Author Archives: admin


When should you see a podiatric surgeon? – WTOP

This content is sponsored by MedStar Washington Hospital Center

Its Augustthe height of summerand many of us are taking advantage of the longer days to cram in more outdoor activities. For many, it just seems easier, and definitely more enjoyable, to go for an early morning run when its already light outside versus the dark days of winter.

But that increased activity also increases the risk of foot and ankle injuries, particularly among weekend warriors.

Sprains, which can vary widely in severity, are among the most common foot and ankle injuries. For minor problems, time-honored home remedies like icing, elevating, resting the foot and over-the-counter (OTC) anti-inflammatories are often all thats needed. But if you dont notice much relief after a few days of self-care, you should seek a professional opinion from a podiatrist, a doctor who specializes in foot and ankle care.

It may be that you need an ankle brace to support and protect the ligaments that were stretched or torn during the injury. More severe sprains may require a device called a CAM bootbasically a walking cast that relieves the ankle from bearing weight while it heals.

The good news is that most sprained ankles will getter better in a month or two.

Sometimes, however, what first seems like a badly sprained ankle may actually be a broken metatarsalone of the long bones in the middle of the foot. Because the symptoms of a break, especially a Jones Fracture, and a sprain can be so similar, some fractures dont get the early medical attention they may need, including surgery.

Individuals with chronic lateral ankle instability may also benefit from surgery to repair the damaged ligaments and return to a more active lifestyle. The condition is the result of cumulative injuries to the ligaments from frequent sprains, mostly due to overuse. That leaves the ankle more susceptible to chronic swelling, pain, tenderness and weakness, leading to even more sprains in the future.

Another quite common injury is plantar fasciitis, which occurs when you strain the ligament that connects the heel bone to the metatarsals. In 95 to 99 percent of people, it goes away with simple, conservative treatment like stretching, OTC inserts and physical therapy. If such steps dont provide relief, however, Im a big proponent of a promising new treatment called PRP.

PRP, or platelet-rich plasma injections, can often decrease or completely eliminate the pain of plantar fasciitis and other conditions, contributing to a speedier recovery. In the 30-minute procedure, some blood is withdrawn from the patient and then placed in a centrifuge to separate out the platelets, the component that helps with clotting, healing and tissue growth. Then the platelet-rich plasmanow containing three to five times more growth factors than normal is injected into the affected area.

Most patients can get back on their feet within a few days and can resume regular activity within a month.

Feet are the foundation of your fitness. If theyre in pain or stressed, you cant do much of anything. But properly supported, your feet can conquer miles in comfort.

Thats where the right shoes come in to play. And its tricky. Some lucky people are born with a perfectly normal foot; however most of us need some sort of assistance to help achieve the right mechanical balance. For instance, a bunion, flat foot or a really high arch can put extra strain on different tendons and ligaments, leading to arthritis, pain and degeneration.

But finding that sweet spot is a matter of trial and error. Sneakers that I regularly recommend to my patients dont work at all for my wide, highly-arched feet. You need to take time to find that brand and style that is going to be the best fit for your foots particular structure.

Orthotics can also help. I typically recommend that patients first try out an OTC support with a rigid sole, something like a piece of plastic, to see if that helps. In some cases, that may be all the arch support they need, while others may benefit more from a custom-made orthotic. Just be sure to avoid inserts that you can bend in half, which provide cushioning versus support.

The bottom line: Enjoy your summer activities, but dont beat up your feet in the process. And always see a doctor in the event of any significant swelling, bruising or pain.

Follow this link:
When should you see a podiatric surgeon? - WTOP

Tiny ‘Organoids’ Promise Big Boost to Medical Care – NBCNews.com

Aug.18.2017 / 3:15 PM ET

Let our news meet your inbox.

Tiny versions of human organs smaller than a pea are making a big splash around the world and for a good reason. Though the clusters of cells of brain, kidney, or liver arent much to look at, experts say these so-called organoids and organs-on-a-chip are poised to remake the way new drugs are brought to market.

Right now, drug development is notoriously slow and costly; bringing a new drug to market can take a dozen years and cost upward of $2 billion. Even after all that time and money have been spent, new drug candidates often prove to be ineffective or to have dangerous side effects.

