Author Archives: admin


Global Animal Stem Cell Therapy Market- Qualitative Analysis, Key Manufacturers, Advance Technology Research, Innovation in Technology and Forecast to…

A New Research on the Global Animal Stem Cell Therapy Market was conducted across a variety of businesses in various regions to produce a worthy report for our clienteles. This study is a perfect mixture of qualitative and quantifiable information highlighting key market expansions, industry and competitors challenges in gap analysis and new opportunities and may be trending in the Animal Stem Cell Therapy market. Some are part of the coverage and are the core and emerging players being profiled are specified in this report.

Some of major Animal Stem Cell Therapy market players are:

Medivet Biologics LLCVETSTEM BIOPHARMAJ-ARMU.S. Stem Cell, IncVetCell TherapeuticsCelavet Inc.Magellan Stem CellsKintaro Cells PowerAnimal Stem CareAnimal Cell TherapiesCell Therapy SciencesAnimacel

Request for sample copy of the Animal Stem Cell Therapy Market report @: https://www.globalmarketers.biz/report/life-sciences/global-animal-stem-cell-therapy-market-2019-by-manufacturers,-regions,-type-and-application,-forecast-to-2024/130268 #request_sample

Import and export policies that can have an immediate impact on the global Animal Stem Cell Therapy market. This study includes export-import related chapters for all relevant companies dealing with the Animal Stem Cell Therapy market and related profiles and provides valuable data in terms of finances, product portfolio, and investment planning and marketing and business strategy. The study is a collection of primary and secondary data that covers valuable information from the key suppliers of the marketplace. The forecast is based on data from 2014 to the current date and forecasts until 2024, easy to study other graphs and tables People watching for major industry data in easily available documents.

The report is sub-segmented Based on Product Type:

DogsHorsesOthers

The report is sub-segmented Based on Product Applications:

Veterinary HospitalsResearch Organizations

Quantifiable data:

Market Data Breakdown by Key Geography, Type & Application / End-User

By type (past and forecast)

Animal Stem Cell Therapy Market-Specific Applications Sales and Growth Rates (Historical & Forecast)

Animal Stem Cell Therapy revenue and growth rate by market (history and forecast)

Animal Stem Cell Therapy market size and growth rate, application and type (past and forecast)

Sales revenue, volume and Y-O-Y growth rate (base year) of Animal Stem Cell Therapy market

Qualitative data:

Includes factors affecting or influencing market dynamics and market growth. To list some names in related sections

Industry overview

Global Animal Stem Cell Therapy market growth driver

Global Animal Stem Cell Therapy market trend

Incarceration

Animal Stem Cell Therapy Market Opportunity

Market entropy ** [specially designed to emphasize market aggressiveness]

Fungal analysis

Porter Five Army Model

Inquire Here For Queries Or Report Customization: : https://www.globalmarketers.biz/report/life-sciences/global-animal-stem-cell-therapy-market-2019-by-manufacturers,-regions,-type-and-application,-forecast-to-2024/130268 #inquiry_before_buying

Customized specific regional and country-level reports for the following areas.

South America Animal Stem Cell Therapy Market (Brazil, Argentina)

The Middle East & Africa Animal Stem Cell Therapy Market (South Africa, Saudi Arabia)

Europe Animal Stem Cell Therapy Market (Spain, U.K., Italy, Germany, Russia, France)

North America Animal Stem Cell Therapy Market (U.S., Mexico, Canada)

Asia-Pacific Animal Stem Cell Therapy Market (China, Japan, India, Southeast Asia)

The research provides answers to the following key questions:

1) Who are the key Top Competitors in the Global Animal Stem Cell Therapy Market?

2) What is the expected Market size and growth rate of the Animal Stem Cell Therapy market for the period 2019-2024?

3) Which Are The Main Key Regions Cover in Reports?

4) Can I include additional segmentation / market segmentation?

Some of the Points cover in Global Animal Stem Cell Therapy Market Research Report is:

Table of Content:

Chapter One: Animal Stem Cell Therapy Market Overview

Chapter Two: Manufacturers Profiles

Chapter Three: Global Animal Stem Cell Therapy Market Competition, by Players

Chapter Four: Global,Animal Stem Cell Therapy Market Size by Regions

Chapter Five: North America Animal Stem Cell Therapy Revenue by Countries

Chapter Six: Europe Animal Stem Cell Therapy Revenue by Countries

Chapter Seven: Asia-Pacific Animal Stem Cell Therapy Revenue by Countries

Chapter Eight: South America Animal Stem Cell Therapy Revenue by Countries

Chapter Nine: Middle East and Africa Revenue Animal Stem Cell Therapy by Countries

Chapter Ten: Global Animal Stem Cell Therapy Market Segment by Type

Chapter Eleven: Global Animal Stem Cell Therapy Market Segment by Application

Chapter Twelve: Global Animal Stem Cell Therapy Market Size Forecast (2019-2024)

Get Exclusive Discount on This Report:

Customization of the Report: Customization can be provided on the basis of clients requirements. Get in touch with our sales team ([emailprotected]).

Browse full report @ https://www.globalmarketers.biz/report/life-sciences/global-animal-stem-cell-therapy-market-2019-by-manufacturers,-regions,-type-and-application,-forecast-to-2024/130268 #table_of_contents

See the article here:
Global Animal Stem Cell Therapy Market- Qualitative Analysis, Key Manufacturers, Advance Technology Research, Innovation in Technology and Forecast to...

Targeted deletion of PD-1 in myeloid cells induces antitumor immunity – Science

INTRODUCTION

Programmed cell death protein 1 (PD-1) is a major inhibitor of T cell responses expressed on activated T cells. It is also expressed on natural killer cells, B cells, regulatory T cells, T follicular helper cells, and myeloid cells (1). The current model supports that a key mechanism dampening antitumor immune responses is the up-regulation of PD-1 ligands in cancer cells and antigen-presenting cells (APCs) of the tumor microenvironment (TME), which mediate ligation of PD-1 on tumor-infiltrating CD8+ T cells, leading to the development of T incapable of generating antitumor responses (2). Therapeutic targeting of the PD-1 pathway with antibodies blocking the PD-1 receptor or its ligands induces expansion of oligoclonal CD8+ tumor-infiltrating lymphocytes that recognize tumor neoantigens (3). Thus, in the context of cancer, PD-1 is considered a major inhibitor of T effector cells, whereas on APC and cancer cells, emphasis has been placed on the expression of PD-1 ligands. PD-1 ligand-1 expression in the TME is often a prerequisite for patient enrollment to clinical trials involving blockade of the PD-1 pathway. However, responses do not always correlate with PD-L1 expression, and it remains incompletely understood how the components of the PD-1:PD-L1/2 pathway suppress antitumor immunity.

Recent studies indicated that PD-1 can be induced by Toll-like receptor (TLR) signaling in macrophages (M) and negatively correlates with M1 polarization (4). PD-1 expression in macrophages plays a pathologic role by suppressing the innate inflammatory response to sepsis (5) and inhibiting Mycobacterium tuberculosis phagocytosis in active tuberculosis (6). Our knowledge about the function of PD-1 on myeloid cells in the context of cancer is very limited. However, similar to its role in infections, PD-1 expression inversely correlates with M1 polarization and phagocytic potency of tumor-associated M (TAM) against tumor (7, 8). The mechanisms of PD-1 expression in myeloid cells and the role of PD-1expressing myeloid cells in tumor immunity remain unknown.

The rapid increase in myeloid cell output in response to immunologic stress is known as emergency myelopoiesis. Terminally differentiated myeloid cells are essential innate immune cells and are required for the activation of adaptive immunity. Strong activation signals mediated by pathogen-associated molecular pattern or danger-associated molecular pattern molecules lead to a transient expansion and subsequent differentiation of myeloid progenitors to mature monocytes and granulocytes to protect the host. In contrast, during emergency myelopoiesis mediated by continuous low-level stimulation mediated by cancer-derived factors and cytokines, bone marrow common myeloid progenitors (CMPs) but, predominantly, granulocyte/macrophage progenitors (GMPs) undergo modest expansion with hindered differentiation, and a fraction of myeloid cells with immunosuppressive and tumor-promoting properties, named myeloid-derived suppressor cells (MDSCs), accumulates. MDSCs suppress CD8+ T cell responses by various mechanisms (9). In the mouse, MDSCs consist of two major subsets, CD11b+Ly6ChiLy6G (thereafter named CD11b+Ly6C+) monocytic (M-MDSC) and CD11b+Ly6CloLy6G+ (hereafter named CD11b+Ly6G+) polymorphonuclear (PMN-MDSC) (10). These cells have similar morphology and phenotype to normal monocytes and neutrophils but distinct genomic and biochemical profiles (9). In humans, in addition to M-MDSC and PMN-MDSC, a small subset of early-stage MDSC has been identified (10).

Although PMN-MDSCs represent the major subset of circulating MDSC, they are less immunosuppressive than M-MDSC when assessed on a per cell basis (1113). Current views support the two-signal requirement for MDSC function. The first signal controls MDSC generation, whereas the second signal controls MDSC activation, which depends on cues provided by the TME and promotes MDSC differentiation to TAM (14). Proinflammatory cytokines and endoplasmic reticulum stress response in the TME contribute to pathologic myeloid cell activation that manifests as weak phagocytic activity, increased production of reactive oxygen species and nitric oxide (NO) and expression of arginase-1 (ARG1), and convert myeloid cells to MDSC (9). MDSCs are associated with poor outcomes in many cancer types in patients and negatively correlate with response to chemotherapy, immunotherapy, and cancer vaccines (1519).

In the present study, we examined how PD-1 regulates the response of myeloid progenitors to cancer-driven emergency myelopoiesis and its implications on antitumor immunity. We determined that myeloid progenitors, which expand during cancer-driven emergency myelopoiesis, express PD-1 and PD-L1. PD-L1 was constitutively expressed on CMPs and GMPs, whereas PD-1 expression displayed a notable increase on GMPs that arose during tumor-driven emergency myelopoiesis. PD-1 was also expressed on tumor-infiltrating myeloid cellsincluding M-MDSCs and PMN-MDSCs, CD11b+F4/80+ M, and CD11c+major histocompatibility complex class II-positive (MHCII+) dendritic cells (DCs) in tumor-bearing miceand on MDSCs in patients with refractory lymphoma. Ablation of PD-1 signaling in PD-1 knockout (KO) mice prevented GMP accumulation and MDSC generation and resulted in increase of Ly6Chi effector monocytes, M and DC. We generated mice with conditional targeting of the Pdcd1 gene (PD-1f/f) and selectively eliminated PD-1 in myeloid cells or T cells. Compared with T cellspecific ablation of PD-1, myeloid-specific PD-1 ablation more effectively decreased tumor growth in various tumor models. At a cellular level, only myeloid-specific PD-1 ablation skewed the myeloid cell fate commitment from MDSC to effector Ly6Chi monocytes M and DC and induced T effector memory (TEM) cells with improved functionality. Our findings reveal a previously unidentified role of the PD-1 pathway and suggest that skewing of myeloid cell fate during emergency myelopoiesis and differentiation to effector APCs, thereby reprogramming T cell responses, might be a key mechanism by which PD-1 blockade mediates antitumor function.

For our studies, we selected the murine B16-F10 melanoma tumor model because it has been informative in dissecting mechanisms of resistance to checkpoint immunotherapy (20). First, we examined whether B16-F10 induces tumor-driven emergency myelopoiesis similarly to the MC17-51 fibrosarcoma, a mouse tumor model well established to induce cancer-driven emergency myelopoiesis (21). We assessed the expansion of myeloid progenitors in the bone marrow and the increase of CD11b+CD45+ myeloid cells in the spleen and tumor (figs. S1 and S2). Both tumor types induced increase of myeloid progenitors in the bone marrow and systemic increase of CD45+CD11b+ myeloid cells (fig. S3), providing evidence that B16-F10 melanoma is an appropriate tumor model to study tumor-driven emergency myelopoiesis and its consequences in tumor immunity. In the spleen of nontumor-bearing mice, few myeloid cells constitutively expressed very low levels of PD-L1, whereas PD-1 was very low to undetectable (Fig. 1, A and B). In B16-F10 tumor-bearing mice, expression of PD-1 and PD-L1 was up-regulated on myeloid cells of the spleen (Fig. 1, C to F). PD-1 and PD-L1 were also expressed on myeloid cells at the tumor site (Fig. 1, G to I). All subsets of myeloid cells expanding in tumor-bearing mice including M-MDSCs, PMN-MDSCs, CD11b+F4/80+ Ms, and CD11c+MHCII+ DCs expressed PD-1 (Fig. 1, D and G). Kinetics studies of PD-1 expression on myeloid cells in the spleen of tumor-bearing mice showed a gradual increase over time (Fig. 1, J to M).

