Author Archives: admin


Using RNA as a Delivery Vehicle Is the Magic Bullet to Cure Gene Mutation – Science Times

(Photo : cdn.the-scientist.com) One way to correct a cell that has undergone a mutation is by using RNA to transport proteins to cure ailing mitochondrion. This gene treatment has the promise to cure the most deadly diseases that are caused by mutations that harm it. If this cure is perfected then it will benefit everyone.

Mitochondria is the powerhouse of cells that fuels its functions, but sometimes there is a failure in this part of the cell which has deathly results. These specialists at the UCLA stem cell center and several departments have committed a study to unravel the mechanisms why it happens to the host cell. Clues to the working of the how and why of the mitochondrial disease will shed light on possible cures for it.

One of the causes of metabolic defects, aging, and especially neuromuscular diseases that are caused by mutations in the chromosomes and human mitochondria malfunctions. When this happens to the cell, it will be a slow march to death for the sufferer. Despite most advancements in medical technology, there is no cure to repair cellular deficiency. Finding a cure for it is committing experts like Dr. Michael Teitell, who is working along with others to find out ways to prevent it.

The tally of those afflicted with mitochondrial disease in the US is 1,000 to 4,000 alone per year. Other data indicates it will go full-blown by ten years old, these grim statistics are from the Mito Action Non-profit organization. They stress the need to commit more resources to seek more definitive cures for mitochondrial disease and other deadly diseases.

Stressing the discovery of using RNA as a possible corrector of bad genes, should give hope to a cure for this malady. Despite the use of RNA as a magic bullet, there is a need to complete the process to make the remedy viable. Human testing is not an alternative yet, with mitochondrial disease so other options are on the table. One is using test animals and later if proven successful, will be approve testing on human subjects.

The basis for the procedure is using a protein that is very essential for cellular processes. Teitel and Carla Koehler engineered the process, which will send more RNA molecules in the failing mitochondrion. As the RNA normalizes the mitochondrion, cellular processes are reawakened to cure the host cells. Properties of the RNA are made to repair the mitochondria, which will begin duplication of the right proteins in it. A drawback to knowing this is, more studies are needed to precisely target the cellular machinery.

For now, the study will derive a kind of gene therapy for restoring mitochondria to normal, lessening the chances of mutations to bog it down. Another benefit is more treatment to correct these cells based problems. As a first step, the insights gained from the study will make a big contribution to current knowledge.

Targeted RNA as the delivery system to send the regenerative proteins to fix, badly functioning mitochondrion has a good chance of treating similar diseases. Another specialist (Geng Wang) reaffirmed the process, with a similar way to deliver RNA molecules. When inserted inside the hosts' nucleus to unpack its cargo to do its work. These similar methods address what failures happen when genes mutate and multiply the wrong cell proteins.

Further refinement of the RNA delivery vehicle will give a chance for sufferers to be cured. Corrections to a mutation in human mitochondrion will allow fewer problems connected to it. If there is a magic bullet, then it might just pan out.

Related Article: Using RNA Import to Repair Mutations in Human Mitochondria

Read more from the original source:
Using RNA as a Delivery Vehicle Is the Magic Bullet to Cure Gene Mutation - Science Times

Scientists Assemble Frog Stem Cells Into First ‘Living Machines’ – Smithsonian.com

In Michael Levins laboratory at Tufts University, cells can expect to find themselves in unusual company.

Here, the precursors of frog skin sidle up to cells that, in another life, might have helped an amphibians heart beat. Theyre perfect strangers: biological entities that, up until this point, had no business being together. And yet, Levin and his colleagues have found that skin cells and heart cells can be coaxed into coalescing. Placed side by side, they will self-organize into intricate, three-dimensional mosaics of frog cells that arent actually frogs.

Designed by a computer algorithm and surgically shaped by human hands, these skin-heart hybrids, each roughly the size of a grain of sand, dont resemble anything found in nature. But the tasks they accomplish are eerily familiar: Without any external input, they can zoom around Petri dishes, push microscopic objects to and fro, and even stitch themselves back together after being cut.

Levin calls these clusters of cells a new form of lifeone thats not quite an organism and not quite a machine, but perhaps somewhere in between. Named xenobots in honor of the Xenopus laevis African clawed frogs from which their cells derive, they have enormous potential to reveal the rules that govern how the building blocks of life assemble.

With a lot of additional tinkering, xenobot technology could also someday be harnessed to deliver drugs, collect environmental contaminants, and more, Levin and his colleagues write today in Proceedings of National Academy of Sciences. Unlike traditional robots, they argue, the living, self-healing xenobots of the future could theoretically accomplish these feats without polluting the planetand repair themselves to boot.

As plastics and other difficult-to-degrade polymers continue to accumulate in the environment, the incredibly innovative approach offered by the xenobots could be really important for sustainability, says Tara Deans, a biomedical engineer and synthetic biologist at the University of Utah who wasnt involved in the study.

But xenobots also raise a bevy of ethical questions. If things go awry, humans may need protection against these and other forms of artificial lifeor, perhaps, vice versa. When youre creating life, you dont have a good sense of what direction its going to take, says Nita Farahany, who studies the ethical ramifications of new technologies at Duke University and was not involved in the study. Any time we try to harness life [we should] recognize its potential to go really poorly.

In the past several decades, humankind has made staggering advances in robotics. Machines can now master difficult board games, and navigate tough terrain; they can steer themselves as autonomous vehicles, and search for survivors in the wake of disaster. But many of the basic functions that living things accomplish still flummox devices built by human hands. Even in their most creative configurations, metals and plastics simply cant live up to cells.

Biological systems are kind of the envy of all robotics, Levin says. Theyre adaptable, theyre flexible, they self-repair. We dont have robots that can do that. So Levin and his colleagues decided to try and build one that could.

Teaming up with roboticists Sam Kriegman and Josh Bongard at the University of Vermont, Levin and Douglas Blackiston, also at Tufts, asked a computer algorithm to design a series of living machines, using only a few hundred or thousand frog skin or frog heart cells as raw ingredients. The algorithm was instructed to optimize each xenobot for a different basic function, like moving back and forth or manipulating objects.

Its pretty much a hands-off method, Bongard says. We tell the algorithm what we want xenobot to do, but we dont tell it how the xenobot should do it. So the algorithm can explore this infinite space of form and function.

After cycling through multiple configurations, the algorithm would spit out the digital blueprints it believed were best suited to the task at hand. The researchers would then attempt to recreate these designs in Levins lab.

Even after being scraped out of frog embryos and shaken apart in a fluid-filled dish, skin and heart cells will eagerly glom together, aggregating into amorphous clumps thousands of units thick. The cells like to be with each other, Levin says. Next, Blackiston, the teams resident microsurgeon, would take the nascent bots and sculpt them into shapes specified by the computer.

All the xenobots ingredients were bona fide frog. But there was nothing amphibian about the final forms they took. A few were crafted into two-lobed blobs, while others took the forms of hollow, prism-like structures. The bots lacked limbs, skeletons and nervous systems. But they handily tackled the tasks theyd been designed to do.

Tailored to maximize movement, some scooted along the bottom of a Petri dish like microscopic inchworms, powered solely by the contractions of the heart cells studding their interiors. Others, built to transport bits of particulate matter, herded their cargo like sheepdogs, while more still carried it in vacant pouches carved into their custom-made bodies. In some cases, xenobots even interacted, colliding and orbiting each other before eventually coming back apart.

The teams approach, which relies on a mashup of computational and biological techniques, resembles other technologies that have rejiggered the known building blocks of life, says Deans. But rather than tweaking a known template like DNA, the teams techniquewhich simply rearranges existing cells into new configurationsfeels more organic, she says. This process has a resounding respect for the biology thats involved.

At just a millimeter or so across, the xenobots arent capable of much yet. Devoid of mouths or digestive systems, theyre fueled exclusively by the bits of embryonic yolk they came with, and die after about a week when that juice runs dry, Bongard says. But he and his colleagues think the bots could someday be used to deliver drugs into human bodies, or scrape plaque out of arteries. Released into the environment, they could quantify toxins, or sweep microplastics out of oceans.

The team is already experimenting with different sorts of cells, tasked with new types of chores. In a haunting echo of their particle-herding behavior, their xenobots also seem capable of making new versions of themselves, corralling single cells together until they start to coalesce, Levin says. Theyre also resilient: When sliced open, the bots simply repair their wounds and carry on.

While a lot of good could come out of this technology, its also important to consider potential downsides, says Susan Anderson, a philosopher and machine ethics expert at the University of Connecticut who wasnt involved in the study. In the wrong hands, the power of xenobots could easily be exploited as a bioweapon, ferrying poisons instead of medicines into people. Theres also cultural acceptance to consider: The mere idea of reassembling existing life forms could be troubling to some, evoking thoughts of Frankensteins monster or the experimental vivisection in H.G. Wells 1896 science fiction novel The Island of Doctor Moreau.

Humans have certainly tinkered with the recipes of life before. In recent years, bioengineers have reprogrammed cells to churn out life-saving drugs, stripped genomes down to their most minimal states, and cobbled together amalgamations of cells from one animal that resemble the final form of another. But bespoke forms of multicellular life, synthesized from scratch, are still few and far betweenin part because much of biological development remains a black box: Researchers still arent sure, for instance, how tissues, organs and appendages manifest out of single cells.