A huge percentage of drugs fail even after hundreds of millions or billions of dollars of investment, says Dr. Donald Ingber, director of Harvard Universitys Wyss Institute for Biologically Inspired Engineering and a leader in organ-on-a-chip technology. In fact, only about one in 10 drugs that make it to human tests (after testing in the lab and in animals) wind up getting FDA approval.

Growing whole organs in the lab for drug testing is a long way off. But organoids promise to change the equation because they so closely mimic their fully formed counterparts inside living human bodies. They can be used to imitate diseased as well as healthy tissue and can even be linked together to create tiny bodies-on-a-chip.

This is not building a human bodythis is not Frankenstein science, Ingber says. This is really a sophisticated, minimalist approach to building models that can actually replace the use of animals and be much more accurate in terms of predicting how drugs or toxins would affect the human body.

In addition to making it possible to create better medicines at significantly lower cost, experts say organoids will help doctors customize medical treatments to individual patients and pinpoint the cause of genetic illness. With organoids, drug development should be speedier a particular benefit if new drugs are needed urgently to curb a pandemic or treat people affected by nuclear accidents or chemical or biological warfare.

And then theres this: experts say organoids for drug testing should reduce our reliance on animal testing.

Organoids are typically grown from cells taken from human skin and reprogrammed into a primitive state. With a little coaching to mimic the conditions found in an actual body, these jack-of-all-trades stem cells self-organize into the three-dimensional clumps.

The first organoids of brain and intestinal cells arrived in the mid-2000s. Since then, scientists have created organoids of many other tissues, including kidney, lung, and breast.

Though organoid science is in its infancy, its already helping patients.

Scientists in the Netherlands are using intestine organoids to help children suffering from cystic fibrosis. Scientists elsewhere are growing mini-livers with the hope that it might someday be possible to cure liver disease not by transplanting an entire liver (which, of course, must come from a donor) but instead by implanting thousands of tiny liver organoids grown from the patients own cells.

And then there are brain organoids, which might lead someday to new treatments for serious mental and neurological conditions. Still, Its a really far, far cry from an actual human brain, says Dr. Madeline Lancaster, a developmental biologist at the Medical Research Council Laboratory of Molecular Biology in Cambridge, England.

As with all organoids, brain organoids lack certain key features of their inside-the-body counterparts, including blood vessels.

It would be wonderful if you had a three-dimensional brain tissue that was organized just like a real brain, and you could put in drugs and you could try to find something that would treat schizophrenia, Lancaster says, adding that is still a bit premature.

If organoids hold enormous promise for drug development, scientists say a mash-up of organoids and microchip technology commonly known as organs-on-a-chip, or simply organ chips, might be even better.

The chips are plastic wafers, typically about the size of a AA battery, that are laced with channels containing human organ and blood vessel cells. The devices make it possible for scientists to use electrical current, flowing air, and other physical phenomena to make, say, heart cells beat and lung cells respire.

These cues prompt the tissues to behave normally or respond realistically to disease. And scientists can use their microscopes to watch these physiological processes as they occur.

Its like a living cross-section to a part of an organ, Ingber says. We can see immune cells going back and forth, we can see tumor cells invadingits just visually quite amazing.

Ingber and other researchers have started to link multiple organ chips to form what theyre calling human-bodies-on-a-chip. By showing how a new drug might affect the whole body rather than just a particular organ, body chips could do even more to speed drug development.

Emulate, a Wyss Institute spinoff, plans to begin selling organs-on-chips and the tech to run them within the next six months. The FDA recently started evaluating how well Emulates liver chips mimic human reactions to food and foodborne illnesses. The company is also working with Johnson & Johnson, the Michael J. Fox Foundation, and Merck to use organ chips to advance treatments for blood clots, Parkinsons disease, and asthma.

Meanwhile, German competitor TissUse plans to offer humans-on-a-chip packed with more than 10 organs next year, CNBC reported.

Someday you might even be able to safeguard your health with the help of bodies-on-a-chip created from your own cells: doctors could scrape off a few skin cells and use them to create body chips that theyd use to determine which drugs would be most effective should you be stricken by cancer or another serious illness.

Meanwhile, Ingber and other researchers are using their bodies-on-chips to examine how body tissue is affected by nuclear radiation, chemical weapons, and deadly germs.

