Author Archives: admin


Aspen Neuroscience Launches With $6.5 Million Seed Funding to Advance First-of-its-Kind Personalized Cell Therapy for Parkinson’s Disease – P&T…

SAN DIEGO, Dec. 12, 2019 /PRNewswire/ -- Aspen Neuroscience, Inc. today announced its launch following a $6.5 million seed round led by Domain Associates and Axon Ventures and including Alexandria Venture Investments,Arch Venture Partners,OrbiMedand Section 32 to develop the first autologous cell therapies for Parkinson's disease. Aspen's proprietary approach was developed by the company's co-founders, Jeanne F. Loring, Ph.D., Professor Emeritus and founding director of the Center for Regenerative Medicine at The Scripps Research Institute, and Andres Bratt-Leal, Ph.D., a former post-doctoral researcher in Dr. Loring's lab. The company was initially supported by Summit for Stem Cell, a founding partner and non-profit organization which provides a variety of services for people with Parkinson's disease. Aspen is led by industry veteran Howard J. Federoff, M.D., Ph.D., as Chief Executive Officer.

Parkinson's disease is characterized by the loss of specific brain cells that make the chemical dopamine. Without dopamine, nerve cells cannot communicate with muscles and people are left with debilitating motor problems. Aspen is focusing on human pluripotent stem cells, cultured cells that can become any cell type in the human body. The company's research is specific to induced pluripotent stem cells (iPSCs), which it develops by taking a skin biopsy from a person with Parkinson's disease and turning the tissue into pluripotent stem cells using genetic engineering. Aspen then differentiates the pluripotent stem cells into dopamine-releasing neurons that can be transplanted into that same person (autologous), thereby restoring the types of neurons lost in Parkinson's disease.

As an autologous cell therapy for Parkinson's disease, Aspen's treatment would eliminate the need for immunosuppression because the neurons are transplanted back into the same patient from which they were generated. The use of immunosuppression is necessary with currently available cell therapies for Parkinson's disease and when transplanting cells from one patient to another (allogeneic) to prevent rejection but can pre-dispose the patient to life-threatening complications including infection and add cost to the patient and health system. Aspen is the only company in the world offering an autologous neuron replacement therapy for Parkinson's disease.

Aspen encompasses a powerful executive leadership team including Dr. Federoff who, in addition to his leadership roles at the UC Irvine Health System, was the Executive Vice President for Health Sciences and the Executive Dean of Medicine at Georgetown University. Dr. Federoff also has significant biotech industry experience including co-founding MedGenesis Therapeutix and Brain Neurotherapy Bio, as well as leading the U.S. Parkinson's Disease Gene Therapy Study Group. The company is also proud to announce the addition of several experienced and well-known members to its leadership team including Edward Wirth, M.D., Ph.D., as Chief Medical Officer.

Dr. Wirth currently serves as the Chief Medical Ofcer for Lineage Cell Therapeutics where he oversees clinical development of its two therapeutic programs for spinal cord injuries and lung cancer. He received his M.D. and Ph.D. from the University of Florida in 1994 and remained to conduct postdoctoral research including leading the University of Florida team that performed the rst human embryonic spinal cord transplant in the U.S. Dr. Wirth went on to serve as the Medical Director for Regenerative Medicine at Geron Corporation where the world's rst clinical trial of human embryonic stem cell (hESC)-derived product occurred which demonstrated initial clinical safety.

Drs. Federoff and Wirth are joined by Dr. Loring, as Chief Scientific Officer; Jay Sial, as Chief Financial Officer; Andres Bratt-Leal, Ph.D., as Vice President of Research and Development; Thorsten Gorba, Ph.D., as Senior Director of Manufacturing and Naveen M. Krishnan, M.D., M.Phil., as Senior Director of Corporate Development.

"Aspen is developing a restorative, disease modifying autologous neuron therapy for people suffering from Parkinson's disease," said Dr. Federoff. "We are fortunate to have such a high-caliber scientific and medical leadership team to make our treatments a reality. Our cell replacement therapy, which originated in the laboratory of Dr. Jeanne Loring and was later supported by Summit for Stem Cell and its President, Ms. Jenifer Raub, has the potential to release dopamine and reconstruct neural networks where no disease-modifying therapies exist."

Aspen's lead product (ANPD001) is currently undergoing investigational new drug (IND)-enabling studies for the treatment of sporadic Parkinson's disease. Aspen is also developing a gene-edited autologous neuron therapy (ANPD002) that is in the research stage and targeted toward familial forms of Parkinson's disease beginning with the most common genetic variant in the gene encoding glucocerebrosidase (GBA). Aspen leverages proprietary machine-learning tools and artificial intelligence to ensure quality control during manufacturing and to deliver a safe and reproducible product for each cell line.