Studying xenobots could certainly help crack that developmental code. But to get there, scientists will first have to experiment with techniques and technologies they dont fully understand, from the machine learning algorithm that designs these life forms to the cells that spontaneously comprise them, Anderson says.

What the team has presented so far is an early advance, and there are no guarantees about what will emerge from the research, Farahany says. But for this kind of work, its going to be integral to think about what the appropriate ethical frameworks and safeguards would be, she adds. When you have something living, you need fail-safe measures, and you need to know that you can pull the plug.

Bongard and his colleagues acknowledge the gravity of their work. The ethics around this are non-trivial, he says. Though the team hasnt yet brought bioethicists into their research, its something well need to do in the discussion of what to do with this technology, he adds. First, though, we just wanted to demonstrate that this was possible.

View post:
Scientists Assemble Frog Stem Cells Into First 'Living Machines' - Smithsonian.com

PRDM15 loss of function links NOTCH and WNT/PCP signaling to patterning defects in holoprosencephaly – Science Advances

INTRODUCTION

Congenital defects are a leading cause of morbidity worldwide, accounting for the deaths of 330,000 newborns every year. Brain malformations, including microcephaly and holoprosencephaly (HPE), are the most common congenital anomalies and place a heavy burden on the affected individuals and the health care system (13). HPE is a structural anomaly of the developing forebrain affecting 1:250 embryos and 1:16,000 live-born infants. Clinically, HPE encompasses a continuum of brain malformations and is accompanied with a spectrum of craniofacial defects in 80% of the cases; microcephaly and eye defects are among the most common features in affected individuals (4). In the majority of cases, the underlying cause remains uncertain due to the high complexity and the multigenic origin of these anomalies (5, 6). Lately, it has become clear that HPE is caused by a malfunction in key signaling pathways in the early embryo, leading to developmental defects in the organizing centers and midline structures (7). The defects involve a sequence of developmental steps that begin with Nodal signaling to establish the midline progenitors in the developing primitive streak (PS). It then continues with the proper positioning of the forming prechordal plate beneath the neuroectoderm and activation of midline Hedgehog signals to maintain the anterior identity of the forebrain. However, the restriction of HPE genetic determinants to a handful of NODAL and Sonic hedgehog (SHH) pathway regulators stems from our limited understanding of the molecular events governing specification of early and late midline structures. Expansion of this genetic repertoire has become a necessity to develop therapeutic options and improve molecular diagnosis of HPE.

Genes encoding transcription factors (TFs) and epigenetic regulators are relevant etiological candidates given their central role in integrating signaling cascades and orchestrating multiple biological processes. Deficiency in their function can disturb entire transcriptional programs, involving numerous genes and molecular pathways, leading to a complex pathological outcome. Consistent with this hypothesis, we have recently identified a loss-of-function (LOF) mutation in the transcriptional regulator PRDM15 in patients with a syndromic form of HPE. Here, we combine mouse genetics and epigenomic approaches to uncover the role of this TF in congenital brain malformations. Our findings establish PRDM15 as a key regulator of NOTCH and WNT/PCP pathways in the developing embryo, implicating them in regulation of anterior/posterior (A/P) patterning and forebrain development. In addition, we uncover new genetic variants in key components of these signaling pathways in patients with HPE. Collectively, our findings refine the molecular mechanisms governing forebrain development and set the stage for the identification of new HPE candidate genes.

Homozygosity mapping and whole-exome sequencing on patients with steroid resistant nephrotic syndrome (SRNS) identified three recessive mutations in PRDM15 (NM_001040424.2). These mutations are located in the sequences coding for the PR domain (c.461T>A; p.Met154Lys-M154K and c.568G>A; p.Glu190Lys-E190K) and the 15th zinc finger (c.2531G>A; p.Cys844Tyr-C844Y), respectively (Fig. 1A). Of particular interest, in four consanguineous families that have the variant encoding PRDM15 C844Y, the affected probands exhibited a syndromic form of SRNS consistent with the Galloway-Mowat syndrome (8). Besides renal defects, the patients displayed facial (narrow forehead, microcephaly, abnormal cerebral gyration, and ophthalmic abnormalities) and extracranial defects (heart malformations and postaxial polydactyly) (9).

(A) Schematic representation of the PRDM15 mutation positions and the affected domains. (B) Alkaline phosphatase (AP) staining of ESCs; the respective genotypes are indicated in the lower panel. Data are average of four independent cell cultures (n = 4) SD. Statistical tests were applied on differences observed in the percentage of completely undifferentiated colonies. Students t test (two sided) was used to determine significance. (C) Heat map of differentially expressed genes in ESCs upon the indicated genetic manipulations. (D) mRNA levels of Rspo1 in ESCs; the respective genotypes are indicated by color code. Expression levels were normalized to Ubiquitin (Ubb), and Prdm15fl/fl (empty vector) was used as reference. Data shown are from three independent experiments (n = 3). (E) Enrichment of PRDM15 binding on promoter regions of the target gene (Rspo1) in ESCsrespective genotypes are indicated by color codeas measured by ChIP-qPCR. Depicted is the average enrichment [data from three independent cell cultures (n = 3)] over percent of input. In (B) to (E), the endogenous mouse Prdm15 has been deleted by the addition of OHT (50 nM) after ectopic expression of WT or mutant human PRDM15 (hPR15). In (D) and (E), center values, mean; error bars, SD. Students t test (two sided) was used to determine significance.

We have recently demonstrated that PRDM15 regulates the transcription of Rpso1 and Spry1, two key components of the MAPK (mitogen-activated protein kinase)/ERK (extracellular signalregulated kinase) and WNT pathways, to maintain nave pluripotency of mouse embryonic stem cells (mESCs) (10). To evaluate the effects of these mutations on PRDM15 function, we ectopically expressed the three identified human variants in Prdm15-deficient embryonic stem cells (ESCs) (Prdm15/). Only hPR15-C844Y, which is associated with brain defects in humans, failed to restore ESC self-renewal (Fig. 1B), and most importantly, the global changes in gene expression, induced by loss of endogenous PRDM15 (Fig. 1C and table S1 (A to E)]. These data strongly suggest that hPR15-C844Y is a LOF mutation. While hPR15-M154K and hPR15-E190K rescued Rspo1 expression at levels comparable to the wild-type (WT) human PRDM15 (hPR15-WT), hPR15-C844Y failed to restore its transcript levels [quantitative polymerase chain reaction (qPCR)] and to activate its transcription in a luciferase reporter assay (Fig. 1D and fig. S1A).

To gain further insights into the impact of these mutations on PRDM15 function, we tested the stability of the encoded proteins and their cellular localization. Immunofluorescence staining, in a Prdm15/ background, showed that none of the mutations affected the nuclear localization of PRDM15 (fig. S1B). On the other hand, all three mutants encoded less stable proteins (fig. S1C). We have previously shown that the zinc finger domains are required for DNA binding and transcriptional activity of PRDM15 (10). Thus, we sought to test the ability of the various mutants to bind to chromatin. Consistent with an LOF of the zinc finger mutant, chromatin immunoprecipitation (ChIP)qPCR analysis revealed reduced enrichment of hPR15-C844Y at the promoter region of Rspo1 (Fig. 1E), a result compatible with its inability to promote its transcription (Fig. 1D and fig. S1A).

To gain molecular insights on the effects of PRDM15 LOF during mammalian development, we intercrossed Prdm15lacZ/+ heterozygous mice, which are healthy and fertile. A description of all the Prdm15 alleles and deleter strains used in this study is summarized in fig. S2A. Consistent with a fundamental role of PRDM15 during embryonic development, we obtained no homozygous mutant [Prdm15lazZ/lacZ knockout (KO)] pups (Fig. 2A), while of the hundreds Prdm15lacZ/+ embryos that were dissected at various stages of development, none showed any defects. Timed matings revealed the embryonic lethality of Prdm15lazZ/lacZ (KO) embryos occurs between embryonic days 12.5 (E12.5) and E14.5 (Fig. 2A). Notably, at E12.5, KO embryos were smaller and showed a spectrum of brain malformations affecting predominantly the anteriormost structures of the head, including the eyes (Fig. 2B), consistent with the brain and facial features observed in patients with the C844Y mutation. Coronal sections of the brain at this stage confirmed that the lateral and medial ganglionic eminences were underdeveloped. Furthermore, we noted an abnormal separation of the cerebral hemispheres, reminiscent of HPE (Fig. 2C). Classic HPE encompasses a continuum of brain anomalies caused by neural tube patterning defects that affect the anteriormost structures and is often accompanied by craniofacial defects involving the eyes (4, 11, 12).

(A) Genetic distribution of embryos from Prdm15+/LacZ intercrosses, indicating lethality between E12.5 and E14.5. (B) Phenotypic continuum of brain defects in E12.5 Prdm15lacZ/lacZ KO embryos. (C) Hematoxylin and eosin (H&E) staining of serial coronal sections of E12.5 brains from Prdm15+/+ WT (upper panel) and Prdm15lacZ/lacZ KO (lower panel) embryos. The mutants lack the complex organization of the anterior forebrain, including the lateral (LGE) and medial ganglionic eminences (MGE), the epithalamic and dorsal thalamic neuropeithelium (NE), and eyes. (D) Nestin-Cremeditated deletion of Prdm15 in neuronal precursors does not affect brain development. Representative images are shown in (B) to (D). LGE/MGE, lateral and medial ganglionic eminences; NE, neuropeithelium; NCX, neocortex; E, eye; LV, lateral ventricle; V, ventricle; TOT, total. (B and D) Photo credit: Messerschmidt and Mzoughi.