(A and B) Expression of PD-1 and PD-L1 on CD11b+Ly6C+ monocytes and CD11c+MHCII+ DC in the spleen of nontumor-bearing C57BL/6 mice. FMO, fluorescence minus one. (C) C57BL/6 mice were inoculated with B16-F10 mouse melanoma, and at the indicated time points, expression of PD-1 was examined by flow cytometry in the spleen after gating on the indicated myeloid populations; contour plots depicting the percentage of positive cells are shown. On day 16 after tumor inoculation, expression of PD-1 and PD-L1 was assessed in the spleen (D) and the tumor site (G) after gating on the indicated myeloid populations. (D and G) Fluorescence-activated cell sorting (FACS) histograms and contour plots depicting the percentage of positive cells and bar graphs (E, F, H, and I) of mean SEM positive cells. Results are representative of 12 independent experiments with six mice per group. (J to M) Kinetics of PD-1 up-regulation on CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ of the spleen after tumor inoculation. **P < 0.01, ***P < 0.005, ****P < 0.001.

Because myeloid cells that give rise to MDSC and TAM are generated from myeloid progenitors in the bone marrow during tumor-driven emergency myelopoiesis, we examined PD-1 and PD-L1 expression in these myeloid progenitors. In nontumor-bearing mice, PD-1 was detected at very low levels on GMPs (Fig. 2A), whereas PD-L1 was constitutively expressed in CMPs but mostly on GMPs (Fig. 2B). In tumor-bearing mice, PD-L1 was up-regulated in CMPs and GMPs, and its expression levels remained elevated during all assessed time points (Fig. 2, F to J). PD-1 expression was induced on CMPs but more prominently on GMPs (Fig. 2, C to I). Kinetics studies showed that PD-1 expression on GMPs peaked early after tumor inoculation (Fig. 2, C, E, and I), at a time point when tumor growth was not yet measurable. Thus, induction of PD-1 expression in myeloid progenitors is an early event during tumor development.

(A and B) Expression of PD-1 and PD-L1 on CMPs and GMPs of nontumor-bearing mice. (C to J) C57BL/6 mice were inoculated with B16-F10 mouse melanoma, and expression of PD-1 and PD-L1 on CMPs and GMPs was examined on days 9, 12, 14, and 16 after implantation. FACS histograms (C and F) and contour plots (D, E, G, and H) indicating the percentage of positive cells and bar graphs of mean SEM positive cells (I and J) are shown. Results are representative of four independent experiments with six mice per group. (K and L) Kinetics of PD-1 (K) and PD-L1 (L) expression on CMPs (blue) and GMPs (orange) during tumor-driven emergency myelopoiesis. Results are representative of four separate experiments with six mice per group. *P < 0.05, ***P < 0.005, ****P < 0.001.

To determine whether PD-1 expression on GMPs was mediated by growth factors regulating emergency myelopoiesis, we cultured bone marrow cells from nontumor-bearing mice with granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony growth factor (GM-CSF), and the TLR4 ligand lipopolysaccharide. PD-1 that was constitutively expressed at low levels in GMPs was up-regulated by culture with each of these factors (fig. S4A), consistent with our findings that PD-1 expression was rapidly induced on GMPs of tumor-bearing mice in vivo (Fig. 2, C, E, and I). Quantitative polymerase chain reaction (qPCR) in purified Linneg bone marrow cells showed that PD-1 mRNA was constitutively expressed in myeloid progenitors and was up-regulated by culture with G-CSF or GM-CSF (fig. S4B). Together, these in vivo and in vitro studies provide evidence that PD-1 expression on myeloid progenitors is regulated by a direct cell-intrinsic effect of factors driving cancer-mediated emergency myelopoiesis.

To examine whether PD-1 was expressed in MDSCs in humans, we used samples from healthy donors and patients with malignant non-Hodgkins lymphoma (NHL) (figs. S5 and S6). A high level of PD-1expressing M-MDSCs was detected in the peripheral blood of three patients with treatment-refractory NHL but not in two patients who responded to treatment or five healthy donors (fig. S6). These results show that PD-1 expression is detected in human MDSCs and serve as a paradigm, suggesting that PD-1 expression in MDSCs of patients with cancer might be a clinically relevant event.

To examine whether PD-1 might have an active role in tumor-induced stress myelopoiesis, we used PD-1deficient (PD-1/) mice. PD-1 deletion, which resulted in decreased tumor growth (Fig. 3, A and B), substantially altered tumor-induced stress myelopoiesis (Fig. 3, C to E). Although accumulation of CMPs was comparable, accumulation of GMPs was significantly diminished in PD-1/ mice (Fig. 3, C and D), indicating that GMPs might be a key target on which PD-1 mediated its effects on myeloid progenitors (Fig. 3E). Kinetics studies showed sustained GMP expansion in wild-type (WT) tumor-bearing mice. In contrast, in PD-1/ tumor-bearing mice, GMPs displayed a rapid expansion and subsequent decline (fig. S7). In parallel, in PD-1/ mice, there was an increase of differentiated CD11b+Ly6Chi monocytic cells not only in the tumor (Fig. 3H) but also in the spleen and the small intestine, which also displayed an increase in CD11c+MHCII+ DCs (Fig. 3, F and G). Moreover, at these sites, there was a significant increase of the CD11b+Ly6C+/CD11b+Ly6G+ ratio (Fig. 3, I to K), indicating a shift of myelopoiesis output toward monocytic lineage dominance. These Ly6Chi monocytes, CD11b+F4/80+ Ms, and CD11c+MHCII+ DCs in PD-1/ tumor-bearing mice expressed interferon (IFN) regulatory factor 8 (IRF8), and all myeloid subsets had elevated expression of the retinoic acid receptor-related orphan receptor (RORC or ROR) (Fig. 3, L to N, and fig. S8). Similar results were observed in two additional tumor models, the MC38 colon adenocarcinoma and the MC17-51 fibrosarcoma model (fig. S9), both of which induced cancer-driven emergency myelopoiesis (fig. S3).

(A and B) WT and PD-1/ mice were inoculated with B16-F10 melanoma, and tumor size was monitored daily (A). Mice were euthanized on day 16, and tumor weight was measured (B). Data shown are means SEM of six mice per group and are representative of six independent experiments. (C) Mean percentages SEM of LSK (Linneg, Sca1pos, CD127neg, c-kitpos) and LK (Linneg, Sca1neg, CD127neg, c-kitpos) hematopoietic precursors, CMP, and GMP in the bone marrow of nontumor-bearing and tumor-bearing WT and PD-1/ mice. GMPs in PD-1/ mice were significantly lower compared with GMPs in WT mice (**P < 0.01). (D) Representative contour plots of FACS analysis for CMP and GMP in the bone marrow of tumor-bearing WT and PD-1/ mice. (E) Schematic presentation of myeloid lineage differentiation. The arrowhead indicates GMP, the key target population of PD-1 during emergency myelopoiesis. HSC, hematopoietic stem cells; MPP, multi-potent progenitor; MDP, monocyte/macrophages and DC precursors; CDP, common dendritic cell progenitors; CLP, common lymphoid progenitors. (F to H) Mean percentages of CD45+CD11b+, CD11b+Ly6C+, CD11b+Ly6G+, and CD11c+MHCII+ in the spleen (F), small intestine (G), and B16-F10 site (H) of tumor-bearing WT and PD-1/ mice. (I to K) Representative plots of FACS analysis for CD11b+Ly6Chi and CD11b+Ly6C+/CD11b+Ly6G+ ratio in the spleen (I), small intestine (J), and B16-F10 site (K). (L to N) Mean percentages SEM of RORC and IRF8 expressing CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ myeloid cells within the CD45+CD11b+ gate in the spleen (L), small intestine (M), and B16-F10 site (N). Data from one representative experiment of three independent experiments with six mice per group are shown. (O and P) Diminished suppressive activity (O) and NO production (P) of CD11b+Ly6C+ cells isolated from PD-1/ tumor-bearing mice. CD11b+Ly6C+ cells were isolated from tumor-bearing WT and PD-1/ mice and cultured at various ratios with OTI splenocytes stimulated with OVA257264. Data show means SEM of one representative of two experiments (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.001).

IRF8 regulates myeloid cell fate to monocyte/macrophage and DC differentiation versus granulocyte differentiation (22, 23), explaining the increase of CD11b+Ly6C+/CD11b+Ly6G+ ratio that we observed in tumor-bearing PD-1 KO mice. IRF8 is designated as one of the terminal selectors that control the induction and maintenance of the terminally differentiated state of these myeloid cells (22, 23). Moreover, IRF8 shifts the fate of myeloid cells away from immature MDSC, which are characterized by a restriction in IRF8 expression (24, 25). Retinoid-related orphan nuclear receptors not only are required for myelopoiesis and are mediators of the inflammatory response of effector Ly6Chi monocytes and macrophages (21, 26) but also can be expressed by MDSC (21). For these reasons, we examined the functional properties of CD11b+Ly6C+ cells in PD-1/ tumor-bearing mice. A key mechanism by which CD11b+Ly6C+ M-MDSCs mediate suppression of T cell responses involves the production of NO (27). We assessed the immunosuppressive function and found diminished NO production and diminished suppressor capacity of CD11b+Ly6C+ myeloid cells isolated from tumor-bearing PD-1/ mice compared with their counterparts isolated from tumor-bearing WT control mice (Fig. 3, O and P). Thus, PD-1 ablation switches the fate and function of myeloid cells away from immunosuppressive MDSC and promotes the generation of differentiated monocytes, M, and DC. The expansion of CD11b+Ly6Chi monocytes, the increase of the CD11b+Ly6C+/CD11b+Ly6G+ ratio, and the up-regulation of RORC in myeloid cells of the spleen of PD-1/ mice were already observed on day 9 after tumor inoculation, when tumors were not yet measurable, and on day 12, when tumors in WT and PD-1/ mice had comparable size (fig. S10). These results indicate that the effects of PD-1 ablation on the myeloid compartment of PD-1/ tumor-bearing mice preceded the differences in tumor growth.

To determine the potential therapeutic relevance of these findings, we examined whether changes in the myeloid compartment might be detected during treatment with PD-1blocking antibody. Compared with the control treatment group, mice receiving antiPD-1 antibody (fig. S11A) had diminished accumulation of GMP in the bone marrow (fig. S11B) and increased expansion of Ly6C+ monocytes and DC in the tumor site (fig. S11D), with effector features characterized by the expression of RORC, IRF8, and IFN- (fig. S11, E to G and I). In contrast, cells expressing interleukin-4 receptor (IL-4Ra), a marker of MDSC (10, 28), were significantly decreased (fig. S11H). Thus, treatment with antiPD-1blocking antibody promotes the differentiation of myeloid cells with effector features while suppressing expansion of MDSC in tumor-bearing mice.

To determine whether these changes on myeloid cell fate in PD-1/ mice were mediated by myeloid cellintrinsic effects of PD-1 ablation or by the effects of PD-1neg T cells on myeloid cells, we generated mice with conditional targeting of Pdcd1 gene (PD-1f/f) (fig. S12A) and crossed them with mice expressing cre recombinase under the control of the lysozyme (LysM) promoter to induce selective ablation of the Pdcd1 gene in myeloid cells (PD-1f/fLysMcre) or with mice expressing cre recombinase under the control of the CD4 promoter to induce selective ablation of the Pdcd1 gene in T cells (PD-1f/fCD4cre) (fig. S12, B and C). In PD-1f/fLysMcre mice, tumor growth was significantly diminished (Fig. 4, A and B), indicating that despite the preserved PD-1 expression in T cells, myeloid-specific PD-1 ablation in PD-1f/fLysMcre mice was sufficient to inhibit tumor growth. Tumor-driven emergency myelopoiesis was selectively affected in PD-1f/fLysMcre mice. Although myeloid-specific PD-1 ablation resulted in expansion of CMPs, accumulation of GMPs was prevented (Fig. 4C). In contrast, no change on cancer-driven emergency myelopoiesis was detected in PD-1f/fCD4cre mice, which had comparable expansion of CMP and GMP to PD-1f/f control mice (Fig. 5A).