"Aspen's financial backing, combined with its experienced and proven leadership team, positions it well for future success," said Kim P. Kamdar, Ph.D., Partner at Domain Associates, one of Aspen's seed investors. "Domain prides itself on investing in companies that can translate scientific research into innovative medicines and therapies that make a difference in people's lives. We clearly see Aspen as fitting into that category, as it is the only company using a patient's own cells for replacement therapy in Parkinson's disease."

About Aspen Neuroscience

Aspen Neuroscience Inc. is a development stage, private biotechnology company that uses innovative genomic approaches combined with stem cell biology to deliver patient-specific, restorative cell therapies that modify the course of Parkinson's disease. Aspen's therapies are based upon the scientific work of world-renowned stem cell scientist, Dr. Jeanne Loring, who has developed a novel method for autologous neuron replacement. For more information and important updates, please visithttp://www.aspenneuroscience.com.

View original content to download multimedia:http://www.prnewswire.com/news-releases/aspen-neuroscience-launches-with-6-5-million-seed-funding-to-advance-first-of-its-kind-personalized-cell-therapy-for-parkinsons-disease-300973830.html

SOURCE Aspen Neuroscience

See the article here:
Aspen Neuroscience Launches With $6.5 Million Seed Funding to Advance First-of-its-Kind Personalized Cell Therapy for Parkinson's Disease - P&T...

Aspen Neuroscience launches with $6.5M seed funding to develop personalized and autologous cell therapy for Parkinson’s disease – TechStartups.com

Parkinsons disease is characterized by the loss of specific brain cells that make the chemical dopamine. Without dopamine, nerve cells cannot communicate with muscles and people are left with debilitating motor problems. Aspen is focusing on human pluripotent stem cells, cultured cells that can become any cell type in the human body. Many health technology startups are on the raise to cure this disease. At the forefront is Aspen Neuroscience, a healthtech startup developing first-of-its-kind personalized cell therapy for Parkinsons disease.

Aspen Neuroscience is a development stage, private biotechnology company that uses innovative genomic approaches combined with stem cell biology to deliver patient-specific, restorative cell therapies that modify the course of Parkinsons disease.

Today,Aspen Neuroscience announced its official launch with $6.5 million seed financingto develop the first autologous cell therapies for Parkinsons disease.The round was led by Domain Associates and Axon Ventures and including Alexandria Venture Investments, Arch Venture Partners, OrbiMed and others.

Aspens proprietary approach was developed by the companys co-founders, Jeanne F. Loring, Ph.D., Professor Emeritus and founding director of the Center for Regenerative Medicine at The Scripps Research Institute, and Andres Bratt-Leal, Ph.D., a former post-doctoral researcher in Dr. Lorings lab. The company was initially supported by Summit for Stem Cell, a founding partner and non-profit organization which provides a variety of services for people with Parkinsons disease. Aspen is led by industry veteran Howard J. Federoff, M.D., Ph.D., as Chief Executive Officer.

The companys research is specific to induced pluripotent stem cells (iPSCs), which it develops by taking a skin biopsy from a person with Parkinsons disease and turning the tissue into pluripotent stem cells using genetic engineering. Aspen then differentiates the pluripotent stem cells into dopamine-releasing neurons that can be transplanted into that same person (autologous), thereby restoring the types of neurons lost in Parkinsons disease.

As an autologous cell therapy for Parkinsons disease, Aspens treatment would eliminate the need for immunosuppression because the neurons are transplanted back into the same patient from which they were generated. The use of immunosuppression is necessary with currently available cell therapies for Parkinsons disease and when transplanting cells from one patient to another (allogeneic) to prevent rejection but can pre-dispose the patient to life-threatening complications including infection and add cost to the patient and health system. Aspen is the only company in the world offering an autologous neuron replacement therapy for Parkinsons disease.

Aspen encompasses a powerful executive leadership team including Dr. Federoff who, in addition to his leadership roles at the UC Irvine Health System, was the Executive Vice President for Health Sciences and the Executive Dean of Medicine at Georgetown University. Dr. Federoff also has significant biotech industry experience including co-founding MedGenesis Therapeutix and Brain Neurotherapy Bio, as well as leading the U.S. Parkinsons Disease Gene Therapy Study Group. The company is also proud to announce the addition of several experienced and well-known members to its leadership team including Edward Wirth, M.D., Ph.D., as Chief Medical Officer.

Dr. Wirth currently serves as the Chief Medical Ofcer for Lineage Cell Therapeutics where he oversees clinical development of its two therapeutic programs for spinal cord injuries and lung cancer. He received his M.D. and Ph.D. from the University of Florida in 1994 and remained to conduct postdoctoral research including leading the University of Florida team that performed the rst human embryonic spinal cord transplant in the U.S. Dr. Wirth went on to serve as the Medical Director for Regenerative Medicine at Geron Corporation where the worlds rst clinical trial of human embryonic stem cell (hESC)-derived product occurred which demonstrated initial clinical safety.

Drs. Federoff and Wirth are joined by Dr. Loring, as Chief Scientific Officer; Jay Sial, as Chief Financial Officer; Andres Bratt-Leal, Ph.D., as Vice President of Research and Development; Thorsten Gorba, Ph.D., as Senior Director of Manufacturing and Naveen M. Krishnan, M.D., M.Phil., as Senior Director of Corporate Development.