These results prompted us to delete Prdm15 specifically in the developing brain by crossing Prdm15fl/fl mice to the Nestin-Cre deleter strain. This Cre recombinase is active at ~E11 in neural stem cells/progenitors and would reveal whether PRDM15 is essential for the process of neurogenesis. The resulting Prdm15/::Nestin-CRE embryos did not show any apparent defects at E12.5 (Fig. 2D), were born at the expected Mendelian ratios, and developed into healthy adults (fig. S2B). This suggests that PRDM15 is required at earlier time points of forebrain specification.

Defects in Prdm15 KO embryos are apparent before the onset of neurulation, as mutants were markedly smaller and had an abnormal morphogenesis by E7.5 (fig. S3A). Between E6.5 and E7.5, two signaling centers act sequentially to pattern the forebrain in the mouse embryo (Fig. 3A) [reviewed in (1315)]. The first resides within the extraembryonic lineages and is called the anterior visceral endoderm (AVE). The AVE imparts anterior identity to the underlying epiblast, thereby restricting the site of gastrulationthe PSto the posterior epiblast. During gastrulation, a second specialized population of cells, known as the AME, emerges from the anterior PS (APS). These cells migrate anteriorly, giving rise to the anterior definitive endoderm and prechordal plate mesoderm. Their role is to produce secondary inductive cues that reinforce anterior identity in the overlying neural plate (Fig. 3A).

(A) Schematic of the signaling centers governing A/P patterning in the mouse embryo. (B) At E6.5, Foxa2 is expressed in the AVE (red line) and APS (red asterisk). At E7.5, Lhx1 transcripts label the visceral endoderm (VE) overlying the epiblast including the AVE as well nascent mesoderm and midline axial mesendoderm. In Prdm15 mutants (mut), Foxa2 expression is confined to the distal VE, with little enrichment in the prospective AVE. Lhx1 is detected in the VE and mesoderm of the middle Prdm15 mutant, but only in the VE of the one on the right. (C) Expression of T, Lefty2, Foxa2, Chordin, and Shh in WT and Prdm15lacZ/lacZ embryos at E7.5. In Prdm15 mutants, T is expressed normally in the PS; Lefty2 transcripts are down-regulated in nascent mesoderm; Foxa2 and Chordin expression remains high distally in the region of the APS (angled black-dashed line) but does not extend anteriorly in the midline axial mesendoderm (am); and Shh expression is similarly weak in the anterior midline (asterisk). n, node. (D) Expression of Six3/Shh or Otx2/Shh in WT (upper) and Prdm15lacZ/lacZ KO (lower) embryos at E8.5. Six3 and Otx2 expression highlights the reduction in anterior forebrain (fb) development (angled black dashed lines) in Prdm15lacZ/lacZ KO mutants. no, notochord; mb, midbrain; DVE, Distal Visceral Endoderm. Representative images are shown in (B) to (D). (C and D) Photo credit: Dun and Ong.

We reasoned that loss of PRDM15 might impair forebrain specification during the earliest events of anterior patterning and therefore examined the expression of a panel of marker genes diagnostic for defects in either the AVE or AME in Prdm15 KO embryos. Foxa2 is a marker of both, AVE and APS, in early PS stage embryos at E6.5. In Prdm15 KO embryos, in situ labeling shows expression in the distal visceral endoderm overlying the epiblast in a pattern typically observed 1 day earlier in WT embryos (Fig. 3B) (16). We conclude that Prdm15 KO embryos are developmentally delayed even before gastrulation. At E7.5, Lhx1 is expressed in the nascent mesoderm and anterior midline mesendoderm. In the smaller, delayed Prdm15 KO littermate embryos, Lhx1 is expressed normally throughout the visceral endoderm, including the AVE, as well as in the nascent mesoderm (Fig. 3B) (17, 18). Both FOXA2 and LHX1 are required for the formation and function of the AVE, and their activation provides evidence that the initial specification of the primary anterior-posterior axis by the AVE is normal in Prdm15 KO embryos.

We next examined the expression of PS (T and Lefty2) and AME (Foxa2, Chordin, and Shh) marker genes. By E7.5, Prdm15 KO embryos are easily recognizable due to a characteristic ruffling in the extraembryonic visceral endoderm, with a fully extended PS that expresses both T and Lefty2 (Fig. 3C). At this stage, Foxa2 is expressed in the node, which marks the anterior end of the PS, and the AME that extends rostrally in WT embryos. In contrast, in Prdm15 KO embryos, Foxa2 transcripts are present distally but do not extend anteriorly (Fig. 3C). A similar pattern is observed with Chordin, which also labels the node and AME in WT embryos but is confined to the APS in Prdm15 KOs (Fig. 3C). Shh expression is also diagnostic for the node and AME, but in KO embryos, only a few Shh-positive cells are observed along the anterior midline (Fig. 3C). Together, these results show that loss of PRDM15 specifically affects the production of the anterior AME. Consequently, the crucial refining signals produced by these cells that orchestrate the continued patterning and morphogenesis of the anterior neuroectoderm are lost, resulting in anterior truncations that are evident by diminished forebrain expression of Six3 and Otx2 in Prdm15 KO mutant embryos at E8.5 (Fig. 3D). To further corroborate these findings, we deleted Prdm15 specifically in the epiblast, using the Sox2-Cre transgene (fig. S3B) (19), while maintaining WT extraembryonic tissues. Consistent with an essential role for PRDM15 in the PS-derived AME and not AVE specification, Prdm15/::Sox2-CRE embryos died in utero starting at E12.5 (fig. S3C) and exhibited a spectrum of brain defects similar to those observed in Prdm15 KO embryos (fig. S3D).

To examine the impact of PRDM15 depletion on early embryonic processes, namely, A/P patterning, we sequenced the transcriptome of WT versus Prdm15 KO E6.5 embryos. We reasoned this could be the most critical stage for AME specification as AME cells emerge less than 24 hours later. Unbiased clustering of global gene expression separated WT versus Prdm15 KO embryos into distinct groups, indicating marked transcriptional differences (Fig. 4A and table S1F). Gene ontology (GO) analysis of the significantly down-regulated genes identified Pattern specification process, Head development, and Neural tube development among the enriched terms. Among these genes, several are important regulators of forebrain development and A/P patterning (Fig. 4B and fig. S4A, and table S1, G to H). We noted a striking reduction in the expression of key components of three signaling pathways: WNT, NOTCH, and SHH (Fig. 4C, fig. S4B, and table S1, I and J).

(A) Unbiased clustering heat map of the entire transcriptome in WT (n = 8) versus Prdm15lacz/lacz KO (n = 10) E6.5 embryos, analyzed by RNA sequencing. Heat maps of differentially expressed genes from the indicated GO categories (B) and KEGG pathway (C) identified as top hits in the RNA sequencing. Light and dark blue rectangles on the right side indicate genes whose promoter region is directly bound by PRDM15 in ESCs only or both in ESCs and E6.5 embryos, respectively. (D) Snapshots of representative PRDM15 ChIP tracks (UCSC genome browser). Examples of conserved target genes (binding sites) between E6.5 embryos (blue) and ESCs (orange) are shown.

We have recently shown that PRDM15 recognizes a defined DNA motif present at promoters or enhancers of target genes (10). To define the set of direct PRDM15 transcriptional targets, we performed ChIP sequencing (ChIP-seq) on mESCs and WT E6.5 embryos (table S1, K and L). Despite the limited biological material available from the pre-gastrula embryos, we identified 58 high-confidence promoter-bound targets, the majority of which (~84%) were also bound by PRDM15 in ESCs (Fig. 4D, fig. S4C, and table S1M). In addition, identification of the same PRDM15 consensus binding motif in both systems implies a conservation of its targets. We therefore chose to consider PRDM15-bound promoters identified in ESCs as relevant for our follow-up analyses. Among these, a handful of PRDM15 targets, including Rbpj, Notch3, Maml3 (NOTCH), Vangl2, Wnt5b, Gpc6, Nphp4 (noncanonical WNT), and Gas1 (SHH), were of particular interest as they are significantly down-regulated in the mutant embryos (fig. S4D). Collectively, these data indicate that lack of PRDM15 leads to transcriptional down-regulation of key regulators of developmentally important signaling pathways (NOTCH, noncanonical WNT, and SHH).

These results prompted us to perform a targeted analysis of the down-regulated PRDM15 target genes in a large cohort of patients with HPE (132 trios and 188 singletons). We found heterozygous variants in 99 genes, ~17% of them were likely to be damaging (table S2A). To gain insights on potential functional interactions between these genes, we generated functional protein association networks using STRING. Although the majority of the proteins did not seem to be functionally related, two main networks representing NOTCH and WNT/PCP signaling formed (Fig. 5A and table S2B), supporting their potential involvement in HPE pathobiology.

