Author Archives: admin


What Stem Cell Clinics Do You Trust? | BioInformant

Stem cell clinics have received a great deal of negativepress,with prominent media outlets announcing that the FDA mailed Warning Letters to stem cell clinics across the United States.According to a paper published in the journalCell Stem Cell in June 2016,at least 351 businesses offer unproven stem cell interventions fromclinics spread across the U.S.

Shortly after publication, the MIT Technology Reviewand Washington Postpicked up the story, spreading the fear far and wide.Journalists then got enthralled with the story, calling it the Wild West of stem cells.

But, is this the whole story?

In this article:

What this hype does not cover isthe promising medical potentialof stem celltherapies, nor has it properly credited the clinics that comply with FDA regulations to offer effective medical treatments to populations of patients who, otherwise have limited options.

Today, the large majority of medical clinics that offer stem cell treatments administer mesenchymal stem cells (MSCs), which they source from fat (adipose tissue) orbone marrow.

Mesenchymal stem cells are a type of multipotent stem cell that is administered for a range of medical applications, including orthopedic repair, pain management, arthritis, asthma, and more.

When properly administered, multipotent self-derived stem cells (such as MSCs) can be safe for patient use.

It is important that the cells be multipotent (limited in their differentiation capacity), rather than totipotent (can become any cell) or pluripotent (can become most cells). There is also an additional level of safety that comes from having the stem cells be self-derived, which doctors and scientists call autologous.

Stem cell differentiation capacity is explained below:

While it is true that many stem cell clinics are not properly regulated, the therapeutic promise of stem cells is also clear.

Today, nearly 30,000 scientific publicationshighlight research and therapeutic advanceswith mesenchymal stem cells (MSCs) and approximately850+ clinical trials are investing therapeutic uses of MSCs.

Additionally, 300,000+ scientific publications about stem cells have been released.

This momentum is not surprising, because We are not made of drugs, we are made of cells.

However, the biggest issue with the hype surrounding stem cell clinics is that it does not give proper credit to the companies that cooperate with regulatory bodiesto ensure a safe and efficacious patient experience. Many of these companies also collaborate withoffshore regulatory bodies to offer stem cell procedures approved by local regulatory agencies.

The FDAsCenter for Biologics Evaluation and Research (CBER)regulates human cell and tissue-based products in the U.S., known as HCT/Ps. The FDA has two different paths for cell therapies based on relative risk.

These pathways are commonly called 361 and 351 products.

The 361 products that meet all the criteria in 21 CFR 1271.10(a)are regulated as HCT/Ps and are not required to be licensed or approved by the FDA. These products are called 361 products because they are regulated under Section 361 of the Public Health Service (PHS) Act.

In contrast, if a cell therapy product doesnot meet all the criteria outlined in 21 CFR 1271.10(a)), then it is regulated as a drug, device, or biological product under the Federal Food, Drug, and Cosmetic Act (FDCA) and Section 351 of the PHS Act.[1]

These 351 products requireclinical trials to demonstrate safety and efficacy in a process that is nearly identical to that what is required for pharmaceutical products to enter the marketplace.

Stem cell clinics must ensure that their treatments meet the FDAs criteria to be classified as 361 products.

Below, we cover five leading stem cell clinics. Each one has treated large populations of patients with adult stem cells. At least one (Regenexx), is maintaining a Patient Registry to document long-term patient outcomes.

We are not advising patients to seek treatments from these companies.We are identifying them to allow readers to seek out more information.

Founded by Dr. Neil Riordan, a globally recognized stem cell expert and visionary, the Stem Cell Institute in Panama is among the worlds leaders in stem cell research and therapy. Their treatments focus on well-targeted combinations of allogeneic umbilical cord stem cells, as well as autologous bone marrow stem cells.

The clinic uses stem cell therapies to treat various ailments, including spinal cord injury (SCI), rheumatoid arthritis, heart failure, osteoarthritis, multiple sclerosis, autoimmune diseases, and genetic disorders, such as autism and cerebral palsy.

One of their most recent studies exhibited the clinical feasibility of stem cell therapy as a safe and effective treatment approach for patients with multiple sclerosis (MS). Published in the Journal of Translational Medicine, the study showed that umbilical cord stem cells can slow down MS disease progression and decrease the frequency of flare-ups.

However, these stem cells did not exhibit the ability to repair damaged nerve cells or myelin sheaths.

After the completion of this clinical study, there was an improvement in MS patient disability. The 1-month mark of the study documented improvements in mobility, hand, bladder, bowel, and sexual functions. Importantly, the study demonstrated that a sustained one-year umbilical cord stem cell therapy has more durable benefits than current MS drug therapies.

Headquartered in Denver, CO, Regenexx offers self-derived (autologous) same-day stem cell treatments to patients with orthopedic injuries and conditions. Regenexx clinicsincorporate a variety of regenerative approaches, drawing patients from all over the U.S. who are seeking innovative, non-surgical treatments.

TheRegenexx technologyinvolvesa procedure in whicha small bone marrow sample is extracted through a needle and a blood is drawn from a vein in the arm. These samples are then processed in a laboratory and the cells it contains injected into the area needing repair, with the goal of delivering large numbers of stem cells to the site of injury.

Regenexx also a licensedoffshore clinic in the Cayman Islands where patients can undergo treatments that utilize laboratory expanded (ex vivo) stem cell populations. This approach allows for a much larger number of stem cells to be administered to the patient that is supported by U.S. law, which currently prohibits laboratory procedures that the FDA considers to exceed minimal manipulation.

Dr. Christopher Centeno is the Founder and CEO of Regenexx. He is a global authority in the culture expansion and clinical use of adult stem cells to treat orthopedic injuries and thevisionary behind the Regenexx technology.

I am also a Regenexx patient.Click here to read my experience.

Founded in 2011,Okyanosis a stem cell therapy provider that specializes in treating patients with congestive heart failure (CHF) and other chronic degenerative conditions. Okyanos Cell Therapy uses internationally-approved technology to deliver a mixed population of fat (adipose) derived stem and regenerative cells (ADRCs) to patients with conditions such as cardiovascular disease, orthopedic issues, neurological disorders, urological indications, and autoimmune conditions.

Okyanos maintains both a North American Office in Clearwater, FLand a purpose-built Cell Therapy Surgical Center inFreeport, GrandBahama. Okyanos stem cell treatments are performed in their state-of-the-art surgical centers under the care of board-certified doctors.

Okyanos is also fully licensed and regulated under the Bahamas Stem Cell Therapy and Research Act, and adheres to U.S. surgical center standards.

Click here to access our recent interview withMatthew Feshbach, Co-Founder and CEO of Okyanos.

The Global Institute of Stem Cell Therapy and Research (GIOSTAR) provides adult stem cell for autologous and allogeneic stem cell therapy to patients around the world, based on research byDr. Anand Srivastava. It offers adult stem cells for rejuvenation treatment, muscular injuries and degenerative diseases.

Each of GIOSTARs clinics is licensed for the application of stem cell therapy.Since 2000, its team of scientist and clinicians have been involved in the development and utilization of stem cell-based clinical protocols for stem cell therapy.

Although the company is headquartered in San Diego, California, GIOSTAR Mexico has provided stem cell therapy to patients from all over the world. Mexicos regulation of stem cell therapeutics differs from the regulations imposed by the U.S. FDA, making it a growing site for medical tourism.

Celltex specializes in cryopreserving mesenchymal stem cells (MSCs) for therapeutic use. Celltex acquires stem cells by collecting a small fat sample from a patient, from which MSCs are extracted,isolated, multiplied and stored for future use (known as cell banking).

Patients can then use their stored stem cells for regenerative purposesthrough infusions or injections performed by a licensed physician.

Because the FDA considers an individuals stem cells a drug if they have been expanded in large quantities, Celltex has begun the process of undertaking clinical trialsin which itwill seek approval from the FDA to provide stem cells for use by physicians in the U.S. to treat a variety ofmedical conditions.

Nonetheless, to meet the immediate needs of its clients, Celltex has takensteps to comply with the regulations established by the FDA and COFEPRIS, the Mexican equivalent of the FDA for exporting and importing MSCs.

Celltex also works with established, certified hospitals in Mexico, where independent, licensed physicians make it possible for Celltexs cell-banking clients to receive their own cells for therapeutic purposes.

While the information above is important to understand from a scientific and regulatory perspective, patient experiences are valuable too.

Have you had a stem cell treatment? What stem cell clinic did you use? What treatment did you get and for what condition?

Share your answers in the comments below, so that other patients can make more informed decisions.

BioInformant is the first and only market research firm to specialize in the stem cell industry. BioInformant research has been cited by major news outlets that include the Wall Street Journal, Nature Biotechnology, Xconomy, and Vogue Magazine. Serving Fortune 500 leaders that include GE Healthcare, Pfizer, and Goldman Sachs. BioInformant is your global leader in stem cell industry data.

Footnotes [1] Aabb.org. (2017). Cellular Therapies. [online] Available at: http://www.aabb.org/advocacy/regulatorygovernment/ct/Pages/default.aspx [Accessed 1 Aug. 2017].

What Stem Cell Clinics Do You Trust?

See original here:
What Stem Cell Clinics Do You Trust? | BioInformant

14 Key Pros and Cons of Embryonic Stem Cell Research …

Embryonic stem cells have the promise to be a cure to a myriad of medical conditions and other potential benefits. However, the creation and destruction of embryos is involved in this process. For this reason, not all are supportive of embryonic stem cell research and the controversy surrounding it is still so much in the picture.