There are a lot of things out there that we just dont know how to treat becauseyou cant test them in humans, says Dr. Anthony Atala, director of the Wake Forest Institute for Regenerative Medicine in Winston-Salem, North Carolina, who is also developing bodies-on-a-chip. But, of course, these deadly forces can be tested on body chips.

The FDA has awarded a contract to Ingber and his team to use their technology to investigate possible treatments for radiation sickness. Eventually, the chips could help us be better prepared for accidents similar to Japans 2011 Fukushima nuclear disaster.

FOLLOW NBC MACH ON TWITTER, FACEBOOK, AND INSTAGRAM.

Let our news meet your inbox.

Continue reading here:
Tiny 'Organoids' Promise Big Boost to Medical Care - NBCNews.com

Bio-inspired materials give boost to regenerative medicine – Medical Xpress

August 18, 2017 In a new studyin Nature Communications, Stephanopoulos and his colleague Ronit Freeman successfully demonstrated the ability to dynamically control the environment around stem cells, to guide their behavior in new and powerful ways. Credit: Northwestern University

What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Or heal tissues by coaxing cells to multiply, repair or replace damaged regions in loved ones whose lives have been ravaged by stroke, Alzheimer's or Parkinson's disease?

Such is the vision, promise and excitement in the burgeoning field of regenerative medicine, now a major ASU initiative to boost 21st-century medical research discoveries.

ASU Biodesign Institute researcher Nick Stephanopoulos is one of several rising stars in regenerative medicine. In 2015, Stephanopoulos, along with Alex Green and Jeremy Mills, were recruited to the Biodesign Institute's Center for Molecular Design and Biomimetics (CMDB), directed by Hao Yan, a world-recognized leader in nanotechnology.

"One of the things that that attracted me most to the ASU and the Biodesign CMDB was Hao's vision to build a group of researchers that use biological molecules and design principles to make new materials that can mimic, and one day surpass, the most complex functions of biology," Stephanopoulos said.

"I have always been fascinated by using biological building blocks like proteins, peptides and DNA to construct self-assembled structures, devices and materials, and the interdisciplinary and highly collaborative team in the CMDB is the ideal place to put this vision into practice."

Yan's research center uses DNA and other basic building blocks to build their nanotechnology structuresonly at a scale 1,000 times smaller than the width of a human hair.

They've already used nanotechnology to build containers to specially deliver drugs to tissues, build robots to navigate a maze or nanowires for electronics.

To build a manufacturing industry at that tiny scale, their bricks and mortar use a colorful assortment of molecular Legos. Just combine the ingredients, and these building blocks can self-assemble in a seemingly infinite number of ways only limited by the laws of chemistry and physicsand the creative imaginations of these budding nano-architects.

Learning from nature

"The goal of the Center for Molecular Design and Biomimetics is to use nature's design rules as an inspiration in advancing biomedical, energy and electronics innovation through self-assembling molecules to create intelligent materials for better component control and for synthesis into higher-order systems," said Yan, who also holds the Milton Glick Chair in Chemistry and Biochemistry.

Prior to joining ASU, Stephanopoulos trained with experts in biological nanomaterials, obtaining his doctorate with the University of California Berkeley's Matthew Francis, and completed postdoctoral studies with Samuel Stupp at Northwestern University. At Northwestern, he was part of a team that developed a new category of quilt-like, self-assembling peptide and peptide-DNA biomaterials for regenerative medicine, with an emphasis in neural tissue engineering.

"We've learned from nature many of the rules behind materials that can self-assemble. Some of the most elegant complex and adaptable examples of self-assembly are found in biological systems," Stephanopoulos said.

Because they are built from the ground-up using molecules found in nature, these materials are also biocompatible and biodegradable, opening up brand-new vistas for regenerative medicine.

Stephanopoulos' tool kit includes using proteins, peptides, lipids and nucleic acids like DNA that have a rich biological lexicon of self-assembly.

"DNA possesses great potential for the construction of self-assembled biomaterials due to its highly programmable nature; any two strands of DNA can be coaxed to assemble to make nanoscale constructs and devices with exquisite precision and complexity," Stephanopoulos said.

Proof all in the design

During his time at Northwestern, Stephanopoulos worked on a number of projects and developed proof-of-concept technologies for spinal cord injury, bone regeneration and nanomaterials to guide stem cell differentiation.

Now, more recently, in a new study in Nature Communications, Stephanopoulos and his colleague Ronit Freeman in the Stupp laboratory successfully demonstrated the ability to dynamically control the environment around stem cells, to guide their behavior in new and powerful ways.