(A) Functional groups identified by protein association network analysis of PRDM15 target genes mutated in patients with HPE using STRING. (B) mRNA levels of the indicated genes in ESCs; the respective genotypes are indicated in the lower panel. Expression levels were normalized to Ubiquitin (Ubb), and Prdm15fl/fl (empty vector) was used as reference. Rspo1 expression levels were used as positive control in Fig. 1D. Data shown are from three independent experiments (n = 3). (C) Enrichment of PRDM15 binding on promoter regions of the indicated target genes in ESCsrespective genotypes are indicated in the lower panelas measured by ChIP-qPCR. ChIP on the Rspo1 promoter was used as a positive control for PRDM15 binding. Depicted is the average enrichment [data from three independent cell cultures (n = 3)] over percent of input. In (B) and (C), the endogenous mouse Prdm15 has been deleted by the addition of OHT (50 nM) after ectopic expression of WT or mutant human PRDM15. In (B) and (C), center values, mean; error bars, SD. Students t test (two sided) was used to determine significance.

To assess the ability of the PRDM15 mutants to regulate the expression of critical components of both pathways, we took two approaches. First, we performed rescue experiments in Prdm15/ ESCs by reintroducing WT or mutant PRDM15 expression constructs. While hPR15-M154K and hPR15-E190K restored the expression of target genes at levels comparable to the WT human PRDM15 (hPR15-WT), none were significantly rescued by hPR15-C844Y (Fig. 5B and fig. S5A). In addition, ChIP-qPCR analysis confirmed a reduced enrichment of hPR15-C844Y at the promoter regions of these target genes (Fig. 5C and fig. S5B), which is consistent with the failure to promote their transcription (Fig. 5B). Second, to confirm that the C844Y mutation in humans is indeed an LOF mutation, we introduced the corresponding homozygous mutation (C842Y) in mESCs using CRISPR-Cas9 technology (fig. S5, C to E). Although the C842Y knock-in allele did not affect Prdm15 transcript levels, the resulting protein was unstable and less abundant (fig. S6, A and B). qPCR confirmed that Prdm15C842Y cells express PRDM15 target genes (i.e., Rbpj, Notch3, Vangl2, etc.) at lower levels compared with WT (fig. S6C) and that endogenous PRDM15C842Y protein is unable to bind (ChIP-qPCR) to its target promoters (fig. S6D).

Our findings call for a future functional characterization of the NOTCH and PCP gene variants and should motivate targeted genetic mapping for new HPE candidates in regulators of both pathways.

We have identified new mutations in the PRDM15 gene in patients with SNRS. Although the mutations affecting the PR domain of the protein (M154K and E190K) are associated with isolated SRNS cases only, the zinc finger mutation (C844Y) causes a syndromic form of HPE. In our in vitro ESC system, these PR domain mutations reduced the stability of the encoded protein but rescued considerably the phenotypic and molecular changes induced by loss of the endogenous protein. This is consistent with the fact that these mutations in humans cause isolated SRNS only and could imply a context-dependent requirement for the PR domain. Alternatively, the differential impact of the PR versus ZNF mutations on protein stability may support a threshold model, where different levels of PRDM15 expression are required for the development of specific organ systems. On the other hand, the ZNF mutation (C844Y) had marked effects on PRDM15 function in both settings, which we attribute here to impaired binding of the mutant protein to regulatory regions of its transcriptional targets.

Similar to the LOF mutation in humans, genetic deletion of Prdm15 in mice leads to a broad spectrum of brain defects, affecting predominantly the anteriormost structures including the eyes. Such phenotypic continua are commonly assigned to allelism, polygenic origin, and the action of modifier genes. Yet, here we report that perturbation of a single transcriptional regulator can indeed affect an entire transcriptional network, relevant to both normal development and pathological manifestations.

Our findings show that PRDM15 promotes transcription of several regulators of the NOTCH and WNT/PCP pathways to orchestrate formation of midline structures. Perturbation of these transcriptional programs, upon PRDM15 depletion, disrupts forebrain development due to impaired AME specification and lack of SHH signaling, consistent with the sequence of developmental defects associated with HPE pathobiology (7).

Of note are the prominent phenotypic similarities between Prdm15 null embryos and genetic (or microsurgical) modulation of the Nodal signaling pathway in mouse. That is, Nodal hypomorphic alleles, assorted combinations of mutations in Smad2 and Smad3, as well as the mutations in the downstream effectors Foxh1 and Foxa2, all result in embryos with defective AME production and compromised anterior forebrain development (2023).

On the other hand, the characteristic ruffling of the visceral endoderm observed in Prdm15 KO embryos at E7.5 has been observed in other mutants where extraembryonic mesoderm (ExMeso) production during gastrulation is impaired, such as in loss of Smad1 (24), combined loss of Smad2 and Smad3 in the epiblast (21), or Otx2 (chimeric analysis) (25). It is, however, important to emphasize that epiblast-specific deletion of Prdm15 (Prdm15/::Sox2-CRE embryos) equally results in smaller embryos with defects in the formation of anterior structures (fig. S3). It is additionally possible that the developmental delay we observed in Prdm15 KO embryos disproportionally affects some parts of the gastrulating embryo, rather than an overall delay in epiblast proliferation before gastrulation.

On the basis of our molecular analysis, we conclude that like modulation of the Nodal signaling pathway, loss of Prdm15 specifically affects AME specification. Given the requirement of this critical signaling center in providing reinforcing anterior patterning signals, we favor a model in which its lack or dysfunction underlies the Prdm15 phenotype, rather than a paucity of mes(endo)derm produced during gastrulation by a mutant embryo experiencing developmental delay.

The restriction of HPE genetic determinants to a handful of NODAL and SHH pathway regulators stems from our limited understanding of the molecular events governing specification of early and late midline structures. Recent studies have implicated components of the WNT/PCP pathway in regulating polarity of the node along the A/P axis and linked their deregulation to structural anomalies of this critical organizing center (2629). Thus, it is not unexpected that perturbation of the WNT/PCP pathway affects the specification of APS derivatives, namely, the AME and node (29). In addition, while the links between mutations in PCP signaling and neural tube defects are well established (6, 3032), their involvement in HPE remains uncharted. NOTCH signaling, on the other hand, has been implicated in HPE only recently (33). Besides its established neurogenic role in the developing mouse telencephalon, growing evidence supports the involvement of key NOTCH regulators (for example Dll1 and Rbpj) in node morphogenesis and midline truncations (34, 35).

Our findings prompted us to perform a targeted search for mutations in a large cohort of patients with HPE. Our analysis of exome sequencing data from 132 trios and 188 singletons revealed multiple rare heterozygous variants in PRDM15 transcriptional targets involved in forebrain development. In silico protein association network analysis of these variants identified two major functional groups regulating the NOTCH and WNT/PCP pathways. We expect that our findings will encourage validation of the reported variants/mutations as well as further mining for additional HPE candidates in both pathways.

PRDM15 KO-first mice that harbor the Prdm15lacZ allele were obtained from the European Conditional Mouse Mutagenesis Program. Hemizygous (Prdm15lacZ/+) animal intercrossings were performed to obtain homozygous (Prdm15lacZ/lacZ) embryos. Further details on these animals and the conditional Prdm15fl/fl strain can be found in (10). To generate epiblast-specific Prdm15/ embryos, Prdm15fl/fl mice were first crossed to heterozygous Sox2-CRE transgenic animals [B6.Cg-Edil3Tg(Sox2-cre)1Amc/J; JAX Laboratory] (36). The resulting males (Prdm15/+::Sox2-CRE) were then crossed again to Prdm15fl/fl females. In this generation, a quarter of the progeny is expected to be Prdm15/::Sox2-CRE. The Sox2-CRE transgene was always propagated through male animals. A similar breeding strategy, using Nestin-CRE [B6.Cg-Tg(Nes-cre)1Kln/J; JAX Laboratory] transgenics, was followed to generate Prdm15/:: Nestin-CRE mice. All mice-related procedures were approved by the local Institutional Animal Care and Use Committee (IACUC) and performed in compliance with the respective guidelines (IACUC nos. 151042 and 18/10EGDM/90).

E12.5 embryos were fixed in 4% PFA (paraformaldehyde) for 48 hours before being mounted in OCT (Optimal Cutting Temperature) embedding compounds. Then, serial coronal sections of the brains (anterior-posterior) were made using a cryostat and immediately thaw mounted on poly-l-lysinecoated histological slides for hematoxylin and eosin staining.

Prdm15fl/fl; ROSA26-CreERT2 ESCs have been described in (10). For all experiments, ESCs were cultured in the conventional [serum + Lif (Leukemia Inhibitory Factor) (SL)] medium unless otherwise stated. OHT (4-Hydroxytamoxifen) (50 nM; SIGMA-H7904) was added to the culture medium overnight (O/N) to generate Prdm15/ cells.

Embryos were isolated between E6.5 and 8.5, genotyped, then processed for whole-mount in situ hybridization as described in (37) with the following probes: Foxa2, Lhx1, T, Lefty2, Chordin, Shh, Otx2, and Six3.

Full-length human PRDM15 cDNA (NM_001040424.2) was subcloned into the PiggyBac vector (DNA2.0, PJ549). Clones encoding the various PRDM15 mutations were generated using the QuickChange II XL Site-directed Mutagenesis Kit (Agilent Technologies). The sequence of primers used can be found in table S3.