Aspen is developing a restorative, disease modifying autologous neuron therapy for people suffering from Parkinsons disease, said Dr. Federoff. We are fortunate to have such a high-caliber scientific and medical leadership team to make our treatments a reality. Our cell replacement therapy, which originated in the laboratory of Dr. Jeanne Loring and was later supported by Summit for Stem Cell and its President, Ms. Jenifer Raub, has the potential to release dopamine and reconstruct neural networks where no disease-modifying therapies exist.

Read more from the original source:
Aspen Neuroscience launches with $6.5M seed funding to develop personalized and autologous cell therapy for Parkinson's disease - TechStartups.com

Pig-Monkey Hybrid Chimeras Made By Scientists in China Dies! What is Chimera? Are There Human Chimeras? – LatestLY

Monkey Pig (Photo Credits: New Scientist)

Chinese scientists recently developed monkey-pig hybrids called chimera as a part of their research into the growth of human organs for transplantation in animals. Although they died within a week of being born, the piglets carried DNA from macaque monkeys in their heart, liver, spleen, lung and skin. The monkey-pigs were bred from more than 4,000 embryos that were implanted into a sow using IVF. Chimera is a single organism which carries cells with distinct genotypes. Animal chimeras are produced by merging multiple fertilised eggs. In this case, they contained DNA from individuals, a pig and a monkey. Human Chimeras also exist but are quite rare. They contain the cells of two or more individuals. Their bodies contain two different sets of DNA. Around 100 cases of chimerism have been recorded in the modern medical literature.First Monkey-Pig Chimeras Created by Chinese Scientists, Die Within a Week (See Picture)

While chimera is today used to refer to a hybrid variety of animals or to about an impossible thing, the word has a reference in Greek mythology. According to which, chimera is a fantastical beast made from different animals. It is named after a fire-breathing monster which had the head of a lion, the body of a goat and serpent's tail. Chimera is also the Greek term for a female goat.

To create pig-primate chimeras, Tang Hai, a researcher at the State Key Laboratory of Stem Cell and Reproductive Biology in Beijing and his co-authors first grew cells from cynomolgus monkeys (Macaca fascicularis) in lab dishes. The altered the cell's DNA by inserting instructions to build a fluorescent protein that made the cells bright green in colour. These luminescent cells gave rise to radiant embryonic stem cells which were then injected into pig embryos. These glowing spotshelped researchers to track the monkey cells as the embryos grew into piglets in due time.

In total, 4,000 embryos received an injection of monkey cells. The pigs bore 10 piglets but only two of them grew into both pig and monkey cells. The team found monkey cells scattered throughout multiple organs, including the heart, liver, spleen, lungs and skin. It was that in each organ, between one in 1,000 and one in 10,000 cells turned out to be monkey cells which were they were 99 percent pigs.

Go here to see the original:
Pig-Monkey Hybrid Chimeras Made By Scientists in China Dies! What is Chimera? Are There Human Chimeras? - LatestLY

Cell Therapy Industry Applications 2019-Size by Type (Allogenic Therapies), by Technique (Stem Cell Therapy), Global Market Growth by Demand Analysis…

TheGlobal Cell Therapy Marketwas estimated to be valued at USD XX million in 2018 and is projected to reach USD XX million by 2026, at a CAGR of XX% during 2019 to 2026.

Cell therapy involves the administration of somatic cell preparations for the treatment of diseases or traumatic damages. The objective of this study is to provide long term treatment through a single injection of therapeutic cells.

Get Sample Copy of this Report at https://www.orianresearch.com/request-sample/1281174

Growing aging patient population, the rise in cell therapy transplantations globally, and rising disease awareness drive the growth of the market. However, stringent regulatory policies may restrain growth of the market in the forecast period.

The Global Cell Therapy Industry is primarily segmented based on different type, technique, cell source, technology, end users and region

On the basis of type, the market is split into:

On the basis of technique, the market is split into:

On the basis of cell source, the market is split into:

On the basis of technology, the market is split into:

On the basis of end user, the market is split into:

Moreover, the market is classified based on regions and countries as follows:

Key players profiled in the report includes:

These organizations are focusing on growth strategies, such as new product launches, expansions, acquisitions, and agreements & partnerships to expand their operations across the globe.