These are unspecialized cells found in living things and are able to renew themselves and develop into other cells by means of growth and repair so long as the host is still alive. They can also be manipulated to become tissue or organ specific cells. What are embryonic stem cells?

Basically, these are cells derived from blastocysts which are 3-5 day old embryos. Most of these sources come from unfertilized in vitro eggs and are used in research studies. These eggs are taken with consent from donors and brought to laboratories for scientists to use.

Embryonic stem cells are important because they have several potential uses, from getting information about cell development to creating new drugs for medical disorders such as diabetes and cardiovascular disease.

When an egg is ready for fertilization, it shapes itself to allow for the sperms chromosomes to enter. During this stage, the egg divides into smaller cells and become what is known as blastocyst. This is then harvested and grown on a petri dish and divide to become embryonic cells. This process wherein cells are grown in an artificial environment is known as cell culture. This is used in cell engineering, molecular biology and stem cell.

Although both can become differentiated cell types, cells from embryos are pluripotent. Adult cells have limited capabilities to differentiate into other cell types. Moreover, adult stem cells are not as available as embryonic stem cells, making them hard to culture in laboratories. When it comes to transplantation rejection however, embryonic stem cells are more likely to be rejected as opposed to adult stem cells, according to scientists especially that there have only been few clinical trials done to test the effect of human embryonic stem cells on transplantation.

Despite the potential benefits of embryonic cells, there are also possible setbacks surrounding its applications. Supporters and critics continue their debate on this controversial issue and express their views on different forums. Scientists are also divided based on ethical and moral concerns.

Here is a look at some of the pros and cons of embryonic stem cell research that are worth looking into.

1. They are not to be considered to have life. On the issue whether embryos have moral status, proponents claim that at this point, these embryos should not be considered as persons because they lack physical and psychological properties human beings have because they have not yet been implanted in the uterus. Moreover, even if they have, as in the case of in vitro fertilization, it is not yet certain that they can become human beings, given that success rates are low. Thus, these embryos are not to be regarded as if they were living persons.

2. At the time an embryo is harvested, the central nervous system is still not yet formed. Another point of supporters is the age of the embryo when it is used for stem cell research, which is around 2 weeks. At this stage, an embryo has not yet developed a central nervous system. Also, there is still no concrete evidence it can develop into a fetus. Since this is the case, embryos are not yet capable to feel anything since they dont have senses. Supporters maintain that if organs from brain dead people are allowed to be donated, this should also be the same with embryos.

3. Human embryos for stem cell research can help a number of patients. With the potential of embryonic stem cells to be used as treatment to several medical disorders such as heart diseases, Parkinsons disease and diabetes, destroying them is not actually doing them harm. For advocates, there is nothing wrong with the process because it results to helping hundreds of patients whose lives are in danger.

4. They come from unused embryos for in vitro fertilization and are not taken without consent. Advocates for embryonic stem cell research say that there is nothing unethical or morally wrong with using the fertilized eggs which were not chosen for in vitro. They also posit that these eggs will be discarded anyway and it would be better that they be used for the common good and benefit of the majority. Also, they reiterate that these embryos are given with consent from donors.

5. They can be used by scientists to find cure for several medical conditions. Another claim of proponents about the importance of embryonic stem cell research is the application of such cells to treat ailments like cardiovascular diseases, spinal cord injury, Alzheimers and Parkinsons as well vision impairment and diabetes.

6. They can be possibly used for organ transplantation. Since embryonic cells have the capability to divide into specific cells and are always available, they are good candidates for organ transplantation application as opposed to adult cells. Even if adult cells can be used to repair tissues and for organ transplantation, they are only few viable cells in adults capable of doing such.

7. Embryonic stem cell therapy is the next best thing to happen after the discovery of antibiotics. Scientists who support the use of embryonic stem cells to treat numerous diseases say that for so many years, patients suffer and die from different ailments. With stem cell research, including this one, hundreds if not thousands of patients lives are prolonged, making this medical science breakthrough a great discovery since antibiotics.

8. Embryonic cells can be used for further research by scientists. Advocates also say that discarded cells can be used by researchers to study more about cell properties, structure and growth. This way, they will understand better how cells function and will be able to apply these researches in finding other ways to cure diseases in the future.

1. Human embryos deserve respect as any other human being does. Opponents of embryonic stem cell research argue that these embryos, regardless of their properties or the lack thereof, should be considered and treated with the same respect just like any other person. They add that these embryos have the possibility to develop into fetuses and human beings. Thus, they also have life.

2. There is no evidence that embryos have lives or not so they should not be destroyed. With the issue whether embryos already have a status of life, critics of embryonic stem cell research say that there is no concrete evidence. An example used is that of a patient who is comatose. Just because he or she is not responding from stimulation is not a proof that there is no life. Critics say that the same logic should be applied in embryos. And since it is unsure that life exists in an embryo or not, no one should destroy an embryo without any concern or consideration.

3. Embryonic stem cell research takes away the chance of an embryo to become a human being. On the argument that an embryo is just like any part of the human body, an organic material and not a person, opponents say that embryos are in a stage that they have the possibility to develop into human beings. Since this is the case, using them for research is taking away this possibility and therefore, it is something unethical.

4. The use of embryonic stem cells had not yet been proven to be successful. Groups against this research contend that there have been very few success stories of embryonic stem cells to cure diseases. In fact, there have been reports of difficulty of these cells to new specific types as well as tumor formation. There is also the concern of organ transplantation rejection of recipients that critics believe to be reason enough to stop stem cell research.

5. Taxpayers money is used to fund researches like this. Another issue that stirs the minds of opponents is that the Federal government fund researches like these at the expense of the American people. Despite some scientists who appealed against this, the government has already spent $500 million in human embryonic stem cell research, according to reports. Despite the passing of legislation in 1996, prohibiting the use of taxpayers money for stem cell research, there are still private groups who were funding researches as well. Groups who are against this, however, continue to fight for the cause.

6. There are alternative ways to culture cells. Aside from embryos being used in stem cell research, adult cells can also be used as well as non-embryonic cells. Opponents posit that scientists should turn to these alternatives to save lives and look for remedies instead of the destruction of embryos. Scientists are already conducting studies on creating induced pluripotent stem cells and attempting to have human skin cells to go back to the embryonic state. With these developments, scientists should consider these options, according to critics.

In the middle of the controversial issue about using human embryos for stem cell research, groups remain divided. However, with new developments and options, perhaps, a time will come scientists can let go of using human embryos. If this happens, supporters are most likely to concede. After all, their concern is not on embryo destruction but on finding treatments for medical disorders.

More here:
14 Key Pros and Cons of Embryonic Stem Cell Research ...

Regenexx Platelet Rich Plasma (PRP) in Bellevue and …

PRP Therapy

Regenexx SCP platelet rich plasma (PRP) therapy is being offered by Dr. Attaman in Seattle and Bellevue. Feel free to call us at206-395-4422 (Seattle) or 425-247-3359 (Bellevue), or schedule an appointment online.

We are Washingtons only licensed Regenexx network clinic. Regenexx SCP is the most advanced form of PRP available in the world with the most research to support its use.

Regenexx SCP platelet rich plasma therapy is an injection of a concentrated mixture of the patients own blood. Platelet Rich Plasma injections have been shown to relieve acute and chronic pain and accelerate healing of injured tissues and joints. The injured tissues are oftenhealed by Regenexx SCP platelet rich plasma therapy, in contrast to steroid injections which generally suppress symptoms. Many patient turn to Regenexx SCP platelet rich plasma because it is a way to heal damaged tissue, and because more conventional treatments such as steroid injections and surgery have failed them in the past. However, some physicians and patients believe the best pathway is to treat damaged tissues with Platelet Rich Plasma therapy before steroid injections or surgery are attempted! That said, no treatment is ideal for all conditions, and a comprehensive clinical consultation is required to know whether Regenexx SCP platelet rich plasma is good for your particular issues. If Regenexx SCP platelet rich plasma is not for you, Dr. Attaman has many other treatment options that are likely to be appropriate.

Conditions aided by Regenexx SCP platelet rich plasma include chronic back pain, chronic knee pain, achilles tendonitis,plantar fasciitis, meniscus tears, osteoarthritis of the spine, sacroiliac joint hyper mobility, hip and knee injuries, ligament sprains, rotator cuff tears, lateral epicondylitis (tennis elbow), medial epicondylitis (golfers elbow), and tendon injuries (tendonopathy). Platelet Rich Plasma therapy can also be applied to many other locations in the body.

Regenexx Super Concentrated Platelets vs. Standard PRP

The limited blood supply and poor healing properties of ligaments, cartilage and tendons may make treatment necessary after injury. Unlike medications that dont treat the underlying cause of pain, Platelet Rich Plasma can accelerate the healing process eliminating the cause of pain.

The Platelet Rich Plasma process begins by taking a sample of the patients blood from their vein. Most physicians take a very small sample of 5-10 mL. Such a small sample is easier to obtain and process, but results in a poorly concentrated Platelet Rich Plasma solution. In contrast, Dr. Attaman takes a minimum 60 mL sample up to 240 mL; this allows Dr. Attaman to produces a VERY concentrated Platelet Rich Plasma injectate very dense in platelets and healing factors.The blood sample is then processed using the patentedRegenexx SCP platelet rich plasma protocol in our laboratory. Our laboratory is state of the art and more advanced than almost all others in the state.