(A and B) PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice were inoculated with B16-F10 melanoma, and tumor size was monitored daily (A). After mice were euthanized, tumor weight was measured (B). (C) Mean percentages SEM of CMP and GMP in the bone marrow of tumor-bearing PD-1f/f and PD-1f/fLysMcre mice. (D) Mean percentages SEM of CD11b+CD45+ cells and CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ myeloid subsets in the spleen of tumor-bearing mice. (E) Mean percentages SEM of CD11b+CD45+, CD11b+Ly6C+, and CD11b+Ly6G+ cells and (F) representative contour plots of FACS analysis for CD11b+CD45+ and CD11b+Ly6C+ cells at the tumor site in PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice. (G) Mean percentages SEM of CD16/CD32+, CD86+, CD88+, and CD80+ cells and IFN-expressing myeloid cell subsets within the CD45+CD11b+ gate in B16-F10 tumors from PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice. (H) Mean percentages SEM and (I) FACS histograms of IL-4Ra, CD206, and ARG1 expression in CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ myeloid cells within the CD11b+CD45+ gate in the spleen of tumor-bearing PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice. Data are from one representative of three independent experiments with six mice per group are shown in all the panels (*P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001).

PD-1f/f and PD-1f/fCD4cre mice were inoculated with B16-F10 melanoma. (A) On day 16, mice were euthanized, and bone marrow CMPs and GMPs were examined by flow cytometry. Mean percentages SEM of CMP or GMP are shown. (B and C) Tumor size was assessed every other day from inoculation (B). On the day of euthanasia, tumor weight was measured (C). (D) Mean percentages SEM of CD11b+CD45+ cells and CD11b+Ly6C+ and CD11b+Ly6G+ populations within the CD11+CD45+ gate in the spleen. (E) Mean percentages SEM of CD11b+CD45+ cells and CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ cells within the CD11b+CD45+ gate in the tumor site. (F) Mean percentages SEM of CD16/CD32+, CD86+, CD88+, CD80+, and IFN- expression in the indicated myeloid subsets (CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+) within the CD11b+CD45+ gate in the tumor site. (G to J) Mean percentages SEM of CD4+ and CD8+ TCM and TEM (G), as well as IFN-, IL-2, and IL-17 (H to J) expression in CD4+ and CD8+ TEM and TCM at the tumor site, and respective contour plots (K to M). Results are from one representative of two independent experiments with six mice per group are shown (*P < 0.05 and **P < 0.01).

Myeloid-specific PD-1 ablation in PD-1f/fLysMcre mice not only shifted the differentiation of CD11b+Ly6C+ and CD11b+Ly6G+ myeloid subsets and increased the CD11b+Ly6C+/CD11b+Ly6G+ ratio in the spleen and tumor site as in PD-1/ mice (Fig. 4, D to F) but also resulted in a notably different immunological profile of CD11b+Ly6C+ monocytic myeloid cells, consistent with effector myeloid function as indicated by the expression of effector myeloid cell markers including CD80, CD86, CD16/32 (Fc receptor II/III), and CD88 (C5aR) (Fig. 4G). Consistent with the improved function of myeloid cells, PD-1f/fLysMcre mice also had higher levels of IFN-expressing CD11b+Ly6Chi monocytes and CD11b+F4/80+ Ms (Fig. 4G and fig. S13, A and B) and increase of IRF8+ and RORC+ CD11b+Ly6Chi monocytes (fig. S13, C and D). In contrast, cells expressing IL-4Ra, CD206, and ARG1which are markers of MDSC, immunosuppressive neutrophils, and tolerogenic DCs (2933)were diminished (Fig. 4, H and I). Thus, myeloid-intrinsic PD-1 ablation skews the fate of myeloid cells away from immunosuppressive MDSCs; promotes the differentiation of functional effector monocytes, Ms, and DCs; and has a decisive role in systemic antitumor immunity despite PD-1 expression in T cells.

We studied antitumor responses in mice with T cellspecific PD-1 ablation and found that PD-1f/fCD4cre mice had diminished antitumor protection (Fig. 5, B and C). Consistent with the causative role of myeloid cellspecific PD-1 targeting in the differentiation and function of myeloid cells, T cellspecific PD-1 ablation did not induce expansion of CD11b+CD45+ leukocytes, CD11b+F4/80+ Ms, and CD11c+MHCII+ DCs and increase of CD11b+Ly6C+/CD11b+Ly6G+ ratio (Fig. 5, D and E) or immunological features of functional effector myeloid cells (Fig. 5F) in PD-1f/fCD4cre tumor-bearing mice, compared with control tumor-bearing mice. Moreover, despite PD-1 ablation, tumor-bearing PD-1f/fCD4cre mice did not have quantitative differences in tumor-infiltrating TEM cells compared with control tumor-bearing mice (Fig. 5G) or features of enhanced effector function as determined by assessment of cytokine-producing cells (Fig. 5, H to M).

Similar outcomes to those observed with B16-F10 tumor in the differentiation of myeloid cells toward myeloid effectors versus MDSC were obtained when PD-1f/fLysMcre and PD-1f/fCD4cre mice were inoculated with MC38 colon adenocarcinoma cells (Fig. 6, B to I). Moreover, PD-1f/fLysMcre but not PD-1f/f CD4cre mice inoculated with MC38 had functional differences in tumor-infiltrating TEM and T central memory (TCM) cells compared with control tumor-bearing mice (Fig. 6, J to L). In the context of this highly immunogenic tumor, PD-1 ablation in myeloid cells resulted in complete tumor eradication, whereas mice with PD-1 ablation in T cells showed progressive tumor growth (Fig. 6A). Together, these results suggest that by preventing the differentiation of effector myeloid cells and promoting generation of MDSC, myeloid-specific PD-1 expression has a decisive role on T cell function. Thus, although PD-1 is an inhibitor of T cell responses (2, 34, 35), ablation of PD-1 signaling in myeloid cells is an indispensable requirement for induction of systemic antitumor immunity in vivo.

(A) PD-1f/f, PD-1f/fCD4cre, and PD-1f/fLysMcre mice were inoculated with MC38 colon adenocarcinoma, and tumor size was monitored daily. Mice were euthanized on day 21, and mean percentages SEM of CD45+CD11b+ cells and CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ myeloid subsets in the spleen (B) and tumor site (C) were determined. (D) Mean percentages SEM of RORC- and IRF8-expressing CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F/480+, and CD11c+MHCII+ myeloid cells and (E) mean percentages SEM of ARG1, IL-4Ra, CD88, and CD80 cells within the same myeloid subsets in the spleen. (F and G) Representative flow cytometry plots for RORC and IRF8 expression. (H) Mean percentages SEM and (I) representative flow cytometry plots of IFN- and ARG1-expressing CD11b+Ly6C+ and CD11b+Ly6G+ myeloid cells at the tumor site. (J to L) Mean percentages SEM of CD4+ and CD8+ TCM and TEM cells (J) and IFN-expressing CD4+ and CD8+ TEM and TCM at the tumor site (K) and respective contour plots (L). Data are from one representative of three experiments with six mice per group (*P < 0.05, **P < 0.01, and ***P < 0.001).

To further investigate the direct effects of PD-1 on myeloid cell fate in the absence of T cells, we used recombination activating gene 2 (RAG2) KO mice (lacking mature T cells and B cells). Treatment of RAG2 KO tumor-bearing mice with antiPD-1blocking antibody resulted in decreased accumulation of GMPs during tumor-driven emergency myelopoiesis (fig. S14A), myeloid cell expansion in the spleen and tumor site (fig. S14, B and C), and enhanced generation of effector myeloid cells (fig. S14, D to G), providing evidence that blockade of PD-1mediated signals skews myeloid lineage fate to myeloid effector cells in a myeloid cellintrinsic and T cellindependent manner. In RAG2 KO mice treated with antiPD-1 antibody, despite the absence of T cells, a decrease of tumor growth was also observed (fig. S14, H and I), suggesting that ablation of PD-1 signaling promotes myeloid-specific mechanisms that induce tumor suppression, one of which might involve increased phagocytosis (8).

To understand mechanisms that might be responsible for the significant differences of myeloid cell fate commitment induced by myeloid-specific PD-1 targeting, we examined whether PD-1deficient bone marrow myeloid progenitors might have distinct signaling responses to the key hematopoietic growth factors that mediate cancer-driven emergency myelopoiesis, which also induced PD-1 expression in GMP during in vitro culture. To avoid any potential impact of bone marrowresiding PD-1/ T cells or mature myeloid cells on the signaling responses of myeloid progenitors, we used Linneg bone marrow from PD-1f/fLysMcre mice because LysMcre is expressed in CMPs and GMPs (36), allowing us to take advantage of the selective deletion of PD-1 in these myeloid progenitors. PD-1deficient GMPs (fig. S15) had enhanced activation of extracellular signalregulated kinase 1/2 (Erk1/2), mammalian target of rapamycin complex 1 (mTORC1), and signal transducer and activator of transcription 1 (STAT1) in response to G-CSF, a main mediator of emergency myelopoiesis (37, 38). These results are notable because each of these signaling targets has a decisive role in the differentiation and maturation of myeloid cells while preventing the generation of immature immunosuppressive MDSC (3942). These findings indicate that PD-1 might affect the differentiation of myeloid cells by regulating the fine tuning of signaling responses of myeloid progenitors to hematopoietic growth factors that induce myeloid cell differentiation and lineage fate determination during emergency myelopoiesis.

Metabolism has a decisive role in the fate of hematopoietic and myeloid precursors. Stemness and pluripotency are regulated by maintenance of glycolysis (43). Switch from glycolysis to mitochondrial metabolism and activation of oxidative phosphorylation and trichloroacetic acid (TCA) cycle are associated with differentiation (44). This is initiated by glycolysis-mediated mitochondrial biogenesis and epigenetic regulation of gene expression (43). The structural remodeling of the mitochondrial architecture during differentiation is characterized by increased replication of mitochondrial DNA to support production of TCA cycle enzymes and electron transport chain subunits, linking mitochondrial metabolism to differentiation (45).

We examined whether PD-1 ablation, which promoted the differentiation of myeloid cells in response to tumor-mediated emergency myelopoiesis, might affect the metabolic properties of myeloid precursors. Linneg bone marrow myeloid precursors were cultured with the cytokines G-CSF/GM-CSF/IL-6 that drive tumor-mediated emergency myelopoiesis in cocktail (Fig. 7, A and B) or individually (Fig. 7, C and D). Hematopoietic stem cell differentiation was documented by decrease of Linneg, which was more prominent in the cultures of PD-1deficient bone marrow cells, and coincided with increase of CD45+CD11b+ cells (Fig. 7, A and B). Ly6C+ monocytic cells dominated in the PD-1f/fLysMcre cultures, whereas Ly6G+ granulocytes were decreasing compared with PD-1f/f control cultures (Fig. 7, C and D), providing evidence for a cell-intrinsic mechanism of PD-1deficient myeloid precursors for monocytic lineage commitment. Glucose uptake, but more prominently, mitochondrial biogenesis, was elevated in PD-1deficient CMP and GMP (Fig. 7, E and F). Bioenergetics studies showed that PD-1deficient cells developed robust mitochondrial activity (Fig. 7G) and increase of oxygen consumption rate (OCR)/extracellular acidification rate (ECAR) ratio during culture (Fig. 7H), indicating that mitochondrial metabolism progressively dominated over glycolysis. This bioenergetic profile is consistent with metabolism-driven enhanced differentiation of hematopoietic and myeloid precursors (45, 46).