GlobalCell TherapyIndustry isspread across 121 pages, profiling 10 companies and supported with tables and figures. Inquire more or share a questions if any before the purchase on this report @https://www.orianresearch.com/enquiry-before-buying/1281174

What you can expect from our report: Total Addressable Market [ Present Market Size forecasted to 2026 with CAGR ] Regional level split [North America, Europe, Asia Pacific, South America, Middle East & Africa] Country wise Market Size Split [Important countries with major market share] Market Size Breakdown by Product/ ServiceTypes [ ] Market Size by Application/Industry verticals/ End Users [ ] Market Share and Revenue/Sales of 10-15 Leading Players in the Market Production Capacity of Leading Players whenever applicable Market Trends Emerging Technologies/products/start-ups, PESTEL Analysis, SWOT Analysis, Porters Five Forces, etc. Pricing Trend Analysis Average Pricing across regions Brandwise Ranking of Major Market Players globally

Key Benefits of the Report:

Target Audience:

Research Methodology:

The market is derived through extensive use of secondary, primary, in-house research follows by expert validation and third party perspective, such as, analyst reports of investment banks. The secondary research is the primary base of our study wherein we conducted extensive data mining, referring to verified data products, such as, white papers, government and regulatory published articles, technical journals, trade magazines, and paid data products.

For forecasting, regional demand & supply factors, recent investments, market dynamics including technical growth scenario, consumer behavior, and end use trends and dynamics, and production capacity were taken into consideration. Different weightages have been assigned to these parameters and quantified their market impacts using the weighted average analysis to derive the market growth rate.

The market estimates and forecasts have been verified through exhaustive primary research with the Key Industry Participants (KIPs), which typically include:

Order a Copy of this Report @https://www.orianresearch.com/checkout/1281174

Table of Content

1. Introduction2. Research Methodology3. Executive Summary4. Global Cell Therapy Market Overview5. Global Cell Therapy Market, by Type6. Global Cell Therapy Market, by Technique7. Global Cell Therapy Market, by Cell Source8. Global Cell Therapy Market, by Technology9. Global Cell Therapy Market, by End Users10. Global Cell Therapy Market by Region11. Competitive Landscape12. Company Profiles13. Cell Therapy Manufacturing Cost Analysis14. Key InsightsEnd of the reportDisclaimer

Customization Service of the Report:

Orian Research provides customisation of reports as per your need. This report can be personalised to meet your requirements. Get in touch with our sales team, who will guarantee you to get a report that suits your necessities.

About Us:

Orian Researchis one of the most comprehensive collections of market intelligence reports on the World Wide Web. Our reports repository boasts of over 500000+ industry and country research reports from over 100 top publishers. We continuously update our repository so as to provide our clients easy access to the worlds most complete and current database of expert insights on global industries, companies, and products. We also specialize in custom research in situations where our syndicate research offerings do not meet the specific requirements of our esteemed clients.

Contact Us:

Ruwin Mendez

Vice President Global Sales & Partner RelationsOrian Research ConsultantsUS: +1 (832) 380-8827 | UK: +44 0161-818-8027Email:info@orianresearch.com

Website:www.orianresearch.com/

Continued here:
Cell Therapy Industry Applications 2019-Size by Type (Allogenic Therapies), by Technique (Stem Cell Therapy), Global Market Growth by Demand Analysis...

Stem Cell Therapies Market research Likely to Emerge over a Period of 2015-2025 – PharmiWeb.com

VALLEY COTTAGE, N.Y. Stem cells are undifferentiated biological cells, and having remarkable potential to divide into any kind of other cells. When a stem cell divides, each new cell will be a new stem cell or it will be like another cell which is having specific function such as a muscle cell, a red blood cell, brain cell and some other cells.

There are two types of stem cells

Stem cells harvested from umbilical cord blood just after birth. And this cells can be stored in specific conditions. Stem cells also can be harvest from bone marrow, adipose tissue.

Embryonic cells can differentiate into ectoderm, endoderm and mesoderm in developing stage. Stem cells used in the therapies and surgeries for regeneration of organisms or cells, tissues.

Stem cells are used for the treatment of Gastro intestine diseases, Metabolic diseases, Immune system diseases, Central Nervous System diseases, Cardiovascular diseases, Wounds and injuries, Eye diseases, Musculoskeletal disorders.

Download the sample copy of Report with table of contents and Figures @: https://www.futuremarketinsights.com/reports/sample/rep-gb-1087

Harvesting of Adult cell is somewhat difficult compare to embryonic cells. Because Adult cells available in the own body and it is somewhat difficult to harvest.

Stem Cell TherapiesMarket: Drivers and Restraints

Technology advancements in healthcare now curing life threatening diseases and giving promising results. Stem Cell Therapies having so many advantages like regenerating the other cells and body organisms. This is the main driver for this market. These therapies are useful in many life threatening treatments. Increasing the prevalence rate of diseases are driven the Stem Cell Therapies market, it is also driven by increasing technology advancements in healthcare. Technological advancements in healthcare now saving the population from life threatening complications.

Increasing funding from government, private organizations and increasing the Companies focus onStem cell therapiesare also driven this market

However, Collecting the Embryonic Stem cells are easy but Collecting Adult Stem cell or Somatic Stem cells are difficult and also we have to take more precautions for storing the collected stem cells.

