Gyongyosi, M. et al. Meta-analysis of cell-based CaRdiac        stUdiEs (ACCRUE) in patients with acute myocardial        infarction based on individual patient data. Circ.        Res. 116, 13461360 (2015).      
        Fisher, S. A., Doree, C., Mathur, A. & Martin-Rendon,        E. Meta-analysis of cell therapy trials for patients with        heart failure. Circ. Res. 116, 13611377        (2015).      
        Kandala, J. et al. Meta-analysis of stem cell therapy in        chronic ischemic cardiomyopathy. Am. J. Cardiol.        112, 217225 (2013).      
        Fernandez-Aviles, F. et al. Global position paper on        cardiovascular regenerative medicine. Eur. Heart J.        38, 25322546 (2017).      
        Lipsitz, Y. Y., Timmins, N. E. & Zandstra, P. W.        Quality cell therapy manufacturing by design. Nat.        Biotechnol. 34, 393400 (2016).      
        Blair, N. F. & Barker, R. A. Making it personal: the        prospects for autologous pluripotent stem cell-derived        therapies. Regen. Med. 11, 423425 (2016).      
        Chakradhar, S. An eye to the future: researchers debate        best path for stem cell-derived therapies. Nat. Med.        22, 116119 (2016).      
        Smith, D. M. Assessing commercial opportunities for        autologous and allogeneic cell-based products. Regen.        Med. 7, 721732 (2012).      
        Lipsitz, Y. Y., Bedford, P., Davies, A. H., Timmins, N. E.        & Zandstra, P. W. Achieving efficient manufacturing and        quality assurance through synthetic cell therapy design.        Cell. Stem. Cell. 20, 1317 (2017).      
        van Berlo, J. H. & Molkentin, J. D. An emerging        consensus on cardiac regeneration. Nat. Med.        20, 13861393 (2014).      
        Arck, P. C. & Hecher, K. Fetomaternal immune cross-talk        and its consequences for maternal and offsprings health.        Nat. Med. 19, 548556 (2013).      
        Jaiswal, S. et al. CD47 is upregulated on circulating        hematopoietic stem cells and leukemia cells to avoid        phagocytosis. Cell 138, 271285 (2009).      
        Diecke, S. et al. Novel codon-optimized mini-intronic        plasmid for efficient, inexpensive, and xeno-free induction        of pluripotency. Sci. Rep. 5, 8081 (2015).      
        Chang, C. H., Fontes, J. D., Peterlin, M. & Flavell, R.        A. Class II transactivator (CIITA) is sufficient for the        inducible expression of major histocompatibility complex        class II genes. J. Exp. Med. 180, 13671374        (1994).      
        Elsner, L. et al. The heat shock protein HSP70 promotes        mouse NK cell activity against tumors that express        inducible NKG2D ligands. J. Immunol. 179,        55235533 (2007).      
        Maddaluno, M. et al. Murine aortic smooth muscle cells        acquire, though fail to present exogenous protein antigens        on major histocompatibility complex class II molecules.        Biomed. Res. Int. 2014, 949845 (2014).      
        Didie, M., Galla, S., Muppala, V., Dressel, R. &        Zimmermann, W. H. Immunological properties of murine        parthenogenetic stem cell-derived cardiomyocytes and        engineered heart muscle. Front. Immunol. 8,        955 (2017).      
        Wunderlich, M. et al. AML xenograft efficiency is        significantly improved in NOD/SCID-IL2RG mice        constitutively expressing human SCF, GM-CSF and IL-3.        Leukemia 24, 17851788 (2010).      
        Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized        mice in translational biomedical research. Nat. Rev.        Immunol. 7, 118130 (2007).      
        Billerbeck, E. et al. Development of human CD4+ FoxP3+        regulatory T cells in human stem cell factor-,        granulocyte-macrophage colony-stimulating factor-, and        interleukin-3-expressing NOD-SCID IL2Rgamma(null) humanized        mice. Blood 117, 30763086 (2011).      
        Melkus, M. W. et al. Humanized mice mount specific adaptive        and innate immune responses to EBV and TSST-1. Nat.        Med. 12, 13161322 (2006).      
        Deuse, T. et al. Human leukocyte antigen I knockdown human        embryonic stem cells induce host ignorance and achieve        prolonged xenogeneic survival. Circulation        124, S3S9 (2011).      
        Wang, D., Quan, Y., Yan, Q., Morales, J. E. & Wetsel,        R. A. Targeted disruption of the beta2-microglobulin gene        minimizes the immunogenicity of human embryonic stem cells.        Stem Cells Transl. Med. 4, 12341245 (2015).      
        Dressel, R. et al. Pluripotent stem cells are highly        susceptible targets for syngeneic, allogeneic, and        xenogeneic natural killer cells. FASEB J. 24,        21642177 (2010).      
        Kruse, V. et al. Human induced pluripotent stem cells are        targets for allogeneic and autologous natural killer (NK)        cells and killing is partly mediated by the activating NK        Receptor DNAM-1. PLoS ONE 10, e0125544        (2015).      
        Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem        cells escape allogeneic responses and lysis by NK cells.        Nat. Biotechnol. 35, 765772 (2017).      
        Zhao, L., Teklemariam, T. & Hantash, B. M. Heterelogous        expression of mutated HLA-G decreases immunogenicity of        human embryonic stem cells and their epidermal derivatives.        Stem Cell Res. 13, 342354 (2014).      
        Hou, S., Doherty, P. C., Zijlstra, M., Jaenisch, R. &        Katz, J. M. Delayed clearance of Sendai virus in mice        lacking class I MHC-restricted CD8+ T cells. J.        Immunol. 149, 13191325 (1992).      
        Shiba, Y. et al. Allogeneic transplantation of iPS        cell-derived cardiomyocytes regenerates primate hearts.        Nature 538, 388391 (2016).      
        Kawamura, T. et al. Cardiomyocytes derived from        MHC-homozygous induced pluripotent stem cells exhibit        reduced allogeneic immunogenicity in MHC-matched non-human        primates. Stem Cell Rep. 6, 312320 (2016).      
Read more here:
Hypoimmunogenic derivatives of induced pluripotent stem ...