We use this laboratory to separate the blood into its primary components platelets and white blood cells, plasma, and red blood cells. Our laboratory includes a clean hood, centrifuges, cell counters and microscopes. Using the patentedRegenexx SCP platelet rich plasma process, we concentrate the platelets to a very concentrated form for re-injection.

A portion of the plasma is removed. The patients concentrated platelets are mixed with the remaining plasma to form a concentrated solution. This platelet rich solution is then injected into and around the injured tissues. Most physicians perform these injections blindly, which means the injections are done without any sort of image guidance. Such physicians will often suggest 5 or more Platelet Rich Plasma injections are required. They require so many injections simply because they are missing the target most of the time.

In contrast, Dr. Attaman performs all Platelet Rich Plasma injections using ultrasound or X-ray image guidance. This allows for much enhanced safety, accuracy, and efficacy. Generally only 1-2 Platelet Rich Plasma injection treatments are needed. Dr. Attaman can directly visualize the damaged tissues under ultrasound, and ensure that 100% of the Platelet Rich Plasma is deposited into injured tissue only. This also allows Dr. Attaman to perform an advanced technique called needle tenotomy, which is when the needle is used to break up scar and calcium deposits in the injured tissue, and prepare the tissue for better healing.

The concentrated platelets release many growth factors that promote a natural immune response. Macrophages specialized white blood cells rush in to remove damaged cells and prepare the tissue for healing.

Stem cells and other cells multiply, repair and rebuild the damaged tissue. This accelerated healing response reduces pain, promotes increased strength, and improves joint function. Healing after Platelet Rich Plasma therapy occurs over a period of many weeks. Generally patients will not see significant changes in their chronic pain until the 6-12 week mark. Some people obtain relief faster than this but this is generally an exception.

The entire Platelet Rich Plasma treatment process takes about an hour the patient will be able to go home the same day. Full recovery from the injection usually occurs within three days of the procedure. Specialized physical therapy is often prescribed after Platelet Rich Plasma injection to accelerate the healing process. Many patients require one to two treatments before the injured tissues are completely healed and they return to a normal active lifestyle. The good news is that some studies indicate that the healing process continues for as long as a year after Platelet Rich Plasma injection therapy, and possibly beyond. This suggests that as time goes on after Platelet Rich Plasma injection therapy, the treated tissues continue to get healthier and stronger.

Read the original:
Regenexx Platelet Rich Plasma (PRP) in Bellevue and ...

FAQs – Stem Cell Therapy for Parkinson’s Disease | StemGenex

Stem Cell Therapy for Parkinsons Disease

Today, new treatments and advances in research are giving new hope to people affected by Parkinsons Disease. StemGenexStem Cell Research Centre provides Parkinsons stem cell therapy to help those with unmet clinical needs achieve optimum health and better quality of life. A clinical study registered through the National Institutes of Health (NIH) atwww.clinicaltrials.gov/stemgenex has been established to evaluate the quality of life changes in individuals with Parkinsons Disease following stem cell therapy.

Parkinsons Disease stem cell therapy is being studied for efficacy in improving the complications in patients through the use of their own stem cells.These procedures may help patients who dont respond to typical drug treatment, want to reduce their reliance on medication, or are looking to try stem cell therapy before starting drug treatment for Parkinsons.

To learn more about becoming a patient and receiving stem cell therapy through StemGenex Stem Cell Research Centre, please contact one of our Patient Advocates at (800) 609-7795. Below are some frequently asked questions aboutstem cell therapy for Parkinsons Disease.

The majority of complications in Parkinsons patients are related to the failure of dopamine neurons to do their job properly. Dopamine sends signals to the part of your brain that controls movement. It lets your muscles move smoothly and do what you want them to do. Once the nerve cells break down you no longer have enough dopamine, and you have trouble moving and completing tasks.

This stem cell treatment for Parkinson's disease is designed to target these neurons and to help with the creation of new dopamine producing neurons. In addition, stem cells may release natural chemicals called cytokines which can induce differentiation of the stem cells into dopamine producing neurons.

Upholding the highest levels of ethical conduct, safety and efficacy is our primary focus. Five clinical stem cell studies for Parkinson's Disease, Multiple Sclerosis, Osteoarthritis, Rheumatoid Arthritis and Chronic Obstructive Pulmonary Disease (COPD) are registered through the National Institutes of Health (NIH) at http://www.clinicaltrials.gov/stemgenex. Each clinical study is reviewed and approved by an independent Institutional Review Board (IRB) to ensure proper oversight and protocols are being followed.

Stem cells are the basic building blocks of human tissue and have the ability to repair, rebuild, and rejuvenate tissues in the body. When a disease or injury strikes, stem cells respond to specific signals and set about to facilitate the healing process by differentiating into specialized cells required for the bodys repair.

There are four known types of stem cells which include:

StemGenex provides autologous adult stem cells (from fat tissue) where the stem cells come from the person receiving treatment.

StemGenex provides autologous adult adipose-derived stem cells (from fat tissue) where the stem cells come from the person receiving treatment.

We tap into our bodys stem cell reserve daily to repair and replace damaged or diseased tissue. When the bodys reserve is limited and as it becomes depleted, the regenerative power of our body decreases and we succumb to disease and injury.

Three sources of stem cells from a patients body are used clinically which include adipose tissue (fat), bone marrow and peripheral blood.

Performed by Board Certified Physicians, dormant stem cells are extracted from the patients adipose tissue (fat) through a minimally invasive mini-liposuction procedure with little to no downtime.

During the liposuction procedure, a small area (typically the abdomen) is numbed with an anesthetic and patients receive mild to moderate sedation. Next, the extracted dormant stem cells are isolated from the fat and activated, and then comfortably infused back into the patient intravenously (IV) and via other directly targeted methods of administration. The out-patient procedure takes approximately four to five hours.

StemGenex provides multiple administration methods for Parkinson's Disease patients to best target the disease related conditions and symptoms which include:

Since each condition and patient are unique, there is no guarantee of what results will be achieved or how quickly they may be observed. According to patient feedback, many patients report results in one to three months, however, it may take as long as six to nine months. Individuals interested in stem cell therapy are urged to consult with their physician before choosing investigational autologous adipose-derived stem cell therapy as a treatment option.

In order to determine if you are a good candidate for adult stem cell treatment, you will need to complete a medical history form which will be provided by your StemGenex Patient Advocate. Once you complete and submit your medical history form, our medical team will review your records and determine if you are a qualified candidate for adult stem cell therapy.

StemGenex team members are here to help assist and guide you through the patient process.

Patients travel to StemGenex located in Del Mar, California located in San Diego County for stem cell treatment from all over the United States, Canada and around the globe. Treatment will consist of one visit lasting a total of three days. The therapy is minimally invasive and there is little to no down time. Majority of patients fly home the day after treatment.

We provide stem cell therapy for a wide variety of diseases and conditions for which traditional treatment offers less than optimal options. Some conditions include Multiple Sclerosis, Parkinson's Disease, Rheumatoid Arthritis, Osteoarthritis and Chronic Obstructive Pulmonary Disease (COPD).

The side effects of the mini-liposuction procedure are minimal and may include but are not limited to: minor swelling, bruising and redness at the procedure site, minor fever, headache, or nausea. However, these side effects typically last no longer than 24 hours and are experienced mostly by people with sensitivity to mild anesthesia. No long-term negative side effects or risks have been reported.

The side effects of adipose-derived stem cell therapy are minimal and may include but are not limited to: infection, minor bleeding at the treatment sites and localized pain. However, these side effects typically last no longer than 24 hours. No long-term negative side effects or risks have been reported.

StemGenex provides adult stem cell treatment with mesenchymal stem cells which come from the person receiving treatment. Embryonic stem cells are typically associated with ethical and political controversies.

The FDA is currently in the process of defining a regulatory path for cellular therapies. A Scientific Workshop and Public Hearing Draft Guidances Relating to the Regulation of Human Cells, Tissues or Cellular or Tissue-Based Products was held in September 2016 at the National Institutes of Health (NIH) in Bethesda, MD. Currently, stem cell treatment is not FDA approved.

In March 2016, bipartisan legislation, the REGROW Act was introduced to the Senate and House of Representatives to develop and advance stem cell therapies.

Stem cell treatment is not covered by health insurance at this time. The cost for standard preoperative labs are included. Additional specific labs may be requested at the patients expense.

People suffering from Parkinson's Disease often suffer from the following complications::

Excerpt from:
FAQs - Stem Cell Therapy for Parkinson's Disease | StemGenex

Autologous Blood Injection (ABI) & Platelet Rich Plasma …

Autologous Blood Injection (ABI) and Platelet Rich Plasma (PRP) injections involve injecting a patients blood into a damaged part of the body.

Melbourne Radiology Clinic - Autologous Blood Injection (ABI) Patient & Post Procedure Information Sheet

Melbourne Radiology Clinic - Platelet Rich Plasma (PRP) Injection Patient & Post Procedure Information Sheet

Most commonly at Melbourne Radiology Clinic, this is done into a tendon for the treatment of tendinosis (the medical term for tendinitis), though other applications also include injecting ligaments, muscles and joints. Any tendon in the body may be injected with a patients blood products, with the most frequent clinical uses of ABI or PRP injections used for the plantar fascia (heel), Achilles (ankle), patellar (knee), gluteal (hip), hamstring (buttock), common extensor origin (tennis elbow or lateral epicondylitis) and common flexor origin (golfers elbow or medial epicondylitis). Approximately 80% of patients obtain complete or significant pain relief following this procedure.