In the new technology, materials are first chemically decorated with different strands of DNA, each with a unique code for a different signal to cells.

To activate signals within the cells, soluble molecules containing complementary DNA strands are coupled to short protein fragments, called peptides, and added to the material to create DNA double helices displaying the signal.

By adding a few drops of the DNA-peptide mixture, the material effectively gives a green light to stem cells to reproduce and generate more cells. In order to dynamically tune the signal presentation, the surface is exposed to a soluble single-stranded DNA molecule designed to "grab" the signal-containing strand of the duplex and form a new DNA double helix, displacing the old signal from the surface.

This new duplex can then be washed away, turning the signal "off." To turn the signal back on, all that is needed is to now introduce a new copy of single-stranded DNA bearing a signal that will reattach to the material's surface.

One of the findings of this work is the possibility of using the synthetic material to signal neural stem cells to proliferate, then at a specific time selected by the scientist, trigger their differentiation into neurons for a while, before returning the stem cells to a proliferative state on demand.

One potential use of the new technology to manipulate cells could help cure a patient with neurodegenerative conditions like Parkinson's disease.

The patient's own skin cells could be converted to stem cells using existing techniques. The new technology could help expand the newly converted stem cells back in the laband then direct their growth into specific dopamine-producing neurons before transplantation back to the patient.

"People would love to have cell therapies that utilize stem cells derived from their own bodies to regenerate tissue," Stupp said. "In principle, this will eventually be possible, but one needs procedures that are effective at expanding and differentiating cells in order to do so. Our technology does that."

In the future, it might be possible to perform this process entirely within the body. The stem cells would be implanted in the clinic, encapsulated in the type of material described in the new work, and injected into a particular spot. Then the soluble peptide-DNA molecules would be given to the patient to bind to the material and manipulate the proliferation and differentiation of transplanted cells.

Scaling the barriers

One of the future challenges in this area will be to develop materials that can respond better to external stimuli and reconfigure their physical or chemical properties accordingly.

"Biological systems are complex, and treating injury or disease will in many cases necessitate a material that can mimic the complex spatiotemporal dynamics of the tissues they are used to treat," Stephanopoulos said.

It is likely that hybrid systems that combine multiple chemical elements will be necessary; some components may provide structure, others biological signaling and yet others a switchable element to imbue dynamic ability to the material.

A second challenge, and opportunity, for regenerative medicine lies in creating nanostructures that can organize material across multiple length scales. Biological systems themselves are hierarchically organized: from molecules to cells to tissues, and up to entire organisms.

Consider that for all of us, life starts simple, with just a single cell. By the time we reach adulthood, every adult human body is its own universe of cells, with recent estimates of 37 trillion or so. The human brain alone has 100 billion cells or about the same number of cells as stars in the Milky Way galaxy.

But over the course of a life, or by disease, whole constellations of cells are lost due to the ravages of time or the genetic blueprints going awry.

Collaborative DNA

To overcome these obstacles, much more research funding and recruitment of additional talent to ASU will be needed to build the necessary regenerative medicine workforce.

Last year, Stephanopoulos' research received a boost with funding from the U.S. Air Force's Young Investigator Research Program (YIP).

"The Air Force Office of Scientific Research YIP award will facilitate Nick's research agenda in this direction, and is a significant recognition of his creativity and track record at the early stage of his careers," Yan said.

They'll need this and more to meet the ultimate challenge in the development of self-assembled biomaterials and translation to clinical applications.

Buoyed by the funding, during the next research steps, Stephanopoulos wants to further expand horizons with collaborations from other ASU colleagues to take his research team's efforts one step closer to the clinic.

"ASU and the Biodesign Institute also offer world-class researchers in engineering, physics and biology for collaborations, not to mention close ties with the Mayo Clinic or a number of Phoenix-area institutes so we can translate our materials to medically relevant applications," Stephanopoulos said.

There is growing recognition that regenerative medicine in the Valley could be a win-win for the area, in delivering new cures to patients and building, person by person, a brand-new medicinal manufacturing industry.