To introduce the hC844Y/mC842Y point mutation, mESCs were transfected with PX458 [pSpCas9 (BB)-2A-GFP] vector expressing a guide RNA targeting the site to be mutated, along with a single-stranded oligonucleotide containing the target point mutation, to serve as a DNA repair template. Additional eight silent mutations have been introduced to avoid editing of the template by the CAS9 protein. Single clones were sorted and expanded in 2i medium. Genomic DNA was used for screening by digestion with XMN I restriction enzyme. DNA from potential mutants was cloned into the pCR 4-TOPO TA vector following the manufacturers instructions, and 5 to 10 colonies were sequenced. Details of the strategy and the sequence of the oligonucleotides used are described in fig. S5 and table S3.

To assess protein stability, Prdm15/ ESCs expressing either wild or mutant PRDM15 were treated with cycloheximide (CHX; 150 g/ml) (Sigma, no. C-7698), and then collected at different time points (2, 4, and 6 hours) for protein extraction and analysis by Western blotting. Samples collected immediately before treatment with CHX (t = 0) served as reference. Antibodies and dilutions used were PRDM15 (in house, 1:3500) and TUBA (Alpha-TUBULIN) (Sigma T5168, 1:10,000).

To assess ESC self-renewal/differentiation, cells were stained with alkaline phosphatase staining solution (AP detection kit, Millipore, SCR 004). In brief, 500 cells per well (12-well plates) were seeded in triplicates and cultured for 5 days with daily change of medium before being stained as per the suppliers recommendations.

ESCs were seeded on gelatin-coated eight-well glass slides (Millipore, PEZGS0816), at 3 103 per well, and cultured in 2i medium. Three days later, cells were fixed in 4% PFA at room temperature, permeabilized with 0.5% Triton X-100, and then blocked using 2% bovine serum albumin (BSA) for 1 hour at room temperature before O/N staining with anti- PRDM15 (in house, 1:100) at 4C. The next day, slides were washed with phosphate-buffered saline (PBS) (three times) and stained with Alexa Fluorconjugated secondary rabbit antibody at 37C (30 min). Last, slides were washed with PBS (three times) before they were mounted with a DAPI (4,6-diamidino-2-phenylindole)containing mounting medium (VECTASHIELD, Vector Laboratory H1200).

Total RNA from cells was isolated using PureLink RNA Mini Kit (Ambion, 1283-018A) according to the manufacturers instructions. RNA was retrotranscribed into cDNA using Maxima First Strand cDNA Synthesis Kit (Thermo Scientific, K1642) and subjected to quantitative real-time PCR (qRT-PCR) on an ABI PRISM 7500 machine. qPCRs (20 l) contained 10 l of SYBR Green PCR supermix (2), 4 l of a forward and reverse primer mix (final concentration, 200 nM), and 6 l of cDNA (20 ng). Primers sequences are listed in table S4.

The detailed procedure for ChIP experiments has been described previously (38); all steps were performed at 4C and protease inhibitor was added, unless stated otherwise. In brief, 20 to 40 million ESCs were fixed in 1% formaldehyde for 10 min at room temperature before quenching with 0.125 M glycine (5 min at room temperature). Cells were then washed in PBS and harvested in lysis buffer before freezing at 20C O/N. The following day, cells were pelleted by centrifugation, resuspended in ice-cold ChIP buffer, and sonicated for six cycles (30-s ON/30-s OFF) using a BRANSON Digital Sonifier (no. S540D). Lysates were then precleared for 2 hours in Sepharose A beads (blocked in 5 mg/ml BSA) before O/N incubation with PRDM15 antibody (4C). The next day, Protein A beads were added for 4 hours before washing then de-cross-linking in 1% SDS and 0.1 M NaHCO3 (65C, O/N). Last, DNA was eluted in T-buffer (pH 8) using QIAquick PCR Purification Kit, QIAGEN. Sequences of primers used in ChIP-qPCR are listed in table S4. For the E6.5 ChIP, approximately 40 to 50 embryos per experiment were pooled together and fixed immediately after isolation.

TruSeq ChIP Sample Prep Kit (IP-202-1012) was used for DNA library preparation. Sequencing was performed in the Illumina HiSeq 2000 and NextSeq 500 at the Genome Institute Singapore. Details of the bioinformatics analysis can be found in (10). In brief, the sequenced reads were aligned to the mm9 genome assembly using bowtie version 2. Peak calling was done using MACS 2.1.1 (https://github.com/taoliu/MACS). Peaks were then annotated using the ChIPpeakAnno package in Rpromoters were defined to be 5 kb upstream and 1 kb downstream of the transcription start site. Motif discovery was done using MEME-ChIP in the MEME Suite (http://meme-suite.org).

For E6.5 embryo transcriptome analysis, RNA was extracted from 8 WT and 10 Prdm15lacZ/lacZ littermates. RNA from ESCs was collected 3 days after ethanol/OHT treatment. Library preparation was performed following the TruSeq RNA Sample preparation v2 guide (Illumina). The sequenced reads were mapped to mm9 build of the mouse genome using STAR version 2.4.2a. Differential expression analysis was performed using the DESeq2 package in R. Only genes with an average FPKM (Fragment Per Kilobase Million) >1 are considered expressed. Enriched GO terms and KEGG pathway were identified using Metascape. Genes used for GO analysis were filtered based on statistical significance (P < 0.05) and fold change (log2 fold change of 0.322) in E6.5 embryo RNA sequencing. Heatmaps of gene expressions (FPKM) were generated with in-house scripts with R.

To identify potential new candidate genes associated with HPE, we searched for genetic variants in genes/proteins acting downstream of PRDM15. Exome sequencing data from a cohort of 320 patients with HPE (132 trios and 188 singletons) were evaluated. Filter criteria are as follows: allele frequency <0.0001 in ExAC database (39) de novo (if trio available); synonymous changes were omitted; and benign changes by ACMG 2015 (40) criteria were removed. To identify protein networks and functional groups, genes with potential HPE variants were subjected to protein association network analysis using STRING database (https://string-db.org).

All experiments were repeated at least three times with similar results. Each biological repeat was done in at least two to four technical replicates/independent cell cultures, where applicable. Normal distribution was assumed for all statistical analyses. Unpaired Students t test (two sided) was applied using GraphPad Prism (version 7.0) to determine the statistical significance of the observed differences. Changes were considered statistically significant when P < 0.05.

View original post here:
PRDM15 loss of function links NOTCH and WNT/PCP signaling to patterning defects in holoprosencephaly - Science Advances

News Briefing: Britain and Ireland – The Tablet

Uighur rights activists stage a protest against China's policy in the region, outside the Chinese Embassy in London on Jan 5. Photo: David Cliff/NurPhoto/PA Images

Archbishop of Westminster Cardinal Vincent Nichols used his New Year message to condemn the shameful anti-Semitic graffiti that was daubed across shops, cafes and a synagogue in London at the end of 2019. Its appearance on 29 December in Hampstead and Belsize Park, north London, coincided with the Jewish religious festival of Hanukkah. Cardinal Nichols asked Catholics to include building up the kingdom of God among their New Year resolutions. He proposed that each of us, every person in our society, will shun all form and expressions of hatred against others. He said the anti-Semitic graffiti brings shame to us all and felt that only when we see the good in each other will every person feel welcomed and unafraid.

A parish in the Diocese of Meath, Ireland, has been forced to apologise for a Facebook post that described in vitro fertilisation as incompatible with Catholicism. On Christmas Eve the Parish of the Assumption in Tullamore posted a piece on IVF that said the process damages embryonic stem cells and thus life and is therefore completely, clearly and totally incompatible with our Catholic faith. Health Minister Simon Harris, who recently announced 2 million in funding for fertility/IVF treatment, said he could not understand how any Christian would find IVF objectionable. The post has since been removed by Tullamore parish and a statement published acknowledging that it caused great distress. For hurt caused we apologise. Matters concerning fertility are sacred and sensitive, and all children are cherished and God-given, this is the essence of the Christmas message, the statement said.

Peace groups in Britain have called for restraint in the aftermath of the US airstrike in Baghdad, Iraq, that killed Iranian General Soleimani. President Trumps justification for the killing of Suleimani demonstrates his outdated belief in the myth that the next act of violence will fix something, said Theresa Alessandro, Director of Pax Christi UK. Many are now calling for, and hoping for, restraint, she told The Tablet. Pax Christi UK would like to see clear leadership from our government, demonstrating in words and actions an awareness that killing people does not resolve conflict and a commitment to dialogue and creative, nonviolent ways forward in our relationships with other countries."

Theologian and environmentalist Dr Edward P Echlin died on 23 December at the age of 89. A prolific writer and speaker, and champion of the Christian environmental movement in Britain, Echlin was born in Michigan in the United States and was ordained as a Jesuit. When he left the Jesuits, marrying Barbara, his wife of 45 years, he settled in Britain and focused his work on relating Christianity and the environment. He was Chair Emeritus of Catholic Concern for Animals, and provided theological underpinning for Christian Ecology Link, now Green Christian. His funeral is due to take place at 12.30pm on Wednesday 15 January at St Marthas RC Church in Bexhill.