Preview Analysis of Stem Cell Therapies Market: Global Industry Analysis and Opportunity Assessment 2015 2025: https://www.futuremarketinsights.com/reports/stem-cell-therapies-market

Stem Cell TherapiesMarket: Segmentation

Stem Cell Therapies are segmented into following types

Based on treatment:

Based on application:

Based on End User:

Stem Cell TherapiesMarket: Overview

With rapid technological advantage in healthcare and its promising results, the use of Stem Cell Therapies will increase and the market is expected to have a double digit growth in the forecast period (2015-2025).

Stem Cell TherapiesMarket: Region- wise Outlook

Depending on geographic regions, the global Stem Cell Therapies market is segmented into seven key regions: North America, South America, Eastern Europe, Western Europe, Asia Pacific excluding Japan, Japan and Middle East & Africa.

The use of Stem Cell Therapies is high in North America because it is highly developed region, having good technological advancements in healthcare setup and people are having good awareness about health care. In Asia pacific region china and India also having rapid growth in health care set up. Europe also having good growth in this market.

Buy this report @https://www.futuremarketinsights.com/checkout/1087

Stem Cell TherapiesMarket: Key Players

Some of the key players in this market are

Our advisory services are aimed at helping you with specific, customized insights that are relevant to your specific challenges. Let us know about your challenges and our trusted advisors will connect with you:https://www.futuremarketinsights.com/askus/rep-gb-1087

More from Healthcare, Pharmaceuticals and Medical devices:

About Us

Future MarketInsights (FMI) is a leading market intelligence and consulting firm. We deliversyndicated research reports, custom research reports and consulting serviceswhich are personalized in nature. FMI delivers a complete packaged solution,which combines current market intelligence, statistical anecdotes, technologyinputs, valuable growth insights and an aerial view of the competitiveframework and future market trends.

Contact UsMr.Abhishek BudholiyaFuture Market Insights616 Corporate Way, Suite 2-9018,Valley Cottage, NY10989,United StatesT:+1-347-918-3531F: +1-845-579-5705T(UK): + 44-(0)-20-7692-8790Sales:sales@futuremarketinsights.comPress Office:Press@futuremarketinsights.comBlog:MarketResearch BlogWebsite:https://www.futuremarketinsights.com/

See more here:
Stem Cell Therapies Market research Likely to Emerge over a Period of 2015-2025 - PharmiWeb.com

Pig-Monkey Chimeras Have Been Brought to Term For The First Time – ScienceAlert

Pigs engineered to have a small amount of monkey cells have been brought to full term and were even born alive, surviving for a few days after birth. Although the piglets died, it is claimed the experiment - performed in China - marks a major milestone for the future of lab-grown organs.

"This is the first report of full-term pig-monkey chimeras," Tang Hai of the State Key Laboratory of Stem Cell and Reproductive Biology in Beijing told New Scientist.

The research is part of an ongoing effort to develop animals - whether they are sheep or pigs - that can grow human organs we could then harvest for transplants, a process called xenogeneic organogenesis.

Research has been done on both pig and sheep embryos with transplanted human stem cells; in both cases, the embryos continued to develop until the experiment was deliberately terminated.

That's because, due to ethical concerns, these chimeras - organisms that incorporate the genetic material of another species - cannot be cultivated or studied in the later stages of embryonic development. Some scientists worry that some of the human stem cellscould end upin other parts of the animal or even in its brain, with unintended consequences.

For that reason, in this experiment the team used stem cells from crab-eating macaques (Macaca fascicularis). These were imbued with fluorescent proteins so that they would glow under fluorescent light, and derived to produce fluorescing embryonic cells.

These cells were then injected into over 4,000 five-day-old pig embryos fertilised using IVF; the modified pig embryos were subsequently implanted into sows.

This fiddly and painstaking work produced just 10 piglets that made it to full term and were born alive. And only two of these were chimeric, with between one in 1,000 and one in 10,000 functional monkey cells to pig cells.

The monkey cells had migrated to the heart, liver, lungs, spleen and skin of the piglet hosts, but were not found in other organs, such as testes and ovaries, due to the low rate of chimerism, the researchers said.

Sadly, before a week was out, the piglets died - not just the two chimeras, but the other eight normal piglets, too. Because all the pigs died, Hai told New Scientist, the cause of death likely had less to do with chimerism, and more to do with IVF - a procedure that is notoriously tricky in pigs.

The low chimerism rate is also somewhat discouraging. However, the researchers remain optimistic. Although the birth rate was low, and the pigs didn't survive, the team now has a wealth of data they can apply to future experiments.

The scientists are planning to try again, increasing the chimeric cell ratio. And they believe their data may help other scientists working in the field.

"Here, we have used monkey cells to explore the potential of reconstructing chimeric human organs in a large animal model," they wrote in their paper.

"We believe this work will facilitate the development of xenogeneic organogenesis by providing a better understanding of the processes of xenogeneic recognition, fate determination, and the proliferation and differentiation of primate stem cells during porcine development.

"The findings could pave the way toward overcoming the obstacles in the re-engineering of heterogeneous organs and achieve the ultimate goal of human organ reconstruction in a large animal."