(A and B) Linneg bone marrow from PD-1f/f and PD-1f/fLysMcre mice was cultured with GM-CSF, G-CSF, and IL-6 for the indicated time intervals. Mean percentages SEM of CD11b+CD45+ (A) and Linneg cells (B) are shown. (C and D) Bone marrow cells purified as in (A) and (B) were cultured with the indicated growth factors, and mean percentages SEM of CD11b+Ly6C+ and CD11b+Ly6G+ cells were examined after 48 hours of culture. (E to H) Bone marrow cells were prepared and cultured as in (A) and (B), and at 48 hours of culture, glucose uptake was assessed using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino]-2-Deoxyglucose (2-NBDG) (E), and mitochondrial biogenesis was assessed by MitoGreen staining and flow cytometry (F). (G) At 24, 48, and 72 hours of culture, OCR and ECAR were measured by a Seahorse extracellular flux analyzer, and mitostress responses at each time point of culture were examined. (H) OCR/ECAR ratio was measured at these time points, and the increase of OCR/ECAR ratio during stimulation was calculated. (I) Linneg bone marrow cells from PD-1f/f and PD-1f/fLysMcre mice were cultured with G-CSF and GM-CSF for 48 hours, and metabolite analysis was performed by mass spectrometry. The unsupervised hierarchical clustering heat map of the top 50 metabolites is shown. (J) At 24, 48, and 72 hours of culture with G-CSF and GM-CSF, mRNA was extracted and analyzed for the expression of the indicated genes by qPCR. Results of the 48-hour culture are shown and are presented as the fold increase over the mRNA level expressed by PD-1f/f cells. Results are from one of three independent experiments. (K to M) At 24 hours of culture with GM-CSF, G-CSF, or IL-6, the content of neutral lipid droplets, including triglycerides and cholesterol esters, was assessed by flow cytometry using boron-dipyrromethene (BODIPY) 493/503. Mean percentages SEM (K) of BODIPY 493/503positive cells within the CD11b+CD45+ gate, representative contour plots (L), and histograms of FACS analysis (M) are shown. (N) PD-1f/f and PD-1f/fLysMcre DC were differentiated in the presence of B16-F10 tumor supernatant, and the content of neutral lipids was assessed. Mean percentage SEM of BODIPY 493/503positive DC within the CD45+CD11b+ gate is shown. Results are representative of three experiments. *P < 0.05, **P < 0.01, and ***P < 0.005.

We performed unbiased global metabolite analysis to determine whether PD-1deficient myeloid precursors developed a distinct metabolic program. Compared with control, PD-1deficient cells had elevated metabolic intermediates of glycolysis and pentose phosphate pathway (PPP), acetylcoenzyme A (coA), and the TCA cycle metabolites citrate and -ketoglutarate, but the most prominent difference was the elevated cholesterol (Fig. 7I, figs. S16 and S17, and table S1). Abundant cytosolic acetyl-coA can be used for fatty acid and cholesterol biosynthesis (fig. S17) (43). Moreover, mTORC1 activates de novo cholesterol synthesis via sterol regulatory element-binding protein 1 (SREBP1), which regulates transcription of enzymes involved in cholesterol synthesis (47, 48). Because acetyl-coA was elevated (Fig. 7I and fig. S17) and mTORC1 activation was enhanced in PD-1deficient myeloid progenitors in response to growth factors driving emergency myelopoiesis (fig. S15), we examined whether activation of the mevalonate pathway that induces cholesterol synthesis (fig. S18A) might be involved. In PD-1deficient myeloid progenitors cultured with growth factors of emergency myelopoiesis, mRNA of genes regulating cholesterol synthesis and uptake was increased, mRNA of genes promoting cholesterol metabolism was decreased (Fig. 7J and fig. S18B), whereas cellular cholesterol and neutral lipid content was elevated (Fig. 7, K to M). PD-1deficient DC not only differentiated in vitro in the presence of B16-F10 tumor supernatant but also had a significant increase of cholesterol and neutral lipids compared with similarly differentiated DC from control mice (Fig. 7N). Consistent with these in vitro findings, glucose uptake and content of cholesterol and neutral lipids were elevated in GMPs of tumor-bearing PD-1 KO mice compared with control mice at days 7 or 9 after tumor inoculation, respectively, when tumors were not yet detectable or tumors in WT and PD-1 mice had equal size (fig. S19). Thus, features associated with metabolism-driven differentiation of myeloid progenitors are enhanced early in tumor-bearing PD-1 KO mice.

In addition to cholesterol synthesis, mevalonate also leads to the synthesis of isoprenoids, including geranylgeranyl pyrophosphate (GGPP) (fig. S17), which is required for protein geranylgeranylation catalyzed by geranylgeranyltransferase and has an active role in the up-regulation of RORC expression (49). Our metabolite analysis showed increased GGPP (Fig. 7I), providing a mechanistic explanation for the up-regulation of RORC in PD-1deficient myeloid cells. Cholesterol accumulation is associated with skewing of hematopoiesis toward myeloid lineage and monocytosis, induces a proinflammatory program in monocytes/macrophages and DC, and amplifies TLR signaling (5052). Together, these results unravel a previously unidentified role of PD-1 targeting in regulating myeloid lineage fate commitment and proinflammatory differentiation of monocytes, macrophages, and DC during tumor-driven emergency myelopoiesis, through metabolic reprogramming.

Previously, it was determined that monocyte/macrophage terminal differentiation is controlled by the combined actions of retinoid receptors and the nuclear receptor peroxisome proliferatoractivated receptor (PPAR), which is regulated by cholesterol and promotes gene expression and lipid metabolic processes, leading to terminal macrophage differentiation (26, 53). Because our in vitro studies showed that PD-1deficient myeloid progenitors developed a distinct metabolic program with elevated cholesterol metabolism, we examined whether PD-1 ablation might alter the expression of PPAR in addition to RORC. We found that the expression of PPAR was elevated in CD11b+Ly6C+ monocytic cells and M isolated from tumors of PD-1/ and PD-1f/fLysMcre mice (Fig. 8, A to C). Because PD-1deficient myeloid progenitors developed robust mitochondrial activity during culture in vitro (Fig. 7, G and H) and PPAR is involved in mitochondrial function (53), we examined whether myeloid cells in tumor-bearing mice have improved mitochondrial metabolism, a feature that has an important role in supporting antitumor function of other immune cells (54). Monocytes, M, and DC isolated from tumor of PD-1/, and PD-1f/fLysMcre mice had increased mitochondrial membrane potential compared with myeloid cells from control tumor-bearing mice, consistent with enhanced mitochondrial metabolism (Fig. 8, D to G).

(A to C) Expression of PPAR in myeloid cells at the B16-F10 site in PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice was examined by flow cytometry. Mean percentages SEM (A), representative histograms (B), and contour plots (C) of PPAR-expressing CD11b+Ly6C+, CD11b+F4/80+, and CD11c+MHCII+ subsets. (D to G) Mitochondrial metabolic activity of myeloid cells at the B16-F10 tumor site in PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice was examined by assessing mitochondrial membrane potential using MitoRed. Mean fluorescence intensity (MFI) SEM of MitoRedpositive CD11b+Ly6C+, CD11b+F4/80+, and CD11c+MHCII+ subsets within the CD45+CD11b+ gate (D to F) and representative plots of FACS analysis (G) are shown. (H to L) In parallel, expression of IFN-, IL-17A, IL-2, IL-10, RORC, and ICOS in CD8+ TCM and TEM isolated from B16-F10bearing PD-1f/f and PD-1f/fLysMcre mice was assessed by flow cytometry. Representative histograms (H), contour plots (I and K), and mean percentages SEM (J, L, and M) within the CD44hiCD62Lhi gate (for TCM) and CD44hiCD62lo gate (for TEM) cells are shown. Data are from one representative of four independent experiments (*P < 0.05, **P < 0.01, and ***P < 0.005).

We investigated whether these significant immunometabolic changes of myeloid cells, induced by myeloid-specific PD-1 targeting, affected immunological properties of T cells that have key roles in their antitumor function. Compared with control PD-1f/f tumor-bearing mice, PD-1f/fLysMcre tumor-bearing mice had no quantitative differences in CD4+ or CD8+ TEM and TCM cells (fig. S20A) but had significant functional differences. There was an increase of IFN-, IL-17, and IL-10producing CD8+ TEM cells and IL-2producing CD8+ TCM cells (Fig. 8, H to J). Inducible T cell costimulator (ICOS) and lymphocyte-activation gene 3 (Lag3) were elevated in T cells from PD-1f/fLysMcre tumor-bearing mice but cytotoxic T-lymphocyte-associated protein 4 (CTLA4), T cell immunoglobulin and mucin domain 3 (Tim3), CD160, and PD-1/PD-L1 were comparable in T cells from PD-1f/f and PD-1f/fLysMcre tumor-bearing mice (Fig. 8, K to M, and fig. S20B). These findings are significant because IL-17producing T helper cell 17 (TH17)/ T cytotoxic cell 17 (Tc17) cells have enhanced antitumor function and mediate durable tumor growth inhibition (55). Moreover, T cells with a hybrid phenotype producing both IFN- and IL-17 might have superior antitumor properties by combining the enhanced effector function of TH1/Tc1 and the longevity and stemness of TH17/Tc17 cells (56). In our studies, these properties of TEM cells correlated with improved antitumor function in PD-1f/fLysMcre mice.

To examine experimentally whether PD-1deficient myeloid cells differentiated in tumor-bearing mice in vivo have improved capacity of inducing antigen-specific T cell responses, we assessed responses of the same primary CD4+ or CD8+ T cells to antigen-loaded DCs isolated from PD-1/ or control mice bearing B16-F10 tumors (fig. S21A). DCs isolated from the spleen of tumor-bearing WT and PD-1/ mice were pulsed with ovalbumin (OVA) and cocultured with OVA-specific CD4+ or CD8+ T cells from OTI or OTII T cell receptor (TCR)transgenic mice. DCs from tumor-bearing PD-1/ mice had superior ability to induce OTI and OTII T cell proliferation and IFN- expression (fig. S21, B and C). Together, our data provide evidence that myeloid cellintrinsic PD-1 ablation induces potent antitumor immunity by decreasing accumulation of MDSC and promoting proinflammatory and effector monocytic/macrophage and DC differentiation, thereby leading to enhanced effector T cell responses.

Our present studies reveal a previously unidentified role of the PD-1 pathway in regulating lineage fate commitment and function of myeloid cells that arise from tumor-driven emergency myelopoiesis. These outcomes are mediated by myeloid-intrinsic effects of PD-1 ablation, leading to altered signaling and metabolic reprogramming of myeloid progenitors characterized by enhanced differentiation and elevated cholesterol synthesis. Consequently, the accumulation of immature immunosuppressive and tumor-promoting MDSC is diminished, and the output of differentiated, inflammatory effector monocytes, M, and DC is enhanced. These immunometabolic changes of myeloid cells promote the differentiation of TEM cells and systemic antitumor immunity in vivo despite preserved PD-1 expression in T cells.

We found that PD-1deficient myeloid progenitors had enhanced activation of Erk1/2 and mTORC1 in response to G-CSF. These results indicate that Erk1/2 and mTORC1, a downstream mediator of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, which are major targets of PD-1 in T cells (2), are subjected to PD-1mediated inhibition in myeloid cells. These results are revealing because Erk1/2 phosphorylation subverts MDSC-mediated suppression by inducing M-MDSCs differentiation to APC (39). Erk and PI3K regulate glycolysis in response to G-CSF (57). PI3K/Akt/mTORC1 signaling is critical in myeloid lineage commitment. Expression of constitutively active Akt in CD34+ cells induces enhanced monocyte and neutrophil development, whereas a dominant negative Akt has the opposite effect (58). mTORC1 is necessary for the transition of hematopoietic cells from a quiescent state to a prepared alert state in response to injury-induced systemic signals (59), for G-CSFmediated differentiation of myeloid progenitors (40), and for M-CSFmediated monocyte/macrophage generation (41). mTORC1 stimulates translation initiation through phosphorylation of 4E (eIF4E)binding protein 1 (4E-BP1) and ribosomal S6 kinases and has a decisive role in the expression of glucose transporters and enzymes of glycolysis and PPP (47). Consistent with these, our studies showed that PD-1deficient myeloid progenitors had elevated expression of glycolysis and PPP intermediates after culture with emergency cytokines in vitro and enhanced monocytic differentiation in tumor-bearing mice in vivo. Together, our findings indicate that PD-1 might affect the differentiation of myeloid cells by regulating the fine tuning of signaling responses of myeloid progenitors to hematopoietic growth factors that induce myeloid cell differentiation and lineage fate determination during emergency myelopoiesis. Further studies will identify how receptor-proximal signaling events mediated by hematopoietic growth factors are targeted by PD-1 in a manner comparable to PD-1mediated targeting of signaling pathways in T cells (2, 34, 35).