PRP therapy has also recently found use in treating osteoarthritis. By injecting PRP into joints, it is felt that the healing factors may stimulate cartilage and surrounding soft tissue regeneration, as well as dampen the main symptoms associated with arthritis, that being pain and stiffness. Even if joint surgery, such as joint replacement, is delayed for a year or two, then this is considered a win.

Blood contains many nutrients and substances which are thought to promote healing. Platelets are tiny cells in blood which stick to each other when we cut ourselves to result in the formation of a clot to stop any further bleeding. Platelets contain many powerful growth factors, in particular PDGF (Platelet Derived Growth Factor) which has been shown to promote healing of many types of tissues, including bone, teeth, skin and the tissue lining our eyes. PDGF also promotes healing of tendons which are damaged due to excessive use and/or the ageing process.

Patients who suffer from tendinosis usually require a correct diagnosis prior to any procedure. This usually involves an ultrasound and/or an MRI (Magnetic Resonance Imaging) scan. Following diagnosis and if not already done so, the initial line of treatment is to undergo a period of rehabilitation for 6 weeks supervised by a suitable health care provider. This might be your rehabilitation physician, physiotherapist, podiatrist, chiropractor or osteopath to name a few. If pain persists, then the patient is a candidate for an ABI or PRP injection.

The procedure of ABI takes approximately 5 minutes and involves the use of an ultrasound machine to guide the needle into the correct location and safely.

First the skin is cleansed and prepared. Local anaesthetic is then injected into the skin overlying the tendon. Blood withdrawn from one of the arm veins is then injected directly into the tendon. The amount of blood injected depends on the size of the tendon. The procedure is at this point over and the needle injection site is then dressed with a small bandage.

A PRP injection is similar to an ABI, with the only difference being that a larger amount of blood is withdrawn from an arm vein. The blood is then placed into a tube, which in turn is placed into a machine called a centrifuge, which spins many thousand times a minute. The blood is left to spin for 15 minutes. At this point, the cells in the blood have separated from the fluid component of blood (plasma) into the three main cell types: red blood cells, white blood cells and platelets. The platelets are then selectively removed and used for injection. In this way, the theoretical benefit is that a greater concentration of platelets is delivered into the damaged body part than if whole blood was given alone (approximately 8-10 times greater concentration). There is, however, no scientific research documenting this benefit at the time of writing.

Following the procedure you will be provided with clear, written instructions on when to re-commence your rehabilitation. [See the PDF information sheets above]. If your pain persists after 4 weeks following injection, then a repeat injection is strongly recommended. If your pain remains unchanged following a second injection then no further ABI/PRP injection will be offered and you may instead be offered an alternative injection that is available, or otherwise you may wish to pursue surgery. A third injection is rarely offered.

As with all medical procedures, there are risks. The staff at Melbourne Radiology Clinic have performed this procedure hundreds of time with the only complication being a single minor skin infection which was successfully treated with antibiotics. An infection of the deep soft tissues is also a risk. No recorded tendon ruptures have been documented in the scientific literature, nor has this been our experience to date. Patients consistently report a flare up of their pain in the first week following the procedure, however in most cases, this is controlled with some paracetamol and/or an anti-inflammatory medication. Codeine is rarely required.

A radiologist, a medical doctor specialised in interpreting medical images for the purposes of providing a diagnosis, will then provide a formal written report to your referring doctor or health care professional detailing the procedure and providing some recommendation for your after-care. If medically urgent, or you have an appointment immediately after the scan to be seen by your doctor or health care provider, Melbourne Radiology Clinic will instantly have this report ready. Otherwise, the report will be received by your doctor or health care provider within the next 24 hours.

Whilst every effort is made to keep your appointment time, the special needs of complex cases, elderly and frail patients can cause unexpected delays. Your consideration and patience in these circumstances is appreciated.

View related articles:

Follow this link:
Autologous Blood Injection (ABI) & Platelet Rich Plasma ...

Stem Cell Regenerative Medicine Conferences 2018 Zurich …

Sessions/Tracks

Conference Series LLC LTD invites all the participants from all over the world to attend 10th Annual Conference onStem Cell and Regenerative Medicineduring October 08-09, 2018 atZurich, Switzerland which includes prompt keynote presentations, oral talks, poster presentations, networking, and exhibitions.

Track : Stem Cell

An undifferentiated cell of a multicellular creature which is fit for offering to ascend to inconclusively more cells of the same sort, and from which certain different sorts of cell emerge by separation. The most entrenched and generally utilized undifferentiated organism treatment is the transplantation of blood foundational microorganisms to treat infections and states of the blood and invulnerable framework or to restore the blood framework after medications for particular growths. Subsequent to the 1970s, skin undifferentiated organisms have been utilized to develop skin joins for patients with serious smolders on expansive territories of the body. Just a couple of clinical focuses can do this treatment and it is normally held for patients with life-debilitating blazes. It is likewise not a flawless arrangement: the new skin has no hair follicles or sweat organs. Research went into enhancing the strategy is continuous.

Related societies:

Europe: European Consortium for Stem Cell Research ; Cambridge Stem Cell Initiative ; Swiss Stem Cell Network ; The Scottish Stem Cell Network ; Danish Stem Cell Society ; European Society of Gene and Cell Therapy ; French Stem Cell Research Society ; Polish Society for Regenerative Medicine ; Spanish Society for Gene and Cell Therapy ; Irish Stem Cell Foundation ; Austrian Society for Stem Cell Research ; Austrian Society of Regenerative Medicine ; German Stem Cell Network.

USA: New York Stem Cell Foundation ; U.S. Stem Cell, Inc ; Stem Cell Clinical Trials ; International Society for Stem Cell Research ; Society for Hematology and Stem Cells ; Stem Cell Action Network ; Student Society for Stem Cell Research ; Tissue Engineering and Regenerative Medicine International Society ; International Society for Stem Cells Applications ; The Transplantation Society ; The American Society of Gene & Cell Therapy.

Asia Pacific and Middle East: Stem Cell Society Singapore ; Taiwan Society for Stem Cell Research ; The New South Wales Stem Cell Network ; Australian Society for Stem Cell Research ; Society for Tissue Engineering and Regenerative Medicine, India ; Korean Tissue Engineering and Regenerative Medicine Society ; Japanese Society for Regenerative Medicine ; Taiwan Association of ProloTherapy and Regenerative Medicine ; Stem Cell Society of India.

Track : Stem Cell Niche

A stem-cell niche is an area of a tissue that provides a specific microenvironment, in which stem cells are present in an undifferentiated and self-renewable state. Cells of the stem-cell niche interact with the stem cells to maintain them or promote their differentiation. The general niche model involves the association between resident stem cells and heterologous cell typesthe niche cells.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences| Stem Cell Meetings

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: Belgian Society for Stem Cell Research ; UK Stem Cell Foundation ; International Stem Cell Forum ; British Society for Gene and Cell Therapy ; UK Regenerative Medicine Platform ; Austrian Society of Regenerative Medicine ; Scan Balt Stem Cell Research Network ; Student Society for Stem Cell Research ; Norwegian Center for Stem Cell Research ; Lund Stem Cell Center ; Stem Cell Network North Rhine-Westphalia ; UK Stem Cell Bank ; European Group for Blood and Marrow Transplantation ; Israel Stem Cell Society.

USA: Maryland Stem Cell Research Commission ; Harvard College Stem Cell Society ; International Society for Cellular Therapy ; California Institute for Regenerative Medicine ; American Society of Transplantation ; American Society for Matrix Biology ; American Society for Cell Biology ; National Stem Cell Foundation ; Perinatal Stem Cell Society ; International Placenta Stem Cell Society ; American Society for Blood and Marrow Transplantation ; Columbia University Stem Cell Initiative ; The American Regenerative Medicine Society.

Asia Pacific and Middle East: Hong Kong Stem Cell Society ; Chinese Society for Cell Biology ; Korean Society for Stem Cell Research ; Pakistan Stem Cell Society ; StemCell Thai Red Cross ; Iranian Stem Cell Council ; The Japanese Society for Regenerative Medicine ; Formosa Association Regenerative Medicine ; Iranian Societyfor HematopoieticStem CellTransplantation ; International Society of Regenerative Medicine ; Japan Human Cell Society (Stem Cell).

Track :Induced Pluripotent Stem Cells

iPSC is derived from skin or blood cells that have been reprogrammed back into an embryonic-like pluripotent state that enables the development of an unlimited source of any type of human cell needed for therapeutic purposes. The discovery of induced pluripotent stem cells (iPSCs) has opened up unprecedented opportunities in the pharmaceutical industry, in the clinic, and in laboratories. In particular, the medical applications of human iPSCs in disease modeling and stem cell therapy have been progressing rapidly. The ability to induce cell fate conversion is attractive not only for these applications but also for basic research fields, such as development, cancer, epigenetics, and aging.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences|ConferenceSeries Ltd

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: European Consortium for Stem Cell Research ; Cambridge Stem Cell Initiative ; Swiss Stem Cell Network ; The Scottish Stem Cell Network ; Danish Stem Cell Society ; European Society of Gene and Cell Therapy ; French Stem Cell Research Society ; Polish Society for Regenerative Medicine ; Spanish Society for Gene and Cell Therapy ; Irish Stem Cell Foundation ; Austrian Society for Stem Cell Research ; Austrian Society of Regenerative Medicine ; German Stem Cell Network.

