was living with the disease.

That gave me hope, Kathleen said.

She also learned about a collaboration between MMRF and CURE Media Group called Moving Mountains for Multiple Myeloma, or MM4MM.

This collaboration promotes endurance events, undertaken by multiple myeloma patients, to places like Mount Fuji, Mount Kilimanjaro and Iceland. The treks raise money for research, as well as public awareness about the disease. A patient selected to participate in one of these exotic treks had to raise funds, but the trip itself was underwritten by Celgene, a pharmaceutical company headquartered in Summit.

Mike was interested and applied in November 2018 for a spot on a team going to Patagonia. He was interviewed and accepted on condition of raising $10,000 for MMRF research. He suggested that Kathleen accompany him, and they eventually raised $30,000 through social media and by asking friends, family and neighbors.

The online MMRF page devoted to Mikes fundraising shows a photograph of him with his arms around Kathleen and their daughter, Mary, a Class of 2020 NHS student.

In a letter featured on the page, Mike informs the reader that MMRF is one of the worlds leading private funders of myeloma research, with 10 new treatments approved by the Food and Drug Administration.

In August 2019, Mike and Kathleen were flown to Oregon to meet their teammates and to get a taste of what was in store for them in Patagonia. According to the MM4MM website: Each team is carefully selected, representing a microcosm of the myeloma community patients, caregivers, health care professionals and clinical trials managers, as well as representatives from our pharma partners, from CURE Magazine and the MMRF to emphasize the collaboration necessary to drive toward cures.

The foundation sent the group to Mount Hood, Mike said. It was the first time we met. What a great group of people. There were around 15 from all over the country, and there was one other couple, but no one else from New Jersey.

Four other multiple myeloma patients were in the group, he said. he team climbed for nine hours and then headed home.

To prepare for the trip to Patagonia, a region containing part of the Andes mountain range, Mike and Kathleen began a regime of long walks. For instance, theyd walk from Nutley to South Orange and went hiking in New Yorks Harriman State Park.

The MMRF website described the journey as one of arduous adventure: This team will traverse Patagonia crossing over glaciers, through deep valleys, and ascending challenging peaks. This is a powerful and life-changing experience, as the team overcomes challenges, pushes beyond perceived limits and honors loved ones and friends living with multiple myeloma.

For the trek, the team flew to El Calafate, Argentina. As the team embarked on different climbs, documentary filmmakers accompanied them.

The hiking was physically difficult, Mike said. We hiked in rain and incredible winds. In one particular hike, as soon as you felt the winds, you hit the ground. I was surprised nobody got hurt. Some of those slopes were pretty steep. But the scenery was unworldly, and there were condors.

Both Mike and Kathleen agreed that the most memorable sight was La Condorera, which their itinerary described as a nearly vertical massif, offering a home to one of the greatest concentrations of endangered condors in the world. A massif is a group of mountains standing apart from other mountains.

It was a difficult hike, Kathleen said. Youre ready to pass out getting to the top. But its so worth it. The panorama is a view of glaciers and condors. It was spectacular.

Mike and Kathleen returned home on Nov. 16, but there were no goodbyes at the airport. The team had grown so incredibly close that everyone felt they would be seeing each other again, a feeling grounded in the knowledge that multiple myeloma can be challenged and hopefully, one day, defeated.

Our goal in all of this is that you can have multiple myeloma and still do incredible things, Kathleen said.

Its an incentive to other patients to get out there and enjoy their lives, Mike said. And find a cure for multiple myeloma. I have a little bias. I have it.

FEATURED, MOBILE

Go here to read the rest:
Fighting cancer with every step to Patagonia - Essex News Daily

New Gene Therapy Successfully Sends Six Patients With Rare Blood Disorder Into Remission – IFLScience

Six patients with a rare blood disease are now in remission thanks to a new gene therapy. The condition, known as X-CGD, weakens the immune system leaving the body vulnerable to a range of nasty infections and shortens a persons lifespan. It is normally treated using bone marrow transplants, but matching donors to patients can be tricky and time-consuming and the procedure comes with risks.

A team led by UCLA recently treated nine people with the disease and six successfully went into remission, allowing them to stop other treatments. All six patients are doing well and havent suffered any adverse effects.

X-CGD is a form of chronic granulomatous disease (CGD). People with CGD have an inherited mutation in one of five genes involved in helping their immune system attack invading microbes with a burst of chemicals. This means that CGD sufferers have weaker immune systems than healthy people, so they have a greater risk of getting infections. These infections can be life-threatening, particularly if they affect the bones or cause abscesses in vital organs.

X-CGD is the most common type of CGD and only affects males. It is caused by a mutation in a gene on the X-chromosome. Current treatments are limited to targeting the actual infections with antibiotics as well as bone marrow transplants. Bone marrow contains stem cells that develop into white blood cells, so bone barrow from a healthy donor can provide a CGD patient with healthy white blood cells that can help their body to fend off disease.

However, bone marrow transplants are far from ideal. The patient has to be matched to a specific donor, and the body can reject the implanted bone marrow. That means that following a transplant, the patient needs to take anti-rejection drugs for at least six months.

For their new treatment, researchers removed blood cell-forming stem cells from the patients themselves and genetically modified them so that they no longer carried the unwanted mutation. Then, the edited stem cells were returned to their bodies, ready to produce healthy new infection-fighting white blood cells.

This is the first time this treatment has been used to try to correct X-CGD. The researchers followed up with the nine patients but sadly, two passed away within three months of the treatment. Its important to note that their deaths were not a result of the treatment but of rather severe infections that they had been suffering from for a long time. The remaining seven were followed for 12 to 36 months all remain free from infections related to their condition, and six have been able to stop taking preventative antibiotics entirely. The results are reported in Nature Medicine.

None of the patients had complications that you might normally see from donor cells and the results were as good as youd get from a donor transplant or better, said Dr Donald Kohn, a member of theEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLAand a senior author of the paper.

Whats more, four new patients have also been treated since the initial research was conducted. None experienced any adverse reactions and all remain infection-free. Now, the team plans to conduct a bigger clinical trial to further test the safety and efficacy of their new treatment, with the hopes that it may one day become available to the masses.

Read more:
New Gene Therapy Successfully Sends Six Patients With Rare Blood Disorder Into Remission - IFLScience