More than 1,500 people have signed an on-line petition opposing the closure of a Catholic parish in Kent, that was announced to parishioners five days before Christmas. Parishioner Stephanie Boden set up the petition as soon as the community of St Thomas Mores parish in West Malling received a letter from Archbishop John Wilson of Southwark Archdiocese, informing them that their church and the surrounding buildings are going to be put up for sale in Spring 2020. She described the church as the hub of a thriving local Catholic community. Parish Priest Fr Peter Soper, in the parish for two decades, described the news as a devastating blow. Bishop Wilson said that structural problems with other buildings on the site would be too costly to repair.

Million Minutes, a Catholic youth charity, is recruiting its first paid chief executive. Until now the role, held by founder Danny Curtin for nine years, has been voluntary, but with the paid appointment the charity hopes to expand and develop in order to grow the work it does with young people.

Read this article:
News Briefing: Britain and Ireland - The Tablet

Stem cell agency indirectly boosted by national industry group – Capitol Weekly

News

by DAVID JENSEN posted 01.13.2020

One of the nations leading regenerative medicine industry groups is touting multi-billion dollar savings that may be achieved with the type of stem cell and gene therapies that are being developed with cash from Californias financially beleaguered stem cell program.

The industry group is the Washington, D.C-based Alliance for Regenerative Medicine (ARM). It is tackling one of the major issues facing development of commercial stem cell therapies sticker shock at their expected prices, running upwards of a $1 million or more.

The ARM study predicted cost savings of as much as $33.6 billion over about a decade in connection with three afflictions: sickle cell disease (SCD),multiple myeloma (MM) andhemophilia A (Hem A).

Without a willingness from health care insurers to cover the costs and provide a pathway to profit, it is unlikely that the biotech industry will embrace production of the therapies.

In a study released Friday, the group said:

Advances in molecular biology and genetics are leading to new treatments for rare diseases that require new ways of assessing value. CGTs (cell and gene therapies) are directed at the underlying cause of a condition and offer durable, potentially curative, or near-curative benefits. These transformative therapies create challenges for current reimbursement frameworks as they (the therapies) require significant upfront costs but are expected to provide a lifetime of benefits. The recurring treatment costs of chronically-managed patients can be greatly reduced and even eliminated with a one-time administration or short course of these novel therapies.

As CGTs arrive on the market, payers need new models for assessing their value. These treatments could potentially end the patients burden of illness, resulting in cost offsets (eliminating or reducing the need for long-term treatment, hospitalizations, and other care) and productivity gains that span a lifetime. Manufacturers incur a high per-patient development cost for these therapies and payers who bear the cost of treatment may not realize the long-term financial benefits due to health plan switching.

The ARM study predicted cost savings of as much as $33.6 billion over about a decade in connection with three afflictions: sickle cell disease (SCD), multiple myeloma (MM) and hemophilia A (Hem A).

The discussion of the costs of stem cell therapies has special resonance in the Golden State where voters are likely to be asked next fall to give $5.5 billion more to its stem cell agency.

Californias stem cell agency was not mentioned in the study, but it has funded research in all three areas. The agency is a member of ARM.

The study, backed by ARM and performed bythe Marwood Group, said, Access to CGTs for even a modest number of patients with MM, SCD, and Hem A each year can reduce overall disease costs by nearly 23% over a 10-year period. The savings from lowering healthcare costs and raising productivity are considerable, approaching $34 billion by 2029. Of the savings, $31 billion are from a reduction in healthcare costs and $3 billion are from productivity gains.

The model used by ARM assumed CGT prices as high as $2 million. The study said, The model has tested more than 180 different prices across the three potential CGTs that ranged from a minimum test price of $150,000 and up to a maximum price test of $2,000,000. The prices entered into the model created 60 different cost savings curves for all three of drugs in this model. Prices were distributed with more than 50% of test prices in the $100,000-$600,000 price per administration range.

The discussion of the costs of stem cell therapies has special resonance in the Golden State where voters are likely to be asked next fall to give $5.5 billion more to its stem cell agency, known formally as theCalifornia Institute for Regenerative Medicine (CIRM).

The agency, funded with $3 billion in 2004, is down to its last $27 million. A new, proposed ballot initiative is focusing hard on affordability of stem cell treatments. The initiative has no specific solutions but stipulates that a new version of CIRM if the ballot measure is approved should devise some ways to come up with answers for insurers who are not likely to warm easily to $1 million therapies.Eds Note: DavidJensen is a retired newsman who has followed the affairs of the $3 billion California stem cell agency since 2005 via his blog, the California Stem Cell Report, where this story first appeared. He has published more than 4,000 items on California stem cell matters in the past 15 years.

The rest is here:
Stem cell agency indirectly boosted by national industry group - Capitol Weekly

Muscular dystrophy collaboration aims to correct muscle stem cells’ DNA – Harvard Office of Technology Development

All News

January 13, 2020

We expect that a satellite cell with the corrected DMD gene would quite quickly and continuously propagate the edited gene throughout the muscle tissue, said Prof. Amy Wagers, who leads the research. (Photo credit: Jon Chase/Harvard Staff Photographer.)

Cambridge, Mass. January 13, 2020 Harvard University stem cell researchers led by Amy Wagers, PhD, are embarking on a major study of Duchenne muscular dystrophy (DMD). Supported by research funding from Sarepta Therapeutics, under a multi-year collaboration agreement coordinated by Harvards Office of Technology Development (OTD), the project aims to use in-vivo genome editing, in mouse models of DMD, to fully and precisely restore the function of the dystrophin protein, which is crucial for proper muscular growth and development. Approaches validated by this work may point the way to an eventual therapeutic strategy to reverse DMD in humans.

Duchenne muscular dystrophy is a genetic disease caused by the lack of a protein called dystrophin that normally helps to support the structural integrity of muscle fibers, including those in the heart. Without the dystrophin protein, cells are weaker and degenerate more quickly. Over time, affected individuals boys, typically, as it is a recessive X-linked disorder lose their capacity to move independently.

Its really a devastating disease; it robs young boys of their capacity to be young boys, said Wagers, who is the Forst Family Professor of Stem Cell and Regenerative Biology, Co-Chair of the Department of Stem Cell & Regenerative Biology, and an Executive Committee Member of Harvard Stem Cell Institute. Though it is early days, Im hopeful that through this work we may identify and validate new avenues for therapy to completely rescue the proper expression and function of the dystrophin protein and regenerate healthy muscle tissue.

Researchers worldwide have pursued a variety of promising approaches such as cell and gene therapies, small-molecule therapies, and others to lessen or prevent the disease and improve patients quality of life.

The strategy pursued by the Wagers Lab at Harvard aims to fully correct the genetic template for dystrophin at its source, in the DNA of stem cells (satellite cells) that create and regenerate muscle cells. Combining cutting-edge CRISPR/Cas9 genome editing technologies with a deep knowledge of stem cell science and regenerative biology, this approach if successful might offer a permanent restoration of muscular function.

In skeletal muscle, muscle fibers are terminally post-mitotic, meaning they cannot divide and they cannot reproduce themselves, Wagers explains. If you lose muscle fibers, the only way to produce new muscle is from stem cells, specifically the satellite cells. The satellite cells are self-renewing, self-repairing, and ready to spring into action to create new muscle fibers. So we expect that a satellite cell with the corrected DMD gene would quite quickly and continuously propagate the edited gene throughout the muscle tissue.

At present, research conducted in mice has shown promising results. In June, the Wagers Lab published the results of editing stem cells in vivo, demonstrating that stem cell genes can be edited in living systems, not only in a dish. In that work, Wagers and her team delivered genome editing molecules to the cells using adeno-associated viruses (AAVs). Her lab has also successfully used gene editing in heart, muscle, and satellite cells to partially restore the function of the DMD gene that encodes dystrophin, by chopping out faulty sequences of code that are disrupting the proper reading frame.

The new stem-cell approach pursued in collaboration with Sarepta would build on these achievements and use more precise genome editing approaches, in animal models of DMD, to entirely replace genetic mutations in the DMD gene with correctly encoded sequences. The project will also explore alternate delivery methods and strategies to mitigate immune effects of in vivo genome editing.

This ambitious project will benefit greatly from the resources and insights of a company with deep clinical experience in the development of therapeutics for muscular dystrophy, said Vivian Berlin, Managing Director of Strategic Partnerships at Harvard OTD. Preclinical discoveries by Harvard researchers may open entirely new possibilities for lifesaving treatments in the long run, offering much-needed hope to patients and families in the future. Were grateful to be able to sustain the important momentum already established in Prof. Wagers lab, through this collaboration.

As we work to bring forward new treatments for patients with DMD, Sarepta is excited to support Prof. Wagers and her lab to accelerate the development of a gene editing approach, which has shown significant potential in early studies, said Louise Rodino-Klapac, Sareptas Senior Vice President of Gene Therapy. This multi-year collaboration is part of Sareptas broader commitment to pursuing all therapeutic modalities and advancing our scientific understanding of gene editing in order to maximize the potential of this approach to help patients.

Under the terms of the agreement between Harvard and Sarepta, the company will have the exclusive option to license any arising intellectual property for the purpose of developing products to prevent and treat human disease. As with any research agreement facilitated by OTD, the right of academic and other not-for-profit researchers to use the technology in further scholarly work is preserved.