USA: New York Stem Cell Foundation ; U.S. Stem Cell, Inc ; Stem Cell Clinical Trials ; International Society for Stem Cell Research ; Society for Hematology and Stem Cells ; Stem Cell Action Network ; Student Society for Stem Cell Research ; Tissue Engineering and Regenerative Medicine International Society ; International Society for Stem Cells Applications ; The Transplantation Society ; The American Society of Gene & Cell Therapy.

Asia Pacific and Middle East: Stem Cell Society Singapore ; Taiwan Society for Stem Cell Research ; The New South Wales Stem Cell Network ; Australian Society for Stem Cell Research ; Society for Tissue Engineering and Regenerative Medicine, India ; Korean Tissue Engineering and Regenerative Medicine Society ; Japanese Society for Regenerative Medicine ; Taiwan Association of ProloTherapy and Regenerative Medicine ; Stem Cell Society of India.

Track : Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) are adult stem cells traditionally found in the bone marrow. However, mesenchymal stem cells can also be isolated from other tissues including cord blood, peripheral blood, fallopian tube, and fetal liver and lung. Multipotent stem cells, MSCs differentiate to form adipocytes, cartilage, bone, tendons, muscle, and skin. Mesenchymal stem cells are a distinct entity to the mesenchyme, embryonic connective tissue which is derived from the mesoderm and differentiates to form hematopoietic stem cells.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences|Stem Cell Meetings

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: Belgian Society for Stem Cell Research ; UK Stem Cell Foundation ; International Stem Cell Forum ; British Society for Gene and Cell Therapy ; UK Regenerative Medicine Platform ; Austrian Society of Regenerative Medicine ; Scan Balt Stem Cell Research Network ; Student Society for Stem Cell Research ; Norwegian Center for Stem Cell Research ; Lund Stem Cell Center ; Stem Cell Network North Rhine-Westphalia ; UK Stem Cell Bank ; European Group for Blood and Marrow Transplantation ; Israel Stem Cell Society.

USA: Maryland Stem Cell Research Commission ; Harvard College Stem Cell Society ; International Society for Cellular Therapy ; California Institute for Regenerative Medicine ; American Society of Transplantation ; American Society for Matrix Biology ; American Society for Cell Biology ; National Stem Cell Foundation ; Perinatal Stem Cell Society ; International Placenta Stem Cell Society ; American Society for Blood and Marrow Transplantation ; Columbia University Stem Cell Initiative ; The American Regenerative Medicine Society.

Asia Pacific and Middle East: Hong Kong Stem Cell Society ; Chinese Society for Cell Biology ; Korean Society for Stem Cell Research ; Pakistan Stem Cell Society ; StemCell Thai Red Cross ; Iranian Stem Cell Council ; The Japanese Society for Regenerative Medicine ; Formosa Association Regenerative Medicine ; Iranian Societyfor HematopoieticStem CellTransplantation ; International Society of Regenerative Medicine ; Japan Human Cell Society (Stem Cell).

Track : Cancer Stem Cells

Cancer stem cells (CSCs) are cancer cells (found in tumors or hematological cancers) that possess characteristics associated with normal stem cells. CSCs may generate tumors through the stem cell processes of self-renewal and differentiation into multiple cell types. Such cells are hypothesized to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors. Therefore, development of specific therapies targeted at CSCs holds hope for improvement of survival and quality of life of cancer patients, especially for patients with metastatic disease.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences|Stem Cell Meetings

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: European Consortium for Stem Cell Research ; Cambridge Stem Cell Initiative ; Swiss Stem Cell Network ; The Scottish Stem Cell Network ; Danish Stem Cell Society ; European Society of Gene and Cell Therapy ; French Stem Cell Research Society ; Polish Society for Regenerative Medicine ; Spanish Society for Gene and Cell Therapy ; Irish Stem Cell Foundation ; Austrian Society for Stem Cell Research ; Austrian Society of Regenerative Medicine ; German Stem Cell Network.

USA: New York Stem Cell Foundation ; U.S. Stem Cell, Inc ; Stem Cell Clinical Trials ; International Society for Stem Cell Research ; Society for Hematology and Stem Cells ; Stem Cell Action Network ; Student Society for Stem Cell Research ; Tissue Engineering and Regenerative Medicine International Society ; International Society for Stem Cells Applications ; The Transplantation Society ; The American Society of Gene & Cell Therapy.

Asia Pacific and Middle East: Stem Cell Society Singapore ; Taiwan Society for Stem Cell Research ; The New South Wales Stem Cell Network ; Australian Society for Stem Cell Research ; Society for Tissue Engineering and Regenerative Medicine, India ; Korean Tissue Engineering and Regenerative Medicine Society ; Japanese Society for Regenerative Medicine ; Taiwan Association of ProloTherapy and Regenerative Medicine ; Stem Cell Society of India.

Track :Hematopoietic Stem Cells

Hematopoietic stem cells (HSCs) are multipotent, self-renewing progenitor cells that develop from mesodermal hemangioblast cells. All differentiated blood cells from the lymphoid and myeloid lineages arise from HSCs. HSCs can be found in the adult bone marrow, peripheral blood, and umbilical cord blood. More recent advances have resulted in the use of HSC transplants in the treatment of cancers and other immune system disorders.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences|Stem Cell Meetings

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: European Consortium for Stem Cell Research ; Cambridge Stem Cell Initiative ; Swiss Stem Cell Network ; The Scottish Stem Cell Network ; Danish Stem Cell Society ; European Society of Gene and Cell Therapy ; French Stem Cell Research Society ; Polish Society for Regenerative Medicine ; Spanish Society for Gene and Cell Therapy ; Irish Stem Cell Foundation ; Austrian Society for Stem Cell Research ; Austrian Society of Regenerative Medicine ; German Stem Cell Network.

USA: New York Stem Cell Foundation ; U.S. Stem Cell, Inc ; Stem Cell Clinical Trials ; International Society for Stem Cell Research ; Society for Hematology and Stem Cells ; Stem Cell Action Network ; Student Society for Stem Cell Research ; Tissue Engineering and Regenerative Medicine International Society ; International Society for Stem Cells Applications ; The Transplantation Society ; The American Society of Gene & Cell Therapy.

Asia Pacific and Middle East: Stem Cell Society Singapore ; Taiwan Society for Stem Cell Research ; The New South Wales Stem Cell Network ; Australian Society for Stem Cell Research ; Society for Tissue Engineering and Regenerative Medicine, India ; Korean Tissue Engineering and Regenerative Medicine Society ; Japanese Society for Regenerative Medicine ; Taiwan Association of ProloTherapy and Regenerative Medicine ; Stem Cell Society of India.

Track :Embryonic Stem Cells

Embryonic Stem Cells are immortal cells having an almost unlimited developmental potential. These are made from cells found in very early human embryos, called blastocysts. Many scientists are working how to create specialized cell types found in the body by exposing Embryonic Stem Cells to different conditions which they can use to treat numerous different diseases, like multiple sclerosis, blindness, and diabetes.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences|Stem Cell Meetings

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: Belgian Society for Stem Cell Research ; UK Stem Cell Foundation ; International Stem Cell Forum ; British Society for Gene and Cell Therapy ; UK Regenerative Medicine Platform ; Austrian Society of Regenerative Medicine ; Scan Balt Stem Cell Research Network ; Student Society for Stem Cell Research ; Norwegian Center for Stem Cell Research ; Lund Stem Cell Center ; Stem Cell Network North Rhine-Westphalia ; UK Stem Cell Bank ; European Group for Blood and Marrow Transplantation ; Israel Stem Cell Society.

USA: Maryland Stem Cell Research Commission ; Harvard College Stem Cell Society ; International Society for Cellular Therapy ; California Institute for Regenerative Medicine ; American Society of Transplantation ; American Society for Matrix Biology ; American Society for Cell Biology ; National Stem Cell Foundation ; Perinatal Stem Cell Society ; International Placenta Stem Cell Society ; American Society for Blood and Marrow Transplantation ; Columbia University Stem Cell Initiative ; The American Regenerative Medicine Society.

Asia Pacific and Middle East: Hong Kong Stem Cell Society ; Chinese Society for Cell Biology ; Korean Society for Stem Cell Research ; Pakistan Stem Cell Society ; StemCell Thai Red Cross ; Iranian Stem Cell Council ; The Japanese Society for Regenerative Medicine ; Formosa Association Regenerative Medicine ; Iranian Societyfor HematopoieticStem CellTransplantation ; International Society of Regenerative Medicine ; Japan Human Cell Society (Stem Cell).