The research has been published in Protein & Cell.

Read this article:
Pig-Monkey Chimeras Have Been Brought to Term For The First Time - ScienceAlert

First Pig-Monkey Chimeras Were Just Created in China – Livescience.com

Two piglets recently born in China look like average swine on the outside, but on the inside, they are (a very small) part monkey.

A team of researchers generated the pig-primate creatures by injecting monkey stem cells into fertilized pig embryos and then implanting them into surrogate sows, according to a piece by New Scientist. Two of the resulting piglets developed into interspecies animals known as chimeras, meaning that they contained DNA from two distinct individuals in this case, a pig and a monkey.

"This is the first report of full-term pig-monkey chimeras," co-author Tang Hai, a researcher at the State Key Laboratory of Stem Cell and Reproductive Biology in Beijing, told New Scientist. Eventually, Hai and his colleagues aim to grow human organs in animals for use in transplant procedures. For now, the team plans to stick with monkey cells, as developing human-animal chimeras presents a slew of "ethical issues," the authors noted in a report published Nov. 28 in the journal Protein & Cell.

To create pig-primate chimeras, Hai and his co-authors first grew cells from cynomolgus monkeys (Macaca fascicularis) in lab dishes. The team then altered the cells' DNA by inserting instructions to build a fluorescent protein, which caused the cells to glow a bright green. These luminescent cells gave rise to equally radiant embryonic stem cells, which the researchers then injected into prepared pig embryos. These glowing spots allowed the researchers to track the monkey cells as the embryos grew into piglets.

Related: The 9 Most Interesting Transplants

In total, 4,000 embryos received an injection of monkey cells and were implanted in surrogate sows. The pigs bore 10 piglets as a result of the procedure, but only two of the offspring grew both pig and monkey cells. By scanning for spots of fluorescent green, the team found monkey cells scattered throughout multiple organs, including the heart, liver, spleen, lungs and skin.

In each organ, between one in 1,000 and one in 10,000 cells turned out to be a monkey cells in other words, the interspecies chimeras were more than 99% pig.

Although low, the ratio of monkey to pig cells still outnumbered the maximum amount of human cells ever grown in a human-animal chimera. In 2017, scientists created human-pig chimeras that grew only one human cell for every 100,000 pig cells. The interspecies embryos were only allowed to develop for a month for ethical reasons, including the concern that humans cells might grow in the chimera's brain and grant the animal human-like consciousness, according to New Scientist.

Despite these ethical qualms, the same team of researchers went on to create human-monkey chimeras earlier this year, according to a July report from the Spanish newspaper El Pas. The results of the controversial experiment have not yet been reported, but the scientists said that no human-primate embryos were allowed to develop for more than a few weeks, the paper reported.

Hai and his co-authors may have avoided the ethical issues involved with human-animal chimeras, but one expert wasn't impressed with their interspecies piglets. Stem-cell biologist Paul Knoepfler of the University of California, Davis, told New Scientist that the low ratio of monkey to pig cells seems "fairly discouraging." Additionally, the two chimeras and all eight other piglets died shortly after being born, he noted.

The exact reason for the piglets' death remains "unclear," Hai told New Scientist, but he said that he suspects the deaths are linked to the in vitro fertilization (IVF) procedure rather than the injection of monkey DNA. Other scientists have also found that IVF doesn't consistently work in pigs, according to a 2019 report in the journal Theriogenology.

In the immediate future, Hai and his colleagues aim to increase the proportion of monkey cells to pig cells in future chimeras, and eventually, grow entire monkey organs in their pigs, Hai told New Scientist. In their paper, the authors noted that their work in pigs could help "pave the way" toward the "ultimate goal of human organ reconstruction in a large animal."

Originally published on Live Science.

See the original post:
First Pig-Monkey Chimeras Were Just Created in China - Livescience.com

PHATED to be: Yale researchers give shape to big data – Yale News

Scientists now have the ability to collect massive amounts of data on lifes most fundamental processes, such as the intricate choreography whereby a handful of embryonic stem cells give rise to trillions of specialized cells throughout the human body. But data doesnt always translate into knowledge unless the relationship of recorded data points can be presented in accurate, meaningful and visible ways.

The lab of Yales Smita Krishnaswamy, associate professor of genetics and computer science, has developed a new algorithm called PHATE that overcomes many of the shortcomings of existing data visualization tools, which are more susceptible to noise and distortion in the relationship of data points.

The panel above shows how PHATE visualizes the differentiation of human embryonic stem cells into neuronal cells, neural stem cells, cardiac cells, and endothelial cells, as compared to the visualizations created by three other technologies.A cleaner, more detailed representation is helpful, for example, for generating promising new hypotheses.

The researchers work is described Dec. 3 in the journal Nature Biotechnology.