Explore further: New technology to manipulate cells could help treat Parkinson's, arthritis, other diseases

More information: Ronit Freeman et al. Instructing cells with programmable peptide DNA hybrids, Nature Communications (2017). DOI: 10.1038/ncomms15982

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read more from the original source:
Bio-inspired materials give boost to regenerative medicine - Medical Xpress

Two-step process leads to cell immortalization and cancer – UC Berkeley

A mutation that helps make cells immortal is critical to the development of a tumor, but new research at UC Berkeley suggests that becoming immortal is a more complicated process than originally thought.

The key to immortalization is an enzyme called telomerase, which keeps chromosomes healthy in cells that divide frequently. The enzyme lengthens the caps, or telomeres, on the ends of chromosomes, which wear off during each cell division.

This skin section shows a benign mole or nevus that is transitioning into a melanoma, the most serious type of skin cancer. New experiments by UC Berkeley and UCSF researchers suggest that immortalization of skin cells, which is essential to turning them cancerous, is a two-step process: a mutation in nevus cells slightly raises levels of telomerase, which keep the cells alive long enough for a second change, still unknown, that up-regulates telomerase to make the cells immortal and malignant. (Image by Dirk Hockemeyer/UC Berkeley and Boris Bastian/UCSF)

When the telomeres get too short, the ends stick to one another, wreaking havoc when the cell divides and in most cases killing the cell. The discovery of telomerase and its role in replenishing the caps on the ends of the chromosomes, made by Elizabeth Blackburn and Carol Greider at UC Berkeley and John Szostak at Harvard University in the 1980s, earned them a Nobel Prize in Physiology or Medicine in 2009.

Because telomeres get shorter as cells age, scientists theorized that cancer cells which never age become immortalized by turning on production of telomerase in cells that normally dont produce it, allowing these cells to keep their long telomeres indefinitely. An estimated 90 percent of all malignant tumors use telomerase to achieve immortality, and various proposed cancer therapies focus on turning down the production of telomerase in tumors.

The new research, which studied the immortalization process using genome-engineered cells in culture and also tracked skin cells as they progressed from a mole into a malignant melanoma, suggests that telomerase plays a more complex role in cancer.

Our findings have implications for how to think about the earliest processes that drive cancer and telomerase as a therapeutic target. It also means that the role of telomere biology at a very early step of cancer development is vastly under-appreciated, said senior author Dirk Hockemeyer, a UC Berkeley assistant professor of molecular and cell biology. It is very likely that what we find in melanoma is true for other cancer types as well, which would warrant that people look more carefully at the role of early telomere shortening as a tumor-suppressing mechanism for cancer.

The results were reported online August 17 as a first release publication from the journal Science.

From nevus to cancer Hockemeyer and his UC Berkeley colleagues, in collaboration with dermatopathologist Boris Bastian and his colleagues at UCSF, found that immortalization is a two-step process, driven initially by a mutation that turns telomerase on, but at a very low level. That mutation is in a promoter, a region upstream of the telomerase gene referred to as TERT that regulates how much telomerase is produced. Four years ago, researchers reported that some 70 percent of malignant melanomas have this identical mutation in the TERT promoter.

The TERT promoter mutation does not generate enough telomerase to immortalize the pre-cancerous cells, but does delay normal cellular aging, Hockemeyer said, allowing more time for additional changes that turn telomerase up. He suspects that the telomerase levels are sufficient to lengthen the shortest telomeres, but not to keep them all long and healthy.

If cells fail to turn up telomerase, they also fail to immortalize, and eventually die from short telomeres because chromosomes stick together and then shatter when the cell divides. Cells with the TERT promoter mutation are more likely to up-regulate telomerase, which allows them to continue to grow despite very short telomeres. The marginal levels of telomerase in the cell, Hockemeyer said, result is some unprotected chromosome ends in the surviving mutant cells, which could cause mutations and further fuel tumor formation.

Before our paper, people could have assumed that the acquisition of just this one mutation in the TERT promoter was sufficient to immortalize a cell; that any time when that happens, the telomere shortening is taken out of the equation, Hockemeyer said. We are showing that the TERT promoter mutation is not immediately sufficient to stop telomeres from shortening.

It is still unclear, however, what causes the eventual up-regulation of telomerase that immortalizes the cell. Hockemeyer says that its unlikely to be another mutation, but rather an epigenetic change that affects expression of the telomerase gene, or a change in the expression of a transcription factor or other regulatory proteins that bind to the promoter upstream of the telomerase gene.