Our metabolite analysis showed that a notable difference of PD-1deficient myeloid progenitors was the increased expression of mevalonate metabolism enzymes and the elevated cholesterol. mTORC1 activates SREBP1, which induces transcription of enzymes involved in fatty acid and cholesterol synthesis (48), thereby leading to glycolysis-regulated activation of the mevalonate pathway. Our signaling studies showing enhanced mTORC1 activation and our metabolic studies showing enhanced mitochondrial metabolism and increased cholesterol content in PD-1deficient myeloid cells provide a mechanistic link between the altered differentiation of PD-1deficient myeloid progenitors and the altered immunophenotypic and functional program of PD-1deficient monocytes, M, and DC in tumor-bearing mice. Cholesterol drives myeloid cell expansion and differentiation of macrophages and DC (50, 51, 60) and promotes antigen-presenting function (61). These properties are consistent with the metabolic profile and the increased cholesterol of PD-1deficient myeloid progenitors; the inflammatory and effector features of differentiated monocytes, M, and DC; and the enhanced T effector cell activation in tumor-bearing mice with myeloid-specific PD-1 ablation that we identified in our studies. By such mechanism, PD-1 might centrally regulate antitumor immunity, independently of the expression of PD-1 and its ligands in the TME. Our studies showed that PD-1 expression on myeloid progenitors is an early event during tumor-mediated emergency myelopoiesis and indicate that PD-1 blockade at early stages of cancer might have a decisive effect on antitumor immunity by preventing MDSC generation from myeloid progenitors and inducing the systemic output of effector myeloid cells that drive antitumor T cell responses.

In addition to its expression in myeloid progenitors, in the bone marrow, we found that PD-1 is expressed in all myeloid subsets including M-MDSC, PMN-MDSC, CD11b+F4/80+ M, and CD11c+MHCII+ DC in the tumor and the spleen of tumor-bearing mice, albeit at different levels. This difference might be related to gradient of tumor-derived factors responsible for PD-1 induction such as G-CSF and GM-CSF that we found to induce PD-1 transcription in myeloid progenitors. This possibility would be consistent with the gradual up-regulation of PD-1 expression in splenic myeloid cells, determined by our kinetics studies, which correlates with tumor growth that might be responsible for the increase of systemic levels of tumor-derived soluble factors that induce PD-1. Other cues of the TME known to mediate the activation step of MDSC (14) might also be responsible for the induction of higher PD-1 expression level in the tumor versus the splenic myeloid cells. Our findings unravel a previously unidentified role of PD-1 in myeloid cell fate commitment during emergency myelopoiesis, a process that is involved not only in antitumor immunity but also in the control of pathogen-induced innate immune responses and sterile inflammation (62).

An additional important finding of our studies is that the nuclear receptors RORC and PPAR are up-regulated in myeloid cells by PD-1 ablation. RORs were initially considered retinoic acid receptors but were subsequently identified as sterol ligands. RORC not only is induced by sterols and isoprenoid intermediates (49) but also serves as the high-affinity receptor of the cholesterol precursor desmosterol (63, 64), a metabolic intermediate of cholesterol synthesis via the mevalonate pathway that regulates inflammatory responses of myeloid cells (52, 60). Desmosterol and as sterol sulfates function as endogenous RORC agonists and induce expression of RORC target genes (63, 64). Our studies showed that, in addition to cholesterol, the mevalonate metabolism product GGPP that has an active role in the up-regulation of RORC expression (49) was elevated in PD-1deficient myeloid cells, providing a mechanistic basis for our finding of the elevated RORC expression. Retinoid receptors and PPAR together regulate monocyte/macrophage terminal differentiation (26). Although initially thought to be involved in proinflammatory macrophage differentiation, it was subsequently understood that PPAR predominantly promotes macrophage-mediated resolution of inflammation by inducing expression of the nuclear receptor liver X receptor and the scavenger receptor CD36, thereby regulating tissue remodeling (65). PPAR also regulates macrophage-mediated tissue remodeling by efferocytosis and production of proresolving cytokines (66), which can suppress cancer growth (67). The combined actions of RORC and PPAR induced by myeloid-specific PD-1 ablation might be involved in the antitumor function by promoting both proinflammatory and tissue remodeling properties of myeloid cells. Future studies will dissect the specific role of each of these nuclear receptors on the antitumor immunity induced by myeloid cellspecific ablation of PD-1.

In conclusion, our results provide multiple levels of evidence that myeloid-specific PD-1 targeting mediates myeloid cellintrinsic effects, which have a decisive role on systemic antitumor responses. This might be a key mechanism by which PD-1 blockade induces antitumor function. Recapitulating this immunometabolic program of myeloid cells will improve the outcome of cancer immunotherapy.

immunology.sciencemag.org/cgi/content/full/5/43/eaay1863/DC1

Materials and Methods

Fig. S1. Gating strategy of hematopoietic and myeloid precursors in the bone marrow.

Fig. S2. Gating strategy of myeloid subsets in the spleen and tumor site.

Fig. S3. Cancer-induced emergency myelopoiesis in three different mouse tumor models.

Fig. S4. PD-1 expression is induced on myeloid progenitors by emergency cytokines.

Fig. S5. Gating strategy for identification of MDSC in human blood samples.

Fig. S6. PD-1 expression in human MDSC.

Fig. S7. PD-1 ablation alters tumor-driven emergency myelopoiesis.

Fig. S8. PD-1 ablation induces expression of RORC and IRF8 in myeloid cells expanding in response to tumor-driven emergency myelopoiesis.

Fig. S9. PD-1 ablation induces expression of RORC and IRF8 in myeloid cells expanding in mice-bearing MC38 or MC17-51 tumors.

Fig. S10. PD-1 ablation increases the output of RORChi effector-like myeloid cells at early stages of tumor growth.

Fig. S11. Therapeutic targeting of PD-1 increases effector features of myeloid cells and decreases tumor growth.

Fig. S12. Myeloid-specific and T cellspecific PD-1 deletion.

Fig. S13. Myeloid-specific PD-1 ablation promotes expansion of IRF8hi and RORChi monocytes and IFN-producing monocytes and macrophages in the tumor site.

Fig. S14. Tumor-induced emergency myelopoiesis and myeloid effector differentiation in Rag2-deficient mice treated with PD-1 antibody.

Fig. S15. PD-1 ablation reduces the threshold of growth factormediated signaling in GMP.

Fig. S16. Myeloid-specific PD-1 ablation induces a distinct metabolic profile characterized by elevated cholesterol.

Fig. S17. Metabolic pathways linking glycolysis to PPP, fatty acid, and cholesterol synthesis.

Fig. S18. Schematic presentation of the mevalonate pathway.

Fig. S19. Increase of glucose uptake and neutral lipid content in PD-1deficient myeloid progenitors early after tumor implantation.

Fig. S20. Myeloid-specific PD-1 deletion alters the immunological profile of CD8+ TEM cells.

Fig. S21. PD-1 ablation enhances antigen presentation ex vivo by tumor-matured DC.

Table S1. List of significantly different metabolites.

Table S2. List of antibodies used for surface staining.

Table S3. List of antibodies used for intracellular staining.

Table S4. List of antibodies used for phenotype of human MDSC.

Table S5. Raw data in Excel spreadsheet.

References (6871)

Acknowledgments: Funding: This work was supported by NIH grants CA183605, CA183605S1, and AI098129-01 and by the DoD grant PC140571. Author contribution: L.S. participated in the conceptualization of the project and experimental design, performed experiments and the analysis and validation of the data, prepared figures, and participated in the preparation of the manuscript. M.A.A.M. performed experiments and the analysis and validation of the data, prepared figures, and participated in the preparation of the manuscript. J.D.W., N.M.T.-O., A.C., R.P., Q.W., and M.Y. participated in various steps of the experimental studies. J.A. participated in the experimental design of metabolite studies and the formal analysis and the validation of the data and participated in the preparation of the manuscript. N.P. participated in the conceptualization of the project, designed and performed the bioenergetics studies, and participated in experiments, the analysis and validation of the data, and the preparation of the manuscript. V.A.B. had the overall responsibility of project conceptualization, experimental design, investigation, data analysis and validation, and preparation of the manuscript and figures. Competing interests: V.A.B. has patents on the PD-1 pathway licensed by Bristol-Myers Squibb, Roche, Merck, EMD-Serono, Boehringer Ingelheim, AstraZeneca, Novartis, and Dako. The authors declare no other competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper or the Supplementary Materials.

Originally posted here:
Targeted deletion of PD-1 in myeloid cells induces antitumor immunity - Science

Duke Researchers Garner Over $6 Million in NIH Funding to Fight Genetic Diseases – Duke Today

Hemophilia. Cystic fibrosis. Duchenne muscular dystrophy. Huntingtons disease. These are just a few of the thousands of disorders caused by mutations in the bodys DNA. Treating the root causes of these debilitating diseases has become possible only recently, thanks to the development of genome editing tools such as CRISPR, which can change DNA sequences in cells and tissues to correct fundamental errors at the sourcebut significant hurdles must be overcome before genome-editing treatments are ready for use in humans.

Enter the National Institutes of Health Common Funds Somatic Cell Genome Editing (SCGE) program, established in 2018 to help researchers develop and assess accurate, safe and effective genome editing therapies for use in the cells and tissues of the body (aka somatic cells) that are affected by each of these diseases.

Todaywith three ongoing grants totaling more than $6 million in research fundingDuke University is tied with Yale University, UC Berkeley and UC Davis for the most projects supported by the NIH SCGE Program.

In the 2019 SCGE awards cycle, Charles Gersbach, the Rooney Family Associate Professor of Biomedical Engineering, and collaborators across Duke and North Carolina State University received two grants: the first will allow them to study how CRISPR genome editing affects engineered human muscle tissues, while the second project will develop new CRISPR tools to turn genes on and off rather than permanently alter the targeted DNA sequence. This work builds on a 2018 SCGE grant, led by Aravind Asokan, professor and director of gene therapy in the Department of Surgery, which focuses on using adeno-associated viruses to deliver gene editing tools to neuromuscular tissue.

There is an amazing team of engineers, scientists and clinicians at Duke and the broader Research Triangle coalescing around the challenges of studying and manipulating the human genome to treat diseasefrom delivery to modeling to building new tools, said Gersbach, who with his colleagues recently launched the Duke Center for Advanced Genomic Technologies (CAGT), a collaboration of the Pratt School of Engineering, Trinity College of Arts and Sciences, and School of Medicine. Were very excited to be at the center of those efforts and greatly appreciate the support of the NIH SCGE Program to realize this vision.

For their first grant, Gersbach will collaborate with fellow Duke biomedical engineering faculty Nenad Bursac and George Truskey to monitor how genome editing affects engineered human muscle tissue. Through their new project, the team will use human pluripotent stem cells to make human muscle tissues in the lab, specifically skeletal and cardiac muscle, which are often affected by genetic diseases. These systems will then serve as a more accurate model for monitoring the health of human tissues, on-target and off-target genome modifications, tissue regeneration, and possible immune responses during CRISPR-mediated genome editing.

Currently, most genetic testing occurs using animal models, but those dont always accurately replicate the human response to therapy, says Truskey, the Goodson Professor of Biomedical Engineering.

Bursac adds, We have a long history of engineering human cardiac and skeletal muscle tissues with the right cell types and physiology to model the response to gene editing systems like CRISPR. With these platforms, we hope to help predict how muscle will respond in a human trial.