All News

More here:
Muscular dystrophy collaboration aims to correct muscle stem cells' DNA - Harvard Office of Technology Development

AstroRx Increased Ability to Perform Daily Functions in ALS Patients – ALS News Today

Amyotrophic lateral sclerosis (ALS) patients receiving the lowest dose of Kadimastems cell therapy candidate,AstroRx, experienced a significant reduction in disease progression in the three or four months after treatment, updated findings from the companys Phase 1/2 clinical trial show.

In subsequent months, however, the disease deteriorated at similar rates as before treatment, suggesting that repeat dosing or higher doses both being tested in the ongoing trial may increase AstroRxs effectiveness.

No serious treatment-related adverse events or dose-limiting toxicities were reported in the first group of patients at least six months after treatment, suggesting that the lowest dose (100 million cells) is safe and well-tolerated.

These results on a small subset of patients of the first experimental group treated with 100 million AstroRx cells are encouraging, as the treatment seems to be safe, Marc Gotkine, MD, department of neurology at Hadassah Medical Center, Jerusalem, said in a press release.

After completion of 6 months follow up period, initial data analysis presented to us appears to demonstrate a transient efficacy benefit that lasted for 34 months post treatment, said Gotkine, who also is the principal investigator of the trial. The trial is now continuing with higher doses and repeated injections.

AstroRx is a cell therapy made of healthy, mature astrocytes, which are star-shaped cells of the central nervous system that normally maintain a healthy brain environment but are abnormal in ALS patients, contributing to disease progression.

The off-the-shelf therapy is derived from human embryonic stem cells and is expected to compensate for diseased astrocytes, preventing the loss of motor nerve cells when injected into a patients spinal fluid.

Studies in animals showed that AstroRx is safe and can delay ALS onset, maintain muscle function and increase survival. This led the biotech company in Israelto opena single-site Phase 1/2a clinical trial (NCT03482050) evaluating escalating doses of AstroRx in ALS patients.

The open-label study is being conducted at theHadassah Ein-Kerem Medical Centerand is expected to enroll 21 people withearly stage disease. Recruitmentis ongoing.

The main goal is to determine safety and tolerability of the therapy. Secondary measures include changes in patients ALS Functional Rating Scale revised(ALSFRS-R) scores, respiratory muscle strength, hand grip strength, limb muscle strength, and quality of life.

The company shared data from the first five patients included in the trial, all of whom received a single infusion of 100 million cells the lowest dose of AstroRx tested and were followed for at least six months after treatment.

After confirming the treatments safety, researchers assessed its efficacy and the duration of therapeutic effects measured through changes in ALSFRS-R scores, which cover speech, swallowing, dressing and hygiene, among other daily functions.

In the three months preceding AstroRxs treatment, patients ALSFRS-R score dropped by 0.87 points per month, on average, a similar decline in functional status as described in prior ALS studies.

In the three months after treatment, however, ALSFRS-R raised by an average of 0.26 points per month, suggesting that patients ability to perform daily activities increased in this period.

Researchers also examined the average ALSFRS-R change at four, five, and six months after treatment. While the rate of disease progression was still significantly lower in the first four months than before treatment (with an average decline of 0.32 points per month), at five and six months it was similar to the pre-treatment period.

That indicates this dose of AstroRx is effective only for a period of three or four months, after which patients see their disease deteriorate at a similar rate as before treatment.

We are very encouraged by the final cohort A results, demonstrating AstroRx provides a meaningful clinical benefit in terms of the ALSFRS-R rating scale, said Rami Epstein, CEO of Kadimastem. We look forward to continue our study, assessing the potential long-term benefits of a higher dose regimen as well as repeated administrations of our breakthrough cell therapy.

The trial is now assessing a higher dose of the therapy (250 million cells) in another group of five patients, all of whom have been enrolled. Kadimastem has recruited the first patient into a third group that will receive two AstroRx injections of 100 million cells, separated by two to three months months.

Results from the second and third groups are expected by August and the first half of 2021, respectively. Pending positive safety and effectiveness results, a fourth group will receive two injections of 250million cells.

Since in cohort A the clinical response was clearly demonstrated to last for at least 34 months following cell injection, cohort B will include a higher dose of cells, and cohort C will include repeated injections with approximately 3-month intervals, said Michel Revel, MD, PhD, founder and chief scientific officer of Kadimastem. Both cohort[s] B and C hold a potential promise for a prolonged response. The positive safety profile also allows us to test AstroRx in other neurodegenerative diseases, he said.

Ins holds a PhD in Biomedical Sciences from the University of Lisbon, Portugal, where she specialized in blood vessel biology, blood stem cells, and cancer. Before that, she studied Cell and Molecular Biology at Universidade Nova de Lisboa and worked as a research fellow at Faculdade de Cincias e Tecnologias and Instituto Gulbenkian de Cincia. Ins currently works as a Managing Science Editor, striving to deliver the latest scientific advances to patient communities in a clear and accurate manner.

Excerpt from:
AstroRx Increased Ability to Perform Daily Functions in ALS Patients - ALS News Today

Fate Therapeutics Announces Expansion of FT516 Clinical Investigation and Publication of Preclinical Data in the Journal Blood – Yahoo Finance

FT516 IND Application Cleared by FDA for Advanced Solid Tumors in Combination with PDL1-, EGFR- and HER2-targeting Therapeutic Antibodies

Published Preclinical Data Demonstrate iPSC-derived NK Cells Engineered with High-affinity, Non-cleavable CD16 Enhance the Efficacy of Antibody Therapy

SAN DIEGO, Jan. 13, 2020 (GLOBE NEWSWIRE) -- Fate Therapeutics, Inc. (FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for cancer and immune disorders, announced today that the U.S. Food and Drug Administration (FDA) has allowed its second Investigational New Drug (IND) application for FT516, the Companys off-the-shelf natural killer (NK) cell product candidate derived from a clonal master induced pluripotent stem cell (iPSC) line engineered to express a novel CD16 Fc receptor. This is the Companys fourth IND from its proprietary iPSC product platform cleared by the FDA, and enables the clinical investigation of FT516 in combination with monoclonal antibody (mAb) therapy across a broad range of solid tumors.

While monoclonal antibodies are proven therapeutic agents that are often used early in the treatment of many cancers, the functional status of the patients NK cells has been shown to play an important role in mediating clinical activity and prolonging survival, said Scott Wolchko, President and Chief Executive Officer of Fate Therapeutics. In particular, stable expression of the NK cell activating receptor CD16, and its binding affinity to therapeutic antibodies, are critical to promoting antibody-dependent cellular cytotoxicity. Our first-of-kind, off-the-shelf approach with FT516 enables administration of multiple doses of CD16-engineered NK cells, and we are excited to investigate the potential of FT516 to augment the clinical efficacy of monoclonal antibody therapy in the setting of solid tumors.

FT516 expresses a novel high-affinity, non-cleavable variant of CD16 (hnCD16) that enhances its binding to therapeutic antibodies and prevents its down-regulation, which can significantly inhibit anti-tumor activity. A publication by scientists from the Company, the University of Minnesota, and the University of California, San Diego in the journal Blood (https://doi.org/10.1182/blood.2019000621), entitled Pluripotent stem cell-derived NK cells with high-affinity non-cleavable CD16a mediate improved anti-tumor activity, highlights preclinical proof-of-concept data for FT516.

In the published studies, iPSC-derived NK cells expressing hnCD16 were shown to have superior therapeutic properties in vitro, including maintenance of CD16 expression and increased levels of cytokine production upon activation, compared to peripheral blood NK cells sourced from healthy donors. In an in vivo systemic tumor model of human lymphoma, treatment with iPSC-derived hnCD16 NK cells plus anti-CD20 mAb resulted in a significant improvement in survival (median survival exceeding 100 days) compared to treatment with anti-CD20 mAb alone or in combination with peripheral blood NK cells sourced from healthy donors (each of which showed median survival of 35 days). Additionally, iPSC-derived hnCD16 NK cells plus anti-HER2 mAb also conveyed a survival benefit in a xenograft model of SKOV-3 ovarian carcinoma.

FT516 is the first-ever cell therapy in the world derived from a genetically engineered pluripotent stem cell cleared for clinical testing. The Company intends to initiate clinical investigation of FT516 in combination with tumor-target antibody therapy in solid tumors later this year. The Company is currently conducting an open-label, multi-dose Phase 1 clinical trial of FT516 as a monotherapy for the treatment of acute myeloid leukemia and in combination with CD20-directed mAbs for the treatment of advanced B-cell lymphoma.

About Fate Therapeutics iPSC Product PlatformThe Companys proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that can be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with cycles of other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Companys first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Companys platform is uniquely capable of overcoming numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics iPSC product platform is supported by an intellectual property portfolio of over 250 issued patents and 150 pending patent applications.

Story continues

About FT516FT516 is an investigational, universal, off-the-shelf natural killer (NK) cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line engineered to express a novel high-affinity 158V, non-cleavable CD16 Fc receptor, which has been modified to prevent its down-regulation and to enhance its binding to tumor-targeting antibodies. CD16 mediates antibody-dependent cellular cytotoxicity (ADCC), a potent anti-tumor mechanism by which NK cells recognize, bind and kill antibody-coated cancer cells. ADCC is dependent on NK cells maintaining stable and effective expression of CD16, which has been shown to undergo considerable down-regulation in cancer patients. In addition, CD16 occurs in two variants, 158V or 158F, that elicit high or low binding affinity, respectively, to the Fc domain of IgG antibodies. Numerous clinical studies with FDA-approved tumor-targeting antibodies, including rituximab, trastuzumab and cetuximab, have demonstrated that patients homozygous for the 158V variant, which is present in only about 15% of patients, have improved clinical outcomes. The product candidate is being investigated in an open-label, multi-dose Phase 1 clinical trial as a monotherapy for the treatment of acute myeloid leukemia and in combination with CD20-directed monoclonal antibodies for the treatment of advanced B-cell lymphoma (NCT04023071).