Track :Adult Stem Cells

Track :Stem Cell Therapy

Stem cell therapyis used to treat or prevent diseases by using stem cells. It has potential in a wide range of territories of potential and restorative examination. This treatment is by and large used to supplant or repair harmed cells or tissues. It additionally helps intransplanting immature microorganismsor giving medications those objective undifferentiated organisms as of now in the body. Undeveloped cell treatment is a rising innovation; the recovery of the body part is not really another idea.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences|Stem Cell Meetings

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: Belgian Society for Stem Cell Research ; UK Stem Cell Foundation ; International Stem Cell Forum ; British Society for Gene and Cell Therapy ; UK Regenerative Medicine Platform ; Austrian Society of Regenerative Medicine ; Scan Balt Stem Cell Research Network ; Student Society for Stem Cell Research ; Norwegian Center for Stem Cell Research ; Lund Stem Cell Center ; Stem Cell Network North Rhine-Westphalia ; UK Stem Cell Bank ; European Group for Blood and Marrow Transplantation ; Israel Stem Cell Society.

USA: Maryland Stem Cell Research Commission ; Harvard College Stem Cell Society ; International Society for Cellular Therapy ; California Institute for Regenerative Medicine ; American Society of Transplantation ; American Society for Matrix Biology ; American Society for Cell Biology ; National Stem Cell Foundation ; Perinatal Stem Cell Society ; International Placenta Stem Cell Society ; American Society for Blood and Marrow Transplantation ; Columbia University Stem Cell Initiative ; The American Regenerative Medicine Society.

Asia Pacific and Middle East: Hong Kong Stem Cell Society ; Chinese Society for Cell Biology ; Korean Society for Stem Cell Research ; Pakistan Stem Cell Society ; StemCell Thai Red Cross ; Iranian Stem Cell Council ; The Japanese Society for Regenerative Medicine ; Formosa Association Regenerative Medicine ; Iranian Societyfor HematopoieticStem CellTransplantation ; International Society of Regenerative Medicine ; Japan Human Cell Society (Stem Cell).

Track :Stem Cell Transplantation

Stem cell transplantation, also referred to as bone marrow transplant, in which unhealthy blood-forming cells replace with healthy cells. Stem cell transplantation in combination with doses of chemotherapy or radiation therapy increases the chance of eliminating blood cancer in the marrow. Many researchers are working to improve stem cell transplantation procedures to make it an option for patients.arrangement: the new skin has no hair follicles or sweat organs. Research went into enhancing the method is progressing.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences|Stem Cell Meetings

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: European Consortium for Stem Cell Research ; Cambridge Stem Cell Initiative ; Swiss Stem Cell Network ; The Scottish Stem Cell Network ; Danish Stem Cell Society ; European Society of Gene and Cell Therapy ; French Stem Cell Research Society ; Polish Society for Regenerative Medicine ; Spanish Society for Gene and Cell Therapy ; Irish Stem Cell Foundation ; Austrian Society for Stem Cell Research ; Austrian Society of Regenerative Medicine ; German Stem Cell Network.

USA: New York Stem Cell Foundation ; U.S. Stem Cell, Inc ; Stem Cell Clinical Trials ; International Society for Stem Cell Research ; Society for Hematology and Stem Cells ; Stem Cell Action Network ; Student Society for Stem Cell Research ; Tissue Engineering and Regenerative Medicine International Society ; International Society for Stem Cells Applications ; The Transplantation Society ; The American Society of Gene & Cell Therapy.

Asia Pacific and Middle East: Stem Cell Society Singapore ; Taiwan Society for Stem Cell Research ; The New South Wales Stem Cell Network ; Australian Society for Stem Cell Research ; Society for Tissue Engineering and Regenerative Medicine, India ; Korean Tissue Engineering and Regenerative Medicine Society ; Japanese Society for Regenerative Medicine ; Taiwan Association of ProloTherapy and Regenerative Medicine ; Stem Cell Society of India.

Track :Somatic Cell Therapy

Somatic cell treatment is the organization to people of autologous, allogeneic, or xenogeneic living cells which have been controlled or prepared ex vivo. Assembling of items for substantial cell treatment includes the ex vivo proliferation, development, choice. Substantial cell treatment is seen as a more moderate, more secure methodology since it influences just the focused on cells in the patient, and is not went on to future eras. Substantial quality treatment speaks to standard essential and clinical exploration, in which helpful DNA (either incorporated in the genome or as an outside episome or plasmid) is utilized to treat illness. Most concentrate on the extreme hereditary issue, including immunodeficiencies, hemophilia, thalassemia and cystic fibrosis. Such single quality issue is the great possibility for substantial cell treatment.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences|Stem Cell Meetings

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: European Consortium for Stem Cell Research ; Cambridge Stem Cell Initiative ; Swiss Stem Cell Network ; The Scottish Stem Cell Network ; Danish Stem Cell Society ; European Society of Gene and Cell Therapy ; French Stem Cell Research Society ; Polish Society for Regenerative Medicine ; Spanish Society for Gene and Cell Therapy ; Irish Stem Cell Foundation ; Austrian Society for Stem Cell Research ; Austrian Society of Regenerative Medicine ; German Stem Cell Network.

USA: New York Stem Cell Foundation ; U.S. Stem Cell, Inc ; Stem Cell Clinical Trials ; International Society for Stem Cell Research ; Society for Hematology and Stem Cells ; Stem Cell Action Network ; Student Society for Stem Cell Research ; Tissue Engineering and Regenerative Medicine International Society ; International Society for Stem Cells Applications ; The Transplantation Society ; The American Society of Gene & Cell Therapy.

Asia Pacific and Middle East: Stem Cell Society Singapore ; Taiwan Society for Stem Cell Research ; The New South Wales Stem Cell Network ; Australian Society for Stem Cell Research ; Society for Tissue Engineering and Regenerative Medicine, India ; Korean Tissue Engineering and Regenerative Medicine Society ; Japanese Society for Regenerative Medicine ; Taiwan Association of ProloTherapy and Regenerative Medicine ; Stem Cell Society of India.

Track :Regenerative Medicine

Organ and tissue loss through disease and injury motivate the development of therapies that can regenerate tissues and decrease reliance on transplantations. Regenerative medicine, an interdisciplinary field that applies engineering and life science principles to promote regeneration, can potentially restore diseased and injured tissues and whole organs.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences|Stem Cell Meetings

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: Belgian Society for Stem Cell Research ; UK Stem Cell Foundation ; International Stem Cell Forum ; British Society for Gene and Cell Therapy ; UK Regenerative Medicine Platform ; Austrian Society of Regenerative Medicine ; Scan Balt Stem Cell Research Network ; Student Society for Stem Cell Research ; Norwegian Center for Stem Cell Research ; Lund Stem Cell Center ; Stem Cell Network North Rhine-Westphalia ; UK Stem Cell Bank ; European Group for Blood and Marrow Transplantation ; Israel Stem Cell Society.

USA: Maryland Stem Cell Research Commission ; Harvard College Stem Cell Society ; International Society for Cellular Therapy ; California Institute for Regenerative Medicine ; American Society of Transplantation ; American Society for Matrix Biology ; American Society for Cell Biology ; National Stem Cell Foundation ; Perinatal Stem Cell Society ; International Placenta Stem Cell Society ; American Society for Blood and Marrow Transplantation ; Columbia University Stem Cell Initiative ; The American Regenerative Medicine Society.

Asia Pacific and Middle East: Hong Kong Stem Cell Society ; Chinese Society for Cell Biology ; Korean Society for Stem Cell Research ; Pakistan Stem Cell Society ; StemCell Thai Red Cross ; Iranian Stem Cell Council ; The Japanese Society for Regenerative Medicine ; Formosa Association Regenerative Medicine ; Iranian Societyfor HematopoieticStem CellTransplantation ; International Society of Regenerative Medicine ; Japan Human Cell Society (Stem Cell).

Track :Tissue Regeneration

Tissue Engineering is the investigation of the development of new connective tissues, or organs, from cells and a collagenous platform to create a completely useful organ for implantation over into the contributor host. Effective improvements in the multidisciplinary field of tissue building have created a novel arrangement of tissue new parts and execution approaches. Investigative advances in biomaterials, foundational microorganisms, development and separation components, and biomimetic situations have made special chances to manufacture tissues in the research facility from blends of designed extracellular networks cells and organically dynamic particles.

RelatedStem Cell Conferences|Stem Cell Congress|Regenerative Medicine Conferences|Stem Cell Meetings

CSHL Germ Cells Conference, USA, October 9-13, 2018 ; Conference on Regenerative Biology and Applications, Hong Kong, October 15-19, 2018 ; New York Stem Cell Foundation Conference, USA, October 23-24, 2018 ; Symposium on Translation of Stem Cells to the Clinic, Challenges and Opportunities, USA, December 02-04, 2018 ; From Stem Cells to Human Development Conference, UK, September 23-26, 2018 ; 6th Cambridge International Stem Cell Symposium, UK, September 19-21, 2018 ; Modeling Cell-Cell Interactions Governing Tissue Repair & Disease, USA, August 19-24, 2018 ; Stem Cells in Disease Modelling and Drug Discovery, Australia, June 17-18, 2018 ; ISSCR 2018 Annual Meeting, Australia, June 20-23, 2018 ; Precision CRISPR Stem Cell Congress, USA, June 12-14, 2018 ; Conference on Hematopoietic Stem Cells: From the Embryo to the Aging Organism, Germany, June 07-09, 2018 ; Conference on Manufacturing and Testing of Pluripotent Stem Cells, USA, June 5-6, 2018 ; Cell & Gene Meeting, USA, October 3-5, 2018. Trends and Challenges in Regenerative Medicine and Cell Therapy, Germany, March 2529, 2018 ; The Stem Cell Niche Conference, Denmark, May 27-31, 2018.