Gersbach will work with Tim Reddy, a Duke associate professor of biostatistics and bioinformatics, and Rodolphe Barrangou, the Todd R. Klaenhammer Distinguished Professor in Probiotics Research at North Carolina State University, on the second grant. According to Gersbach, this has the potential to extend the impact of genome editing technologies to a greater diversity of diseases, as many common diseases, such as neurodegenerative and autoimmune conditions, result from too much or too little of certain genes rather than a single genetic mutation. This work builds on previous collaborations between Gersbach, Barrangou and Reddy developing both new CRISPR systems for gene regulation and to regulate the epigenome rather than permanently delete DNA sequences.

Aravind Asokan leads Dukes initial SCGE grant, which explores the the evolution of next generation of adeno-associated viruses (AAVs), which have emerged as a safe and effective system to deliver gene therapies to targeted cells, especially those involved in neuromuscular diseases like spinal muscular atrophy, Duchenne muscular dystrophy and other myopathies. However, delivery of genome editing tools to the stem cells of neuromuscular tissue is particularly challenging. This collaboration between Asokan and Gersbach builds on their previous work in using AAV and CRISPR to treat animal models of DMD.

We aim to correct mutations not just in the mature muscle cells, but also in the muscle stem cells that regenerate skeletal muscle tissue, explainsAsokan. This approach is critical to ensuring long-term stability of genome editing in muscle and ultimately we hope to establish a paradigm where our cross-cutting viral evolution approach can enable efficient editing in multiple organ systems.

Click through to learn more about the Duke Center for Advanced Genomic Technologies.

Read the original post:
Duke Researchers Garner Over $6 Million in NIH Funding to Fight Genetic Diseases - Duke Today

Fair City fans reckon Orla and Wayne will fight for Sashs baby – The Irish Sun

FAIR City's latest arrival, baby Olivia is causing a stir in Carrigstown.

In last night's episode Sash welcomed baby Olivia a month early after being rushed to the hospital by Wayne and Orla.

3

3

3

Wayne called around to Sash as he saw her look unwell in the cafe and to again try talk her out of leaving Carrigstown.

Upon arriving he saw Sash frantically packing a bag only to discover she was in labour.

After much ado and Sash worrying because she wanted to bring her own teabags to the hospital Wayne and Orla got her to hospital before she gave birth.

Orla was forced into being Sashs birthing partner. Orla supported Sash as the baby was born.

The baby was then taken to ICU leaving Orla and Sash both emotional. Orla tried to hide her feelings of longing for the newborn.

Tonight Wayne told Dolores the U.S. surrogate had her baby. Dolores was so excited to hear that she had a granddaughter.

Orla and Wayne visited Sash and baby Olivia in the hospital but Orla kept her distance.

Junior got the go-ahead for the stem cell treatment.

Upon finding out that the stem cells were a match Dolores tried to convince Orla to tell Junior that he has a new sister. Dolores called Junior and Wayne to the kitchen and Orla snapped at her and said: "I said no!"

Orla was thrown when Dolores offered to go to the U.S. by herself to see the baby.

Wayne met Dolores in the pub and made up a story about the surrogate to dissuade her from going to the U.S.

When Dolores continued to pressure him, Wayne got annoyed saying:

"Ma you are wrecking my head, I cant take much more of this so please just leave it."

Dolores began to suspect somethings amiss.

'OVERJOYED' Cameron Diaz, 47, welcomes first child, daughter Raddix, with husband Benji

GIRLS NIGHT OUT Jacqueline Jossa looks stunning as she shows off weight loss on night out

out of OT Offaly mum withdraws from Operation Transformation - and won't be replaced

Exclusive

Pricey hol Katie Price hasnt seen ypungesrt kids nor gifted them Christmas presents

Spoiler

TRUTH IS OUT Fair City's Erica and Doug come clean while Sash tells Wayne to back off

VEG-ANGRY This Morning fans horrified by angry vegan - but Eamonn Holmes defends him

Fair City fans are beginning to think Orla is going to fight for the baby.

One person tweeted: "Orla is gonna fight for the kid u can see it."

Someone else added: " I don't know who I want to keep the baby."

Read more:
Fair City fans reckon Orla and Wayne will fight for Sashs baby - The Irish Sun

Father-of-three raises cash for last chance MS treatment – Pontefract and Castleford Express

Phil Swindin, from Darrington, was diagnosed with Multiple Sclerosis in 2004, and has suffered major problems with his health ever since.

His symptoms have now escalated, leaving him unable to walk more than a metre without support, and relying on caffeinated drinks for short bursts of energy.

He hopes to travel to a private facility in Mexico for a new type of treatment known as Autologous Haematopoietic Stem Cell Transplantation (AHSCT), which has been linked with improvements in MS.

Phil said: Living with MS is constant and terrifying, as you just get more and more disabled and whatever you do very little can be done.

My MS symptoms have fluctuated and reared its ugly head at the most inappropriate times and limited my normal physical or mental ability.

Its caused major hidden problems in mobility, mental health, energy levels and so many other symptoms.

I long to do simple things like doing things with my kids, playing football or going for a walk but its out of the question.

All other avenues have failed so Im left with only one option, to fundraise for private treatment.

Phil and his wife Alison launched the fundraiser last month, and have already raised more than 28,000.

The couple also hope to organise a ball in the Spring to help boost funding,

Alison said: People have just been wonderful. People who we havent spoken to for years have been in touch and their words of support are fantastic.

It sort of feels much more achievable than when we started it. Were just trying to keep it moving, with more things happening all the time.

Phils treatment is currently booked for April, but will have to be postponed if the funds are not raised before then.

Phil has also been supported by Ackworth mum-of-two Kate Dawson, who successfully underwent the treatment in 2017 and described the results as life-changing.

The rest is here:
Father-of-three raises cash for last chance MS treatment - Pontefract and Castleford Express

Moving story of bone marrow donor’s amazing 30 year bond with the man he saved – Mirror Online

There was a head-scratching moment when Martin Swales answered his front door and a priest handed him a letter.

The mystery was quickly solved. It contained a thank you note from someone whose life Martin had saved.

He knew his bone marrow had been given to someone called Jan and imagined it was a woman in Britain.

In fact the recipient was dad Jan Zemek 4,500 miles away in the US.

And Martins gift of life has led to an extraordinary 30-year bond between the pair, who are like blood brothers.

Jan named his second daughter Martina in honour of his hero and Martin is godfather to his third girl.

Retired welder Martin, 58, of Guisborough, North Yorks, said: Donating bone marrow didnt just save Jans life, it changed mine as well.

The first time I met Jan, I put my arms around him and he hugged me back.

It felt natural, like I was welcoming my brother. It feels like our two families have become one.

They each have three grown-up children and have visited each other for baptisms, graduations, and weddings.

Martin recently went to Switzerland, where Jan lives with his family, to celebrate 30 years since the transplant and present his blood brother with a Walk of Fame plaque.

It includes the touching message: Stood strong, fought hard, and won. You are a survivor.

The mens amazing and heart-warming story dates from 1986 when Martin joined the Anthony Nolan stem cell register after an appeal to save two girls living in the North East.

He was not a match for the girls but in 1989 was called by the register because he could be for Jan.

Martin said: It was quite a shock because Id pretty much forgotten about the register. They told me I was a possible match for someone and what was involved. I said yes straight away. I wanted to help if I could.

Despite the discomfort, Martin gave bone marrow from his hip at a clinic in Harley Street that August. Doctors extracted it from inside his hip using a long needle. Today most donations are no more invasive than giving blood.

Martin spent two nights in hospital. He said: It doesnt take long but at the time I was suffering from sciatica so I think I found it a bit more painful than most. It was an uncomfortable journey home on the train.Anthony Nolan covered the cost of the trip.

Jan, a 27-year-old dad, was diagnosed with leukaemia in 1987. Initially doctors kept the news from him as no treatment was available in the Czech Republic, where he lived.

Jan said: I was diagnosed one year after the Chernobyl tragedy, weve never known if that radiation was to blame for my cancer. I suddenly grew very tired, nobody knew the reason.

I didnt know how sick I was because the doctors wouldnt tell me.

My wife, who was then my girlfriend, went to the same doctors and they told her, Dont marry this guy, dont have children with him. He is going to die in two years.

But Radka ignored their warning and insisted on marrying Jan in 1987.

His only hope was a bone marrow transplant. Weeks later he left for the US with his dad, who planned to be his donor.

Jan said: A few months earlier, I read in the paper the opera singer Jos Carreras was diagnosed with a similar blood disease and was going to the same US centre for a transplant.

They arrived with less than 40 in their pockets and discovered a transplant from his dad would give Jan only a 15 per cent chance of survival.

Instead doctors advised them to find a donor. It took two years and 10,000 to test potential donors before they found a perfect match in Martin.

By then Jan and Radka had become parents to their first daughter, Jana.

Jan needed to raise more than 100,000 to fund the transplant.

He said: It was such a huge amount of money to raise but when you are dying you have no choice.

There were 12 rival local radio stations but they all got together to run a joint appeal, which they broadcast at the same time. It was incredible.

Jan did a sponsored run, gave talks about his ordeal to church congregations to request donations, and wrote to celebrities, especially those with links to the Czech Republic.

Donald Trump s ex-wife Ivana gave 1,000, as did One Flew Over the Cuckoos Nest director Milos Forman. Jan said: The response was crazy. So many people donated 20 dollars or 50.

Martins bone marrow was flown to the Fred Hutchinson Cancer Research Center in Seattle, where Jan was waiting in an isolation room.

He had been blasted with chemo and radiotherapy so his immune system would not attack Martins transplanted cells.

Normally, under strict anonymity rules to protect donor and recipient, Martin and Jan would have been unable to contact each other for years.

But a priest from the North East of England working at the hospital recognised Martins address when the bag of bone marrow arrived.

He offered to take a photo of Jan, a thank you letter, and a Czech garnet stone to Martin when he returned home in 1990.

Martin said: I was stunned. I had no idea my bone marrow had travelled so far. Knowing Id helped a young father, just like me, brought home how important it was and how easily it could have been me waiting for a stranger to save my life.

I wrote straight back. The priest also brought a letter from a couple whose daughter was in the same hospital.

Her transplant didnt work. Sadly she died, but they wrote to thank me for saving Jan. Responding to them was much harder. How do you find the right words?

Martin and Jan kept in touch. When Jans second daughter was born in 1991, he and Radka named her after Martin.

Jan said: How do you repay someone who saved your life? Naming our daughter after Martin was our way of showing him we would never forget what he did for us.

Hes not just the man who saved my life. He is a nice guy. Thats why were so close.

Video Unavailable

Click to playTap to play

Play now

Jan, 59, and his family moved to Switzerland, where he landed a job with a sports marketing firm that works with World Athletics.

In 1992 his job brought him to Crystal Palace in South London and he spent a few days with Martin and family.

Jans youngest daughter Michaela was born in 1995 and he invited Martin and his family to Switzerland for the baptism and asked him to be godfather.

The two families continued to visit each other and holidayed together in the Czech capital Prague. When Jans eldest, Jana, was studying at Newcastle University, she regularly spent weekends with Martin and his wife Tracey.

Martin said: It meant so much to visit Jan for the 30 anniversary of his transplant earlier this year.

"They showed us the sights and we went up the mountains. It was brilliant. I could never have imagined this when I joined the stem cell register all those years ago.

He added: I hope Martin and I will be able to celebrate another anniversary together in ten years.

The Anthony Nolan register matches potential donors to patients needing stem cell transplants and does vital research. To join, donate or find out more, see anthonynolan.org .

Read more:
Moving story of bone marrow donor's amazing 30 year bond with the man he saved - Mirror Online

Stem Cell Therapy Market 2020 Analysis by Treatment, Application, Technology, Therapy With Regional Outlook & Forecast To 2025 – The Picayune…

Growth of Global Stem Cell Therapy Market Size is favored by cumulative factors like development of advanced genome-based cell analysis techniques, soaring awareness of the therapeutic potency of stem cells, detection of novel stem cell lines, and developments in infrastructure related to stem cell banking and processing, and increasing public-private investments for development of stem cell therapies.

In the upcoming years, North America is likely to dominate the global stem cell therapy market share. The U.S. dominates the market which is followed by Canada. Stem cell therapy is powered to cure diseases like diabetes and cancer. There is an increase in occurence of such diseases and higher awareness for the treatment of such diseases is propelling stem cell therapy market. New product innovation & launching, increase in a number of clinical trials for evaluation of the therapeutic potential and higher adoption of these therapies & procedures is fueling market growth. Presence of numerous centers and organization that are engaged in R&D related to new stem cell therapy is likely to led lucrative market growth.