Read more from the original source:
PHATED to be: Yale researchers give shape to big data - Yale News

Cell Harvesting Market a compound annual growth rate (CAGR) of 11.3% for the period of 2018-2023 – Crypto News Byte

Theglobal market for cell harvestingshould grow from $885 million in 2018 to reach $1.5 billion by 2023 at a compound annual growth rate (CAGR) of 11.3% for the period of 2018-2023.

Report Scope:

The scope of the report encompasses the major types of cell harvesting that have been used and the cell harvesting technologies that are being developed by industry, government agencies and nonprofits. It analyzes current market status, examines drivers on future markets and presents forecasts of growth over the next five years.

The report provides a summary of the market, including a market snapshot and profiles of key players in the cell harvesting market. It provides an exhaustive segmentation analysis of the market with in-depth information about each segment. The overview section of the report provides a description of market trends and market dynamics, including drivers, restraints and opportunities. it provides information about market developments and future trends that can be useful for organizations, including wholesalers and exporters. It provides market positionings of key players using yardsticks of revenue, product portfolio, and recent activities. It further includes strategies adopted by emerging market players with strategic recommendations for new market entrants. Readers will also find historical and current market sizes and a discussion of the markets future potential. The report will help market players and new entrants make informed decisions about the production and exports of goods and services.

Request For Report Sample:https://www.trendsmarketresearch.com/report/sample/11685

Report Includes:

41 data tables and 22 additional tables Description of segments and dynamics of the cell harvesting market Analyses of global market trends with data from 2017, 2018, and projections of compound annual growth rates (CAGRs) through 2023 Characterization and quantification of market potential for cell harvesting by type of harvesting, procedure, end user, component/equipment and region A brief study and intact information about the market development, and future trends that can be useful for the organizations involved in Elaboration on the influence of government regulations, current technology, and the economic factors that will shape the future marketplace Key patents analysis and new product developments in cell harvesting market Detailed profiles of major companies of the industry, including Becton, Dickinson and Co., Corning, Inc., Fluidigm Corp., General Electric Co., Perkinelmer, Inc., and Thermo Fisher Scientific, Inc.

Summary

Stem cells are unspecialized cells that have the ability to divide indefinitely and produce specialized cells. The appropriate physiological and experimental conditions provided to the unspecialized cells give rise to certain specialized cells, including nerve cells, heart muscle cells and blood cells. Stem cells can divide and renew themselves over long periods of time. These cells are extensively found in multicellular organisms, wherein mammals, there are two types of stem cells embryonic stem cells and adult stemcells. Embryonic stem cells are derived from a human embryo four or five days old that is in the blastocyst phase of development. Adult stem cells grow after the development of the embryo and are found in tissues such as bone marrow, brain, blood vessels, blood, skin, skeletal muscles and liver. Stemcell culture is the process of harvesting the exosomes and molecules released by the stem cells for the development of therapeuticsfor chronic diseases such as cancer and diabetes. The process is widely used in biomedical applications such as therapy, diagnosis and biological drug production. The global cell harvesting market is likely to witness a growth rate of REDACTED during the forecast period of 2018-2023.The value of global cell harvesting market was REDACTED in 2017 and is projected to reach REDACTED by 2023. Market growth is attributed to factors such as increasing R&D spending in cell-based research,the introduction of 3D cell culture technology, increasing government funding, and the growing prevalence of chronic diseases such as cancer and diabetes.

The growing incidence and prevalence of cancer is seen as one of the major factors contributing to the growth of the global cell harvesting market. According to the World Health Organization (WHO), cancer is the second-leading cause of mortality globally and was responsible for an estimated 9.6 million deaths in 2018. Therefore, there is an increasing need for effective cancer treatment solutions globally. Cell harvesting is the preferred method used in cancer cell-related studies including cancer cell databases (cancer cell lines), and other analyses and drug discovery in a microenvironment. The rising prevalence of such chronic diseases has led governments to provide R&D funding to research institutes and biotechnology companies to develop advanced therapeutics. Various 3D cell culture technologies have been developed by researchers and biotechnology companies such as Lonza Group and Thermo Fischer Scientific for research applications such as cancer drug discovery. The application of cell culture in cancer research is leading to more predictive models for research, drug discovery and regenerative medicine applications.

Request For Report Discount :https://www.trendsmarketresearch.com/report/discount/11685

Platelet-rich plasma (PRP) therapy, a new biotechnology solution that has a heightened interest among researchers in tissue engineering and cell-based therapies, has various applications in the treatment of tissue healing in tendinopathy, osteoarthritis and muscle injury. It has been conventionally employed in orthopedics, maxillofacial surgery, periodontal therapy and sports medicines. PRP therapy can be used in the treatment of fat grafting, acne scars, and hair regrowth.