Related societies:

Europe: European Consortium for Stem Cell Research ; Cambridge Stem Cell Initiative ; Swiss Stem Cell Network ; The Scottish Stem Cell Network ; Danish Stem Cell Society ; European Society of Gene and Cell Therapy ; French Stem Cell Research Society ; Polish Society for Regenerative Medicine ; Spanish Society for Gene and Cell Therapy ; Irish Stem Cell Foundation ; Austrian Society for Stem Cell Research ; Austrian Society of Regenerative Medicine ; German Stem Cell Network.

USA: New York Stem Cell Foundation ; U.S. Stem Cell, Inc ; Stem Cell Clinical Trials ; International Society for Stem Cell Research ; Society for Hematology and Stem Cells ; Stem Cell Action Network ; Student Society for Stem Cell Research ; Tissue Engineering and Regenerative Medicine International Society ; International Society for Stem Cells Applications ; The Transplantation Society ; The American Society of Gene & Cell Therapy.

Asia Pacific and Middle East: Stem Cell Society Singapore ; Taiwan Society for Stem Cell Research ; The New South Wales Stem Cell Network ; Australian Society for Stem Cell Research ; Society for Tissue Engineering and Regenerative Medicine, India ; Korean Tissue Engineering and Regenerative Medicine Society ; Japanese Society for Regenerative Medicine ; Taiwan Association of ProloTherapy and Regenerative Medicine ; Stem Cell Society of India.

Track : Regeneration and Therapeutics

Read the original here:
Stem Cell Regenerative Medicine Conferences 2018 Zurich ...

Biologic Stem Cell Medicine and Therapy | RestorePDX

Biologic Stem Cell Therapy

During the aging process, we are all forced to deal with the natural degeneration of our bodies. However, we each experience different levels of degeneration and choose to fight our personal deterioration in a multitude of ways. One successful way to combat age-related changes in the body is non-surgical stem cell therapy.

Stem cells are un-programmed cells in the human body which can develop into more than one cell type. They are also at the center of a new field of science called regenerative medicine. Because stem cells can become bone, muscle, cartilage and other specialized types of cells, they have the potential to treat many diseases including Parkinsons, Alzheimers, Diabetes and more. Stem cells have also been investigated for the treatment of many musculoskeletal disorders including osteoarthritis and osteoporosis and the investigations have turned up positive results.

Stem cell therapy is a minimally invasive, non-surgical procedure proven to improve musculoskeletal injuries and age related degenerative conditions. The procedures utilize the patients own stem cellsharvested from fat or bone marrowto assist the healing process of damaged tissues, tendons, ligaments, cartilage and spinal discs. The treatment offers a promising alternative for those considering elective surgery or joint replacement due to injury or arthritis. Medical researchers believe stem cell treatments have the potential to change the face of human aging and alleviate suffering.

The capacity for stem cells to self-renew and give rise to ensuing generations offers potential for groups of tissues that can potentially replace diseased and damaged areas in the body, with minimal risk of rejection and side effects.

Adipose (fat) tissue contains a concentrated amount of cells known as mesenchymal stem cells (MSCs) which are capable of converting into different types of cells throughout the body, such as neurons, bone, cartilage, muscle, and tendon. The authors of, The Potential of Adipose Stem Cells in Regenerative Medicine, note that, adipose stem cells (ASCs) are an attractive and abundant stem cell source with therapeutic applicability in diverse fields for the repair and regeneration of acute and chronically damaged tissues.

Because they exist in abundance in adipose tissue, stem cells in high-dose amounts can be obtained in just a couple of hours. ASCs can be retrieved from either liposuction aspirates or subcutaneous adipose tissue fragments.

Further, because patients receive their own autologous cells, there is a very low risk of immune rejection. Adipose stem cells have a high degree of immunomodulatory capacity, which can greatly benefit patients with auto-immune conditions.

ASCs have rapidly advanced into clinical trials for treatment of a broad range of conditions.

It is well established that a significant amount of our bodies stem cells are held within bone marrow. By harvesting blood and tissue from the bone marrow space of the hip, an injectable product can be produced by concentrating platelets and cells withdrawn through a simple outpatient procedure. This is done with local anesthetic and, occasionally, sedation. BMC contains all of the growth and healing factors in platelet-rich plasma, along with stem cells, which further contribute to the regenerative process.

Like ASCs, stem cells from bone marrow are also MSCs and autologous. When age-related degeneration occurs, the usual number of regenerative cells needed for tissue renewal is often inadequate. With BMC, the strength of the regenerative cells provides a more robust healing of the damaged tissue and aids in growth and repair by accelerating the bodys natural healing mechanism.

In studies, BMC has been shown to reduce swelling, relieve pain, and enhance healing of articular cartilage and bone.

Continue reading here:
Biologic Stem Cell Medicine and Therapy | RestorePDX

Stem cell laws – Wikipedia

Stem cell laws are the law rules, and policy governance concerning the sources, research, and uses in treatment of stem cells in humans. These laws have been the source of much controversy and vary significantly by country.[1] In the European Union, stem cell research using the human embryo is permitted in Sweden, Spain, Finland, Belgium, Greece, Britain, Denmark and the Netherlands;[2] however, it is illegal in Germany, Austria, Ireland, Italy, and Portugal. The issue has similarly divided the United States, with several states enforcing a complete ban and others giving support.[3] Elsewhere, Japan, India, Iran, Israel, South Korea, China, and Australia are supportive. However, New Zealand, most of Africa (except South Africa), and most of South America (except Brazil) are restrictive.

The information presented here covers the legal implications of embryonic stem cells (ES), rather than induced pluripotent stem cells (iPSCs). The laws surrounding the two differ because while both have similar capacities in differentiation, their modes of derivation are not. While embryonic stem cells are taken from embryoblasts, induced pluripotent stem cells are undifferentiated from somatic adult cells.[4]

Stem cells are cells found in most, if not all, multi-cellular organisms. A common example of a stem cell is the hematopoietic stem cell (HSC) which are multipotent stem cells that give rise to cells of the blood lineage. In contrast to multipotent stem cells, embryonic stem cells are pluripotent and are thought to be able to give rise to all cells of the body. Embryonic stem cells were isolated in mice in 1981, and in humans in 1998.[5]

Stem cell treatments are a type of cell therapy that introduce new cells into adult bodies for possible treatment of cancer, somatic cell nuclear transfer, diabetes, and other medical conditions. Cloning also might be done with stem cells. Stem cells have been used to repair tissue damaged by disease.[6]

Because Embryonic Stem (ES) cells are cultured from the embryoblast 45 days after fertilization, harvesting them is most often done from donated embryos from in vitro fertilization (IVF) clinics. In January 2007, researchers at Wake Forest University reported that "stem cells drawn from amniotic fluid donated by pregnant women hold much of the same promise as embryonic stem cells."[5]

The European Union has yet to issue consistent regulations with respect to stem cell research in member states. Whereas Germany, Austria, Italy, Finland, Ireland, Portugal and the Netherlands prohibit or severely restrict the use of embryonic stem cells, Greece, Sweden, Spain and the United Kingdom have created the legal basis to support this research.[7]Belgium bans reproductive cloning but allows therapeutic cloning of embryos.[1]France prohibits reproductive cloning and embryo creation for research purposes, but enacted laws (with a sunset provision expiring in 2009) to allow scientists to conduct stem cell research on imported a large amount of embryos from in vitro fertilization treatments.[1]Germany has restrictive policies for stem cell research, but a 2008 law authorizes "the use of imported stem cell lines produced before May 1, 2007."[1]Italy has a 2004 law that forbids all sperm or egg donations and the freezing of embryos, but allows, in effect, using existing stem cell lines that have been imported.[1]Sweden forbids reproductive cloning, but allows therapeutic cloning and authorized a stem cell bank.[1][7]

According to modern stem cell researchers, Spain is one of the leaders in stem cell research and currently has one of the most progressive legislations worldwide with respect to hESC research.[8] The new Spanish law allows existing frozen embryos - of which there are estimated to be tens of thousands in Spain - to be kept for patient's future use, donated for another infertile couple, or used in research.[9] In 2003, Spain's laws state that embryos left over from IVF and donated by the couple that created them can be used in research, including ES cell research, if they have been frozen for more than five years.[10]

In 2001, the British Parliament amended the Human Fertilisation and Embryology Act 1990 (since amended by the Human Fertilisation and Embryology Act 2008) to permit the destruction of embryos for hESC harvests but only if the research satisfies one of the following requirements:

The United Kingdom is one of the leaders in stem cell research, in the opinion of Lord Sainsbury, Science and Innovation Minister for the UK.[11] A new 10 million stem cell research centre has been announced at the University of Cambridge.[12]

The primary legislation in South Africa that deals with embryo research is the Human Tissue Act, which is set to be replaced by Chapter 8 of the National Health Act. The NHA Chapter 8 has been enacted by parliament, but not yet signed into force by the president. The process of finalising these regulations is still underway. The NHA Chapter 8 allows the Minister of Health to give permission for research on embryos not older than 14 days. The legislation on embryo research is complemented by the South African Medical Research Council's Ethics Guidelines. These Guidelines advise against the creation of embryos for the sole purpose of research. In the case of Christian Lawyers Association of South Africa & others v Minister of Health & others[13] the court ruled that the Bill of Rights is not applicable to the unborn. It has therefore been argued based on constitutional grounds (the right to human dignity, and the right to freedom of scientific research) that the above limitations on embryo research are overly inhibitive of the autonomy of scientists, and hence unconstitutional.[14]