Get more insights at:Global Stem Cell Therapy Market 2020-2025

Europe holds second position in the lucrative market of stem cell therapy. This is attributed to development of efficient & advanced technologies and growing investment in healthcare industry.

The Asia Pacific is projected to exhibit the highest growth in the market. The key countries that are expected to experience fastest development are India and China. The higher adoption of grants by several funding agencies and government for scientific researches is anticipated to stimulate the regional market growth. Investment of leading players for launch and development of newer technologies and increase in healthcare expenditure are also anticipated to up surge the Asia-Pacific market growth of stem cell therapy.

The Middle East & Africa and Latin America regions are expected to show slow growth in the forecast period. Rising awareness about the SC therapies, growing expenditure in the healthcare sector, rapid development in the infrastructure of healthcare and adoption of western technologies and lifestyle is expected to fuel the growth of the stem cell therapy market.

In terms of types of global stem cell therapy market is bifurcated into autologous stem cell therapy and allogeneic stem cell therapy. The segment of allogeneic stem cell therapy is likely to command largest global stem cell therapy market share. This is attributed to easy production scale-up process, escalating commercialization of allogeneic stem cell therapy products, the extensive therapeutic applications of allogeneic stem cells and mounting number of clinical trials related to allogeneic stem cell therapies.

Based on therapeutic application, the global stem cell therapy industry has wide range of categories which includes musculoskeletal disorders, cardiovascular diseases, gastrointestinal diseases, wounds and injuries, surgeries, and other applications. The musculoskeletal disorders sector is anticipated to dominate the global stem cell therapy market by holding largest share. This is attributed to the high prevalence of bone & joint diseases, musculoskeletal disorders, escalating availability of stem cell-based products for the treatment of musculoskeletal disorders and higher patient preference for effective & early treatment strategies.

Get more details about Global Stem Cell Therapy Market:

https://www.adroitmarketresearch.com/industry-reports/stem-cell-therapy-market

The global stem cell therapy market is niche industry with soaring global and local companies involved in the commercialization and development of stem cell therapy products. Anterogen Co., Ltd. (South Korea), MEDIPOST Co., Ltd. (South Korea), Osiris Therapeutics, Inc. (U.S.) and Pharmicell Co., Ltd. (South Korea) are the prominent market players of the global stem cell therapy market. The major strategies adopted by leading market players include expansions, partnerships, new product launches and approvals, and agreements to achieve growth in the global stem cell therapy market.

Key segments of Global Stem Cell Therapy Market

Based on cell source, the market has been segmented into,

Based on therapeutic application, the market has been segmented into,

Based on region, the market has been segmented into,

What to expect from the upcoming report on Global Stem Cell Therapy Market:

Future prospects and current trends of the global stem cell therapy market by the end of forecast period (2018-2025)

Information regarding technological progressions as well as innovations taking place in developing economies

Supportive initiatives by government likely to influence the market dynamics

Trends, drivers, opportunities, restraints, challenges and key developments in the market

In-depth analysis of different market segmentations including regional segmentations, and product types

Deep analysis about the competitive landscape of the market and the initiatives by them to improve this market

For Any Query on the Stem Cell Therapy Market:

https://www.adroitmarketresearch.com/contacts/enquiry-before-buying/691

About US:

Adroit Market Research is an India-based business analytics and consulting company. Our target audience is a wide range of corporations, manufacturing companies, product/technology development institutions and industry associations that require understanding of a markets size, key trends, participants and future outlook of an industry. We intend to become our clients knowledge partner and provide them with valuable market insights to help create opportunities that increase their revenues. We follow a code Explore, Learn and Transform. At our core, we are curious people who love to identify and understand industry patterns, create an insightful study around our findings and churn out money-making roadmaps.

Contact Information:

Ryan Johnson

Account Manager Global

3131 McKinney Ave Ste 600, Dallas,

TX 75204, U.S.A

Phone No.: USA: +1 972-362 -8199 / +91 9665341414

This post was originally published on The Picayune Current

Go here to read the rest:
Stem Cell Therapy Market 2020 Analysis by Treatment, Application, Technology, Therapy With Regional Outlook & Forecast To 2025 - The Picayune...

BrainStorm Cell Therapeutics Wins 2020 ‘Buzz of BIO’ Award for ALS Investigational Therapy – ALS News Today

For its promising investigational therapeutic approach to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), BrainStorm Cell Therapeutics is theBuzz of BIO 2020 winnerin the Public Therapeutic Biotech category.

The Buzz of BIO contest identifies U.S. companies with groundbreaking, early-stage potential to improve lives. The event also is anopportunity to make investor connections that could take products to the next phase.

Ten biotechnology companies are nominated in each of the three categories ofBuzz of BIO: Public Therapeutic Biotech, Private Therapeutic Biotech, and Diagnostics and Beyond. In the Public Therapeutic Biotech category that BrainStorm won, nominated companies must be actively developing a publicly traded human treatment intended for review by theU.S. Food and Drug Administration (FDA).

As a developer of autologous cellular therapies treatments that use a patients own cells and tissues for debilitating neurodegenerative diseases, BrainStorm is now testing its NurOwn therapy for safety and effectiveness. The treatment involves extracting, from human bone, marrow-derived mesenchymal stem cells (MSCs), which are capable of differentiating into other cell types. The MSCs are then matured into a specific cell type that produces neurotrophic factors compounds that promote nervous tissue growth and survival. They are then reintroduced to the body via injection into muscles and/or the spinal canal.

Backed by a California Institute for Regenerative Medicine grant, Brainstorm has fully enrolledits randomized, double-blind, placebo-controlled Phase 3 clinical trial (NCT03280056) at six U.S. sites in California, Massachusetts, and Minnesota. Some 200 ALS patients are participating. A secondary safety analysis by the trials independent Data Safety Monitoring Board (DSMB) revealed no new concerns. Every two months, study subjects will be given three injections into the spinal canal of either NurOwn or placebo.

The trial is expected to conclude late this year. Results will be announced shortly afterward.

In a Phase 2 study (NCT02017912), which included individuals with rapidly progressing ALS, NurOwn demonstrated a positive safety profile as well as prospective efficacy.

The use of autologous MSC cells to potentially treat ALS was given orphan drug status by both the FDA and the European Medicines Agency.

Thanks to everyone who voted for BrainStorm during the Buzz of BIO competition,Chaim Lebovits, BrainStorm president and CEO, said in a press release. The entire management team at BrainStorm was very pleased with the results of this competition, and we look forward to presenting to an audience of accredited investors who may benefit from the companys story. We thank the BIO[Biotechnology Innovation Organization] team for singling out BrainStorms NurOwn as a key technology with the potential to improve lives.

As a contest winner, BrainStorm is invited to givea presentation at theBio CEO & Investor Conference, to be held Feb. 1011 in New York City, along with exposure to multiple industry elites and potential investors.

NurOwn cells also are being tested in a Phase 2 clinical study (NCT03799718) in patients with progressive multiple sclerosis.

Mary M. Chapman began her professional career at United Press International, running both print and broadcast desks. She then became a Michigan correspondent for what is now Bloomberg BNA, where she mainly covered the automotive industry plus legal, tax and regulatory issues. A member of the Automotive Press Association and one of a relatively small number of women on the car beat, Chapman has discussed the automotive industry multiple times of National Public Radio, and in 2014 was selected as an honorary judge at the prestigious Cobble Beach Concours dElegance. She has written for numerous national outlets including Time, People, Al-Jazeera America, Fortune, Daily Beast, MSN.com, Newsweek, The Detroit News and Detroit Free Press. The winner of the Society of Professional Journalists award for outstanding reporting, Chapman has had dozens of articles in The New York Times, including two on the coveted front page. She has completed a manuscript about centenarian car enthusiast Margaret Dunning, titled Belle of the Concours.

Total Posts: 6

Ins holds a PhD in Biomedical Sciences from the University of Lisbon, Portugal, where she specialized in blood vessel biology, blood stem cells, and cancer. Before that, she studied Cell and Molecular Biology at Universidade Nova de Lisboa and worked as a research fellow at Faculdade de Cincias e Tecnologias and Instituto Gulbenkian de Cincia. Ins currently works as a Managing Science Editor, striving to deliver the latest scientific advances to patient communities in a clear and accurate manner.

Continued here:
BrainStorm Cell Therapeutics Wins 2020 'Buzz of BIO' Award for ALS Investigational Therapy - ALS News Today

Cell and Advanced Therapies Supply Chain Management Industry Report, 2019-2030 – GlobeNewswire

Dublin, Jan. 03, 2020 (GLOBE NEWSWIRE) -- The "Cell and Advanced Therapies Supply Chain Management Market, 2019-2030: Focus on Technological Solutions" report has been added to ResearchAndMarkets.com's offering.

Cell and Advanced Therapies Supply Chain Management Market: Focus on Technological Solutions, 2019-2030 report features an extensive study of the growing supply chain management software solutions market.

The focus of this study is on software systems, including cell orchestration platforms (COP), enterprise manufacturing systems (EMS), inventory management systems (IMS), laboratory information management systems (LIMS), logistics management systems (LMS), patient management systems (PMS), quality management systems (QMS), tracking and tracing software (TTS), and other such platforms that are being used to improve / optimize various supply chain-related processes of cell and advanced therapies.

One of the key objectives of the report was to understand the primary growth drivers and estimate the future size of the supply chain management software solutions market. Based on multiple parameters, such as number of cell and advanced therapies under development, expected pricing, likely adoption rates, and potential cost saving opportunities from different software systems, we have developed informed estimates of the evolution of the market, over the period 2019-2030.

In addition, we have provided the likely distribution of the current and forecasted opportunity across:

Advanced therapy medicinal products, such as cell and gene therapies, have revolutionized healthcare practices. The introduction of such treatment options has led to a paradigm shift in drug development, production and consumption. Moreover, such therapies have actually enabled healthcare providers to treat several difficult-to-treat clinical conditions.

In the past two decades, more than 30 such therapy products have been approved; recent approvals include Zolgensma (2019), RECELL System (2018), AmnioFix (2018), EpiFix (2018), EpiBurn (2018), Alofisel (2018), LUXTURNA (2017), Yescarta (2017), and Kymriah (2017). Further, according to a report published by The Alliance for Regenerative Medicine in 2019, more than 1,000 clinical trials are being conducted across the globe by over 900 companies.

In 2018, around USD 13 billion was invested in this domain, representing a 73% increase in capital investments in this domain, compared to the previous year. It is worth highlighting that, based on an assessment of the current pipeline of cell therapies and the historical clinical success of such products, it is likely that around 10-20 advanced therapies are approved by the US FDA each year, till 2025.

The commercial success of cell and advanced therapies is not only tied to whether they are capable of offering the desired therapeutic benefits, but also on whether the developers are able to effectively address all supply chain requirements. The advanced therapy medicinal products supply chain is relatively more complex compared to the conventional pharmaceutical supply chain. As a result, there are a number of risks, such as possible operational inefficiencies, capacity scheduling concerns, process delays leading to capital losses, and deliverable tracking-related issues, which need to be taken into consideration by therapy developers.

This has generated a need for bespoke technological solutions, which can be integrated into existing processes to enable the engaged stakeholders to oversee and manage the various aspects of the cell and advanced therapies supply chain, in compliance to global regulatory standards. Over the years, several innovative, software-enabled systems, offering supply chain orchestration and needle-to-needle traceability, have been developed.

The market has also recently witnessed the establishment of numerous partnerships, most of which are agreements between therapy developers and software solutions providers. Further, given the growing demand for cost-effective personalized medicinal products, and a myriad of other benefits of implementing such software solutions, the niche market is poised to grow significantly in the foreseen future.

Amongst other elements, the report features:

In order to account for the uncertainties associated with some of the key parameters and to add robustness to our model, we have provided three market forecast scenarios portraying the conservative, base and optimistic tracks of the industry's evolution.