Major factors driving market growth include increasing healthcare costs and the high rate of adoption for modern medicines in emerging economies such as China and India. It has been estimated that India will witness a CAGR of REDACTED in the cell harvesting market during the forecast period. The active participation of foreign pharmaceutical companies has tapped the Indian healthcare sector with a series of partnerships and mergers and acquisitions, which in turn is positively impacting the growth of the market in this region. Consistent development and clinical trials for stem cell therapies, plus contribution from the government and private sectors through investments and cohesive reimbursement policies in the development of cancer biomarkers, is further fueling market growth. InSweden, a research team at Lund University has developed a device to collect fluid and harvest stem mesenchymal stem cells (MSCs). The device is developed with 3D-printed bio-inert plastics which, when used by doctors, can result in the safe extraction of fluids (medical waste) from the patients body. The liquid is then passed through a gauze filter for purifying thoroughly and MSCs are separated from the fluid by centrifugation and are grown in culture.

Visit link:
Cell Harvesting Market a compound annual growth rate (CAGR) of 11.3% for the period of 2018-2023 - Crypto News Byte

Mayo Clinic, maker of Gore-Tex outerwear are teaming up in Crohn’s fight – Minneapolis Star Tribune

Based on promising results in an early clinical trial, Mayo Clinic has formed a new joint venture with materials engineering firm W.L. Gore & Associates to spearhead a new therapy using stem cells to repair a painful tissue problem stemming from Crohn's disease.

Mayo and Gore on Tuesday announced the formation of a for-profit company called Avobis Bio ("a vobis" is Latin for "by you"), based in Delaware, where Gore is also based. The privately held company will draw on the expertise of scientists at Mayo and Gore to launch a second-phase clinical trial in the hopes of eventually offering the treatment commercially.

A laboratory director at Mayo Clinic said Avobis Bio's therapy, if successful, may be a first-of-its-kind in health care, involving the delivery of a person's own mesenchymal stem cells on a synthetic "scaffold" that biodegrades over time, eventually leaving behind only native tissue sealing a wound. The first application of the technology is treatment of a health problem called perianal fistulae. But if successful, Avobis Bio may one day offer a variety of tissue and organ-repair therapies combining Mayo's stem cell expertise and Gore's medical materials.

"This is a completely new approach, where we are trying to leverage what the body can do for itself," said Allan Dietz, co-director of the Human Cell Therapy Lab in Mayo's Center for Regenerative Medicine.

Mesenchymal stem cells can naturally convert into other kinds of tissue, like muscle or bone. For the Avobis Bio therapy, the cells are harvested from a biopsy of a person's body fat and cultivated at a Mayo laboratory to high purity. No one knows whether the cells deposited into the wound directly convert into scar tissue, or if the stem cells trigger genetic signals that cause other cells in the surrounding tissue to begin the healing process.

"We provide stem cells in the right frame, at the right time, for the body to recognize the signals that it should begin the healing process," Dietz said. "I think in some ways, it was a required simple first step but it appears to be a major step."

Gore is perhaps best known to the public for its Gore-Tex outerwear, but the privately held $3.7 billion engineering and manufacturing firm sells products in an array of industries, including a line of medical devices designed to repair nonnatural holes in body organs. Mayo has used Gore-made devices for many years.

Several years ago, physician-researchers at the not-for-profit Mayo Clinic in Rochester grew keenly interested in a Gore device called the Bio-A Fistula Plug, a flexible bioabsorbable plug made from a material similar to dissolving stitches.

The plug can be used to repair unnatural canals that form between a person's anal canal and their outer skin, after Crohn's disease weakens surrounding tissues. These canals, also known as perianal fistulae, are painful, disruptive and difficult to treat, doctors said. For patients with Crohn's disease, lifetime incidence of perianal fistulae ranges between 23% and 38%, according to past studies.

In 2017, Mayo announced first-in-human results of their experimental therapy treating Crohn's patients' perianal fistulae using a Gore Bio-A Fistula Plug coated with the patient's own stem cells. The study, run in consultation with the Food and Drug Administration, provided the open-label treatment to a small group of patients whose fistulae had not responded to treatment for a median time of six years.

After initial results proved encouraging, the trial eventually enrolled 20 people. Of the 19 who remained in the trial for at least a year, 76% experienced healing of their fistulae, according to results announced by researchers but not yet published in a journal. If validated in a larger clinical trial, that rate of healing would be dramatically better than outcomes under existing treatments, the companies said.

"We have done work in the past looking at combining cells and materials. For us, the clinical trial results from Mayo were incredibly compelling," said Tiffany Brown, a Gore employee and general manager of Avobis Bio. "It is a challenge to translate how cells behave in the lab to how they will behave in patients. So having that proof in real patients really got the conversation going on how we could work together."

If the therapy is proved safe and effective in larger trials, Brown said about 50,000 Crohn's patients per year could be eligible to get it for perianal fistulae. Although Gore is phasing out general sales of its Bio-A Fistula Plug, the device will be supplied exclusively to Avobis Bio.

Mayo and Gore declined to reveal financial details for Avobis Bio, except to note that both parties are contributing to the limited-liability joint venture. The company has a five-member board of managers, with Mayo appointing two members and Gore appointing three.

Read more:
Mayo Clinic, maker of Gore-Tex outerwear are teaming up in Crohn's fight - Minneapolis Star Tribune