China prohibits human reproductive cloning but allows the creation of human embryos for research and therapeutic purposes.[1]India banned in 2004 reproductive cloning, permitted therapeutic cloning.[1] In 2004, Japans Council for Science and Technology Policy voted to allow scientists to conduct stem cell research for therapeutic purposes, though formal guidelines have yet to be released.[1] The South Korean government promotes therapeutic cloning, but forbids cloning.[1] The Philippines prohibits human embryonic and aborted human fetal stem cells and their derivatives for human treatment and research. In 1999, Israel passed legislation banning reproductive, but not therapeutic, cloning.[1][7]Saudi Arabia religious officials issued a decree that sanctions the use of embryos for therapeutic and research purposes.[1] According to the Royan Institute for Reproductive Biomedicine, Iran has some of the most liberal laws on stem cell research and cloning.[15][16] Laws and regulations in Jordan allow stem-cell research.[17] A center for stem cell research has acquired a license to begin operating in April 2017 at the University of Jordan.[18]

Brazil has passed legislation to permit stem cell research using excess in vitro fertilized embryos that have been frozen for at least three years.[1]

Federal law places restrictions on funding and use of hES cells through amendments to the budget bill.[19] In 2001, George W. Bush implemented a policy limiting the number of stem cell lines that could be used for research.[5] There were some state laws concerning stem cells that were passed in the mid-2000s. New Jersey's 2004 S1909/A2840 specifically permitted human cloning for the purpose of developing and harvesting human stem cells, and Missouri's 2006 Amendment Two legalized certain forms of embryonic stem cell research in the state. On the other hand, Arkansas, Indiana, Louisiana, Michigan, North Dakota and South Dakota passed laws to prohibit the creation or destruction of human embryos for medical research.[19]

During Bush's second term, in July 2006, he used his first Presidential veto on the Stem Cell Research Enhancement Act. The Stem Cell Research Enhancement Act was the name of two similar bills, and both were vetoed by President George W. Bush and were not enacted into law. New Jersey congressman Chris Smith wrote a Stem Cell Therapeutic and Research Act of 2005, which made some narrow exceptions, and was signed into law by President George W. Bush.

In November 2004, California voters approved Proposition 71, creating a US$3 billion state taxpayer-funded institute for stem cell research, the California Institute for Regenerative Medicine. It hopes to provide $300 million a year.

Barack Obama removed the restriction of federal funding passed by Bush in 2001, which only allowed funding on the 21 cell lines already created. However, the Dickey Amendment to the budget, The Omnibus Appropriations Act of 2009, still bans federal funding of creating new cell lines. In other words, the federal government will now fund research which uses the hundreds of more lines created by public and private funds.[20]

In March 2002, the Canadian Institutes of Health Research announced the first ever guidelines for human pluripotent stem cell research in Canada. The federal granting agencies, CIHR, Natural Sciences and Engineering Research Council, and Social Sciences and Humanities Research Council of Canada teamed up and agreed that no research with human IPSCs would be funded without review and approval from the Stem Cell Oversight Committee (SCOC).[21]

In March 2004, Canadian parliament enacted the Assisted Human Reproduction Act (AHRA), modeled on the United Kingdoms Human Fertilization and Embryology Act of 1990. Highlights of the act include prohibitions against the creation of embryos for research purposes and the criminalization of commercial transactions in human reproductive tissues.[22]

In 2005, Canada enacted a law permitting research on discarded embryos from in vitro fertilization procedures. However, it prohibits the creation of human embryos for research.[1]

On June 30, 2010, The Updated Guidelines for Human Pluripotent Stem Cell Research outline that:

Canada's National Embryonic Stem Cell Registry:

Australia is partially supportive (exempting reproductive cloning yet allowing research on embryonic stem cells that are derived from the process of IVF). New Zealand, however, restricts stem cell research.[23]

More here:
Stem cell laws - Wikipedia

Stem Cell Therapy for Knee Injuries and Arthritis – StemCell ARTS

Utilizing your own stem cells to help the healing process of injured or degenerated joints The human body is made of billions of specialized cells that form specific organs like the brain, skin, muscles, tendons, ligaments, joints, and bone. Each day these cells go through a degenerative and regenerative process. As older cells die, new cells are born from stem cells with the unique capability of being able to create multiple types of other cells. However, when tissues are injured, the degenerative process exceeds this regenerative process, resulting in structures that become weaker, painful and less functional. While there are several types of stem cells, those that are best at promoting musculoskeletal healing (tendon, ligament, cartilage and bone) are found in bone marrow. These mesenchymal stem cells, or MSCs, are essential to successful patient outcomes and at Stem Cell ARTS we utilize the patented Regenexx Stem Cell Protocol, which iscapable of yielding much higher concentrations of these important cells. Most Commonly Treated Knee Conditions and Injuries Below is a list of the most common knee injuries and conditions that we treat with stem cells or platelet procedures. This is not an all-inclusive list. Knee Patient Outcome Data

This Regenexx bone marrow derived stem cell treatment outcome data analysis is part of the Regenexx data download of patients who were tracked in the Regenexx advanced patient registry.

Regenexx has published more data on stem cell safety in peer reviewed medical research for orthopedic applications than any other group world-wide. This is a report of 1,591 patients and 1,949 procedures treated with the Regenexx Stem Cell Procedure. Based on our analysis of this treatment registry data, the Regenexx Stem Cell Procedure is about as safe as any typical injection procedure, which is consistent with what we see every day in the clinic.

To use, begin playing the first video. Then use the Playlist Dropdown Menu in the upper left corner of the video display to show all video titles. Use the Scroll Bar on the right hand side of the playlist to browse all video titles if required.

These non-surgical stem cell injection procedures happen within a single day and may offer a viable alternative for those who are facing surgery or even joint replacement. Patients are typically able to return to normal activity following the procedure and are able to avoid the painful and lengthy rehabilitation periods that are typically required to help restore strength, mobility and range-of-motion following invasive joint surgeries. Lastly, patients are far less vulnerable to the risks of surgeries, such as infection and blood clots.

Modern techniques in todays medicine allows us to withdraw stem cells from bone marrow, concentrate them through a lab process and then re-inject them precisely into the injured tissues in other areas of the body using advanced imaging guidance. Through Fluoroscopy and MSK Ultrasound, were able to ensure the cells are being introduced into the exact area of need. When the stem cells are re-injected, they enhance the natural repair process of degenerated and injured tendons, ligaments, and arthritic joints Turning the tables on the natural breakdown process that occurs from aging, overuse and injury.

If you are suffering from a joint injury or degenerative condition such as osteoarthritis, you may be a good candidate for a stem cell procedure. Please complete the form below and we will immediately send you an email with additional information and next steps in determining whether youre a candidate for these advanced stem cell procedures.

Visit link:
Stem Cell Therapy for Knee Injuries and Arthritis - StemCell ARTS

Stem Cell Therapy for Back Pain – ThriveMD Vail & Denver, CO

Degenerative Disc Disease (DDD), Herniated Discs & Sciatica Causing Lumbar Back Pain

What is degenerative disc disease and what are the symptoms?

Spinal disc degeneration and disc herniations are two of the most common causes of back pain, affecting in particular the lumbar spine (low back). Spinal discs are soft, compressible structures that separate the vertebrae of the spine. The discs act as shock absorbers, allowing the spine to flex, bend, and twist.

Sciatica is the name for the horrible leg pain that is caused when a bulging lumbar disc irritates a lumbar nerve root. The discomfort can be a combination of burning pain and numbness that responds poorly to pain medication.

There is a normal amount of expected wear and tear of our spinal discs as we age. On the other hand, arthritis, injury, and extreme wear and tear of sports can accelerate the degeneration. On a cellular level, there is continual loss of healthy cells inside the disc that is responsible for the discs structure. Over time, normal cells are damaged and hydration is lost, leading to tears in the internal structure of the discs.

When discs degenerate, mobility is affected and function is limited, resulting in symptoms that include stiffness, weakness, and ultimately, unrelenting pain.

What is spinal facet disease and what are the symptoms?

Spinal facet disease is one of the most common causes of neck and back pain and can cause pain at any level of the spine. The spinal facets joints are located on both sides of the back of each spinal segment. They connect each spinal level and are responsible for stabilizing the vertebral bodies and counterbalancing the intervertebral discs. The facets can be injured during acute trauma often seen in flexion extension injuries such as a whiplash event or sports accident. The surfaces of the facet joints are covered by articular cartilage and are also prone to chronic degenerative arthritis much like the larger joints such as knees and hips.

Pain that is caused by facet dysfunction is typically isolated to the back of the lumbar spine, thoracic region and neck. The discomfort can be isolated to one side or may affect both sides of the spine at once. The pain may radiate into the muscles but does not extend into the extremities like sciatic pain that is caused from a disc herniation. Typically the pain is worsened with extension and or rotation of the neck or back. Diagnosis of facet pain begins with a physical exam and imaging studies, but often requires diagnostic injection with local anesthetic and or steroid to confirm the diagnosis.

When the facet joints are injured mobility is affected and function is limited, resulting in symptoms that can mimic disc disease such as stiffness, weakness, and ultimately, unrelenting pain.

Link:
Stem Cell Therapy for Back Pain - ThriveMD Vail & Denver, CO