About Fate Therapeutics, Inc.Fate Therapeutics is a clinical-stage biopharmaceutical company dedicated to the development of first-in-class cellular immunotherapies for cancer and immune disorders. The Company has established a leadership position in the clinical development and manufacture of universal, off-the-shelf cell products using its proprietary induced pluripotent stem cell (iPSC) product platform. The Companys immuno-oncology product candidates include natural killer (NK) cell and T-cell cancer immunotherapies, which are designed to synergize with well-established cancer therapies, including immune checkpoint inhibitors and monoclonal antibodies, and to target tumor-associated antigens with chimeric antigen receptors (CARs). The Companys immuno-regulatory product candidates include ProTmune, a pharmacologically modulated, donor cell graft that is currently being evaluated in a Phase 2 clinical trial for the prevention of graft-versus-host disease, and a myeloid-derived suppressor cell immunotherapy for promoting immune tolerance in patients with immune disorders. Fate Therapeutics is headquartered in San Diego, CA. For more information, please visit http://www.fatetherapeutics.com.

Forward-Looking StatementsThis release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995 including statements regarding the safety and therapeutic potential of the Companys NK cell product candidates, including FT516, its ongoing and planned clinical studies, and the expected clinical development plans for FT516. These and any other forward-looking statements in this release are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that the Company may cease or delay planned development and clinical trials of any of its product candidates for a variety of reasons (including any delay in enrolling patients in current and planned clinical trials, requirements that may be imposed by regulatory authorities on the conduct of clinical trials or to support regulatory approval, difficulties in manufacturing or supplying the Companys product candidates for clinical testing, or the occurrence of any adverse events or other negative results that may be observed during development), the risk that results observed in preclinical studies of its product candidates, including FT516, may not be replicated in ongoing or future clinical trials or studies, and the risk that its product candidates may not produce therapeutic benefits or may cause other unanticipated adverse effects. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the Companys actual results to differ from those contained in the forward-looking statements, see the risks and uncertainties detailed in the Companys periodic filings with the Securities and Exchange Commission, including but not limited to the Companys most recently filed periodic report, and from time to time in the Companys press releases and other investor communications.Fate Therapeutics is providing the information in this release as of this date and does not undertake any obligation to update any forward-looking statements contained in this release as a result of new information, future events or otherwise.

Contact:Christina TartagliaStern Investor Relations, Inc.212.362.1200christina@sternir.com

Read this article:
Fate Therapeutics Announces Expansion of FT516 Clinical Investigation and Publication of Preclinical Data in the Journal Blood - Yahoo Finance

Police Arrest 3 in Illegal Stem Cell Therapy Allegations – Tempo.co English

TEMPO.CO, Jakarta -Three people have been arrested and named as suspects in the case of illegal stem cell therapy practice in Kemang. The Jakarta Metro Police detained doctors and owners of the clinic after they raided the place Saturday afternoon.

"Previously, three people with the initials Y, O, and L were interrogated. They have been named as suspects are now detained at the Metro Police Headquarters," Jakarta Police PR chief Comr. Yusri Yunus said on Monday, January 13, 2020.

Yusri declined to further disclose the progress of the Police's investigation, and said that the Police will hold a press conference on Tuesday, January 14, 2020.

The Police recently sealed a clinic at Ruko Bellepoint in Kemang, South Jakarta, after it was proven to give stem cell injections to patients illegally.

"The clinic has been operating in Indonesia for three years," Jakarta Metro Police's director of general criminal investigation, Sr. Comr. Suyudi Ario Seto said.

Police investigators named the clinic's manager YW (46), marketing manager LJ (47), and Dr. OH as suspects.

During the bust, officers also confiscated a number of items of evidence such as unlicensed stem cells products from Japan, IV tubes, syringes, antiseptic tools, as well as documents of patients' registration.

The illegal stem cell therapy practice is against a number of articles in the criminal code as well as the Doctor of Law Practice of 2004 (Law no.29/2004) as well as a number of other provisions.

ANTARA

Continued here:
Police Arrest 3 in Illegal Stem Cell Therapy Allegations - Tempo.co English

Stem Cell Therapy Market Competitive Analysis 2019-2027 – News ZMR

A leading research firm, Zion Market Research added a latest industry report on "Global Stem Cell Therapy Market" consisting of 110+ pages during the forecast period and Stem Cell Therapy Market report offers a comprehensive research updates and information related to market growth, demand, opportunities in the global Stem Cell Therapy Market.

According to the report the Stem Cell Therapy Market Competitive Analysis 2019-2027

The Stem Cell Therapy Market report provides in-depth analysis and insights into developments impacting businesses and enterprises on global and regional level. The report covers the global Stem Cell Therapy Market performance in terms of revenue contribution from various segments and includes a detailed analysis of key trends, drivers, restraints, and opportunities influencing revenue growth of the global consumer electronics market.This report studies the global Stem Cell Therapy Market size, industry status and forecast, competition landscape and growth opportunity. This research report categorizes the global Stem Cell Therapy Market by companies, region, type and end-use industry.

Request a Free Sample Report on Stem Cell Therapy Market:https://www.zionmarketresearch.com/sample/stem-cell-therapy-market

The Stem Cell Therapy Market report mainly includes the major company profiles with their annual sales & revenue, business strategies, company major products, profits, industry growth parameters, industry contribution on global and regional level.This report covers the global Stem Cell Therapy Market performance in terms of value and volume contribution. This section also includes major company analysis of key trends, drivers, restraints, challenges, and opportunities, which are influencing the global Stem Cell Therapy Market. Impact analysis of key growth drivers and restraints, based on the weighted average model, is included in this report to better equip clients with crystal clear decision-making insights.

The Stem Cell Therapy Market research report mainly segmented into types, applications and regions.The market overview section highlights the Stem Cell Therapy Market definition, taxonomy, and an overview of the parent market across the globe and region wise.To provide better understanding of the global Stem Cell Therapy Market, the report includes in-depth analysis of drivers, restraints, and trends in all major regions namely, Asia Pacific, North America, Europe, Latin America and the Middle East & Africa, which influence the current market scenario and future status of the global Stem Cell Therapy Market over the forecast period.

Get Free PDF Brochure of this Report: https://www.zionmarketresearch.com/requestbrochure/stem-cell-therapy-market

The Stem Cell Therapy Market report provides company market size, share analysis in order to give a broader overview of the key players in the market. Additionally, the report also includes key strategic developments of the market including acquisitions & mergers, new product launch, agreements, partnerships, collaborations & joint ventures, research & development, product and regional expansion of major participants involved in the market on the global and regional basis.

Major Company Profiles Covered in This Report:

Anterogen Co., Ltd., RTI SurgicalInc., Pharmicell Co., Ltd., MEDIPOST Co., Ltd., JCR Pharmaceuticals Co., Ltd., Holostem Terapie Avanzate S.r.l., NuVasiveInc., and AlloSource.

Some of the major objectives of this report:

1) To provide detailed analysis of the market structure along with forecast of the various segments and sub-segments of the global Stem Cell Therapy Market.

2. To provide insights about factors affecting the market growth. To analyze the Stem Cell Therapy Market based on various factors- price analysis, supply chain analysis, porter five force analysis etc.

3. To provide historical and forecast revenue of the Stem Cell Therapy Market segments and sub-segments with respect to four main geographies and their countries- North America, Europe, Asia, and Rest of the World.

4. Country level analysis of the market with respect to the current market size and future prospective.

5. To provide country level analysis of the market for segment by application, product type and sub-segments.

6. To provide strategic profiling of key players in the market, comprehensively analyzing their core competencies, and drawing a competitive landscape for the market.

7. Track and analyze competitive developments such as joint ventures, strategic alliances, mergers and acquisitions, new product developments, and research and developments in the global Stem Cell Therapy Market.

About Us:

Zion Market Research is an obligated company. We create futuristic, cutting edge, informative reports ranging from industry reports, company reports to country reports. We provide our clients not only with market statistics unveiled by avowed private publishers and public organizations but also with vogue and newest industry reports along with pre-eminent and niche company profiles. Our database of market research reports comprises a wide variety of reports from cardinal industries. Our database is been updated constantly in order to fulfill our clients with prompt and direct online access to our database. Keeping in mind the clients needs, we have included expert insights on global industries, products, and market trends in this database. Last but not the least, we make it our duty to ensure the success of clients connected to usafter allif you do well, a little of the light shines on us.

Contact Us:

Zion Market Research

244 Fifth Avenue, Suite N202

New York, 10001, United States

Tel: +49-322 210 92714

USA/Canada Toll Free No.1-855-465-4651

Email: sales@zionmarketresearch.com

Website: https://www.zionmarketresearch.com

Read this article:
Stem Cell Therapy Market Competitive Analysis 2019-2027 - News ZMR