The opinions and insights presented in this study were influenced by discussions conducted with several stakeholders in this domain. The report features detailed transcripts of interviews held with the following individuals:

Key Topics Covered

1. PREFACE1.1. Scope of the Report1.2. Research Methodology1.3. Chapter Outlines

2. EXECUTIVE SUMMARY

3. INTRODUCTION3.1. Context and Background3.2. An Introduction to Cell and Advanced Therapies3.2.1. Classification of Advanced Therapy Medicinal Products3.2.2. Current Market Landscape3.3. Cell and Advanced Therapies Supply Chain3.3.1. Key Processes3.3.2. Challenges Associated with the Cell and Advanced Therapies Supply Chain3.4. Software Solutions for Cell and Advanced Therapies Supply Chain Management3.4.1. Cell Orchestration Platform3.4.2. Enterprise Manufacturing System3.4.3. Inventory Management System3.4.4. Laboratory Information Management System3.4.5. Logistics Management System3.4.6. Patient Management System3.4.7. Quality Management System3.4.8. Tracking and Tracing System3.5. Growth Drivers and Roadblocks3.6. Emergence of Digital Technologies in Supply Chain Management3.6.1. Blockchain Technology3.6.2. Internet of Things3.6.3. Augmented Reality3.6.4. Big Data Analytics3.6.5. Artificial Intelligence

4. CURRENT MARKET LANDSCAPE4.1. Chapter Overview4.2. Cell and Advanced Therapies Supply Chain Management: Overall Market Landscape4.2.1. Analysis by Type of Software Solution4.2.2. Analysis by Key Specification and Benefit4.3.3. Analysis by Application4.3.4. Analysis by End User4.3.5. Analysis by Mode of Deployment4.3.6. Analysis by Scale of Management4.3.7. Analysis by Regulatory Certifications / Accreditations4.3. Cell and Advanced Therapies Supply Chain Management: Developer Landscape4.2.1. Analysis by Year of Establishment4.2.2. Analysis by Location of Headquarters4.2.3. Analysis by Size of Company4.3.4. Analysis by Support Services Offered4.3.5. Leading Developers: Analysis by Number of Software Solutions

5. COMPANY COMPETITIVENESS ANALYSIS5.1. Chapter Overview5.2. Methodology5.3. Assumptions and Key Parameters5.4. Competitiveness Analysis: Overview of Supply Chain Management Software Solution Providers5.4.1. Small-sized Companies5.4.2. Mid-sized Companies5.4.3. Large Companies

6. CORE SUPPLY CHAIN MANAGEMENT SOFTWARE SOLUTIONS: COMPANY PROFILES6.1. Chapter Overview6.2. Brooks Life Sciences6.2.1. Company Overview6.2.2. Financial Information6.2.3. BiobankPro: Software Description6.2.4. Recent Developments and Future Outlook6.3. Cryoport6.3.1. Company Overview6.3.2. Financial Information6.3.3. Cryoportal: Software Description6.3.4. Recent Developments and Future Outlook6.4. MasterControl6.4.1. Company Overview6.4.2. MasterControl Platform: Software Description6.4.3. Recent Developments and Future Outlook6.5. SAP6.5.1. Company Overview6.5.2. Financial Information6.5.3. SAP S/4HANA: Software Description6.5.4. Recent Development and Future Outlook6.6. Savsu Technologies6.6.1. Company Overview6.6.2. Financial Information6.6.3. evo Cold Chain 2.0: Software Description6.6.4. Recent Development and Future Outlook6.7. TraceLink6.7.1. Company Overview6.7.2. Financial Information6.7.3. Digital Supply Chain Platform: Software Description6.7.4. Recent Developments and Future Outlook

7. CELL ORCHESTRATION PLATFORMS: EMERGING TRENDS AND PROFILES OF KEY PLAYERS7.1. Chapter Overview7.2. Supply Chain Orchestration Platforms7.2.1. Key Functions of Supply Chain Orchestration Platforms7.2.2. Advantages of Supply Chain Orchestration Platforms7.2.3. Supply Chain Orchestration Platform Implementation Strategies7.3. Supply Chain Orchestration Platform: Trends on Twitter7.3.1. Scope and Methodology7.3.2. Historical Trends in Volume of Tweets7.3.3. Popular Keywords7.4. Key Industry Players7.4.1. Be The Match BioTherapies7.4.2. Clarkston Consulting7.4.3. Haemonetics7.4.4. Hypertrust Patient Data Care7.4.5. Lykan Bioscience7.4.6. MAK-SYSTEM7.4.7. sedApta Group7.4.8. Stafa Cellular Therapy7.4.9. Title 21 Health Solutions7.4.10. TrakCel7.4.11. Vineti

8. FUNDING AND INVESTMENT ANALYSIS8.1. Chapter Overview8.2. Types of Funding8.3. Cell and Advanced Therapies Supply Chain Management: Recent Funding Instances8.3.1. Analysis by Number of Funding Instances8.3.2. Analysis by Amount Invested8.3.3. Analysis by Type of Funding8.3.4. Analysis by Number of Funding Instances and Amount Invested across Different Software Solutions8.3.5. Most Active Players: Analysis by Amount Invested8.3.6. Most Active Investors: Analysis by Participation8.3.7. Geographical Analysis by Amount Invested8.4. Concluding Remarks

9. PARTNERSHIPS AND COLLABORATIONS9.1. Chapter Overview9.2. Partnership Models9.3. Cell and Advanced Therapies Supply Chain Management: Recent Collaborations and Partnerships9.3.1. Analysis by Year of Partnership9.3.2. Analysis by Type of Partnership9.3.3. Analysis by Partner's Focus Area9.3.4. Analysis by Type of Software Solution9.3.5. Most Active Players: Analysis by Number of Partnerships9.3.6. Analysis by Regions

10. PLATFORM UTILIZATION USE CASES10.1. Chapter Overview10.2. Cell and Advanced Therapies Supply Chain Management: Recent Platform Utilization Use Cases10.2.1. Analysis by Year of Utilization10.2.2. Analysis by User's Focus Area10.2.3. Analysis by Type of Software Solution10.2.4. Most Active Players: Analysis by Number of Utilization Instances10.2.5. Most Active Players: Regional Analysis by Number of Utilization Instances

11. VALUE CHAIN ANALYSIS11.1. Chapter Overview11.2. Cell and Advanced Therapies Value Chain11.2. Cell and Advanced Therapies Value Chain: Cost Distribution11.3.1. Donor Eligibility Assessment11.3.2. Sample Collection11.3.3. Manufacturing11.3.4. Logistics11.3.5. Patient Verification and Treatment Follow-up

12. STAKEHOLDER NEEDS ANALYSIS12.1. Chapter Overview12.2. Cell and Advanced Therapies Supply Chain Management: Needs of Different Stakeholders12.2.1. Comparison of Stakeholder Needs

13. COST SAVINGS ANALYSIS13.1. Chapter Overview13.2. Key Assumptions and Methodology13.3. Overall Cost Saving Potential of Supply Chain Management Software Solutions, 2019-203013.3.1. Cost Saving Potential in Donor Eligibility Assessment, 2019-203013.3.2. Cost Saving Potential in Sample Collection, 2019-203013.3.3. Cost Saving Potential in Manufacturing, 2019-203013.3.4. Cost Saving Potential in Logistics, 2019-203013.3.5. Cost Saving Potential in Patient Verification and Treatment Follow-up, 2019-2030

14. MARKET FORECAST14.1. Chapter Overview14.2. Key Assumptions and Forecast Methodology14.3. Overall Cell and Advanced Therapies Supply Chain Management Solutions Market, 2019-203014.3.1. Overall Cell and Advanced Therapies Supply Chain Management Solutions Market: Distribution by Application14.3.2. Overall Cell and Advanced Therapies Supply Chain Management Solutions Market: Distribution by End User14.3.3. Overall Cell and Advanced Therapies Supply Chain Management Solutions Market: Distribution by Type of Software Solution14.3.4. Overall Cell and Advanced Therapies Supply Chain Management Solutions Market: Distribution by Mode of Deployment14.3.5. Overall Cell and Advanced Therapies Supply Chain Management Solutions Market: Distribution by Geography14.4. Overall Cell and Advanced Therapies Supply Chain Management Solutions Market: Distribution by Application, Type of Software Solution and Mode of Deployment14.4.1. Cell and Advanced Therapies Supply Chain Management Solutions Market for Donor Eligibility Assessment, 2019-203014.4.2. Cell and Advanced Therapies Supply Chain Management Solutions Market for Sample Collection, 2019-203014.4.3. Cell and Advanced Therapies Supply Chain Management Solutions Market for Manufacturing, 2019-203014.4.4. Cell and Advanced Therapies Supply Chain Management Solutions Market for Logistics, 2019-203014.4.5. Cell and Advanced Therapies Supply Chain Management Solutions Market for Patient Verification and Treatment Follow-up, 2019-2030

15. EXECUTIVE INSIGHTS15.1. Chapter Overview15.2. Thermo Fisher Scientific15.2.1. Company Snapshot15.2.2. Interview Transcript: Bryan Poltilove, Vice President and General Manager15.3. Cell and Gene Therapy Catapult15.3.1. Company Snapshot15.3.2. Interview Transcript: Jacqueline Barry, Chief Clinical Officer15.4. McKesson15.4.1. Company Snapshot15.4.2. Interview Transcript: Jill Maddux, Director, Cell and Gene Therapy Product Strategy, and Divya Iyer, Senior Director, Corporate Strategy and Business Development15.5. TrakCel15.5.1. Company Snapshot15.5.2. Interview Transcript: Martin Lamb, Chief Business Officer

16. CONCLUDING REMARKS16.1. Chapter Overview16.2. Key Takeaways

17. APPENDIX 1: LIST OF ADDITIONAL SUPPLY CHAIN MANAGEMENT SOFTWARE SOLUTIONS

18. APPENDIX 2: TABULATED DATA

19. APPENDIX 3: LIST OF COMPANIES AND ORGANIZATIONS

For more information about this report visit https://www.researchandmarkets.com/r/kw1hkc

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Continue reading here:
Cell and Advanced Therapies Supply Chain Management Industry Report, 2019-2030 - GlobeNewswire

miRNAs: A Promising Target in the Chemoresistance of Bladder Cancer | OTT – Dove Medical Press

Zhonglin Cai,1,* Fa Zhang,2,* Weijie Chen,3,* Jianzhong Zhang,1 Hongjun Li1

1Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, Peoples Republic of China; 2Department of Urology, First Hospital of Lanzhou University, Lanzhou, Gansu, Peoples Republic of China; 3Department of Urology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine University, Shanghai, Peoples Republic of China

*These authors contributed equally to this work

Correspondence: Hongjun LiDepartment of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, Peoples Republic of ChinaTel +86 139 0117 1724Email lihongjun@pumch.cn

Abstract: Chemotherapy is an important cancer treatment method. Tumor chemotherapy resistance is one of the main factors leading to tumor progression. Like other malignancies, bladder cancer, especially muscle-invasive bladder cancer, is prone to chemotherapy resistance. Additionally, only approximately 50% of muscle-invasive bladder cancer responds to cisplatin-based chemotherapy. miRNAs are a class of small, endogenous, noncoding RNAs that regulate gene expression at the posttranscriptional level, which results in the inhibition of translation or the degradation of mRNA. In the study of miRNAs and cancer, including gastric cancer, prostate cancer, liver cancer, and colorectal cancer, it has been found that miRNAs can regulate the expression of genes related to tumor resistance, thereby promoting the progression of tumors. In bladder cancer, miRNAs are also closely related to chemotherapy resistance, suggesting that miRNAs can be a new therapeutic target for the chemotherapy resistance of bladder cancer. Therefore, understanding the mechanisms of miRNAs in the chemotherapy resistance of bladder cancer is an important foundation for restoring the chemotherapy sensitivity of bladder cancer and improving the efficacy of chemotherapy and patient survival. In this article, we review the role of miRNAs in the development of chemotherapy-resistant bladder cancer and the various resistance mechanisms that involve apoptosis, the cell cycle, epithelial-mesenchymal transition (EMT), and cancer stem cells (CSCs).

Keywords: miRNAs, chemoresistant, bladder cancer, biomarkers, targeted therapy

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Follow this link:
miRNAs: A Promising Target in the Chemoresistance of Bladder Cancer | OTT - Dove Medical Press