Nevertheless, we have evidence that the second step has to happen, and that the second step is initiated by or is occurring at a time when telomeres are critically short and when telomeres can be dysfunctional and drive genomic instability, he said.

In retrospect, not a surprise Though most cancers seem to require telomerase to become immortal, only some 10 to 20 percent of cancers are known to have a single-nucleotide change in the promoter upstream of the telomerase gene. However, these include about 70 percent of all melanomas and 50 percent of all liver and bladder cancers.

Hockemeyer said that the evidence supporting the theory that the TERT promoter mutation up-regulated telomerase has always been conflicting: Cancer cells tend to have chromosomes with short telomeres, yet have higher levels of telomerase, which should produce longer telomeres.

According to the new theory, the telomeres are short in precancerous cells because telomerase is turned on just enough to maintain but not lengthen the telomeres.

Our paper reconciles contradictory information about the cancers that carry these mutations, Hockemeyer said.

The finding also resolves another recent counterintuitive finding: that people with shorter telomeres are more resistant to melanoma. The reason, he said, is that if a TERT promoter mutation arises to push a precancerous lesion the mole or nevus toward a melanoma, the chances are greater in someone with short telomeres that the cell will die before it up-regulates telomerase and immortalizes the cells.

The study also involved engineering TERT promoter mutations in cells differentiated from human pluripotent stem cells and following their progression toward cellular immortality. The results were identical to the progression seen in human skin lesions obtained from patients in UCSFs Helen Diller Family Comprehensive Cancer Center and examined in the Clinical Cancer Genomics Laboratory, which Bastian directs.

Other co-authors of the Science paper are UC Berkeley graduate students Kunitoshi Chiba and Franziska Lorbeer, who contributed equally to the research, Hunter Shain of UCSF, David McSwiggen, Eva Schruf and Xavier Darzacq of UC Berkeley, and Areum Oh and Jekwan Ryu of the Santa Clara firm Optical Biosystems. The work was supported by the Siebel Stem Cell Institute, California Institute of Regenerative Medicine and National Institutes of Health. RELATED INFORMATION

Read more from the original source:
Two-step process leads to cell immortalization and cancer - UC Berkeley

What are Embryonic Stem Cells? – amaskincare.com

Essentially all of the Cells of aDeveloping Embryo are Stem Cells

Embryonic stem cells are derived from embryos before to the 2nd week of development long before the developing embryo has transitioned to becoming a Fetus. During these first two weeks, essentially all of the cells of the embryo are stem cells, in that they have not differentiated into cells with specialized functions. Typically embryonic stem cells are derived from embryos that are created in laboratory conditions, not harvested directly from a human mother. In other words, a human egg has been harvested from a woman and fertilized with a human sperm in vitro (in a laboratory). Thus usually takes place in an in vitro fertilization clinicand then donated for research purposes.

The technique of growing cells in the laboratory is referred to as cell culture. Human embryonic stem cells (hESCs) are grown by harvesting the cells derived from an early stage preimplantation embryo (a very young embryo that if present in a human mother would not yet be implanted in her uterus). These cells are grown in a special laboratory dish that contains a nutrient broth known as culture medium.

Once the cells have taken hold and are surviving they can be removed and placed into several additional culture dishes. The process is called sub-culturing the cells and can be repeated many times over many weeks and months. Each cycle of sub-culturing the cells is referred to as a passage, and is a way that a few original stem cells can be expanded into many generations and millions of stem cells and are referred to as an embryonic stem cell line.

During the process of generating lines of embryonic stem cells in laboratory conditions, it is important to test the cells to see if they exhibit the basic properties or characteristics of stems cells. This process is called characterization.

Though this process has not been standardized throughout the cell-biology industry, the following are some of the tests that are commonly performed:

Perhaps an even better question to ask is how do we induce stem cells to differentiate into the exact tissue or organ we need?

Let me explain. Obviously, the holy grail of regenerative medicine and stem cell therapy would be to grow a new organ lets say a liver for a patient who has a diseased liver. In such a world, any damaged or diseased organ could simply be replaced by a new young organ generated right from the patients own stem cells.

The hope is that by changing the composition of the nutrient base in which the cells are cultivated, or by adding certain transcription factors, or by using any number of chemical, biochemical and electronic elements, we might find the correct recipe for inducing a stem cell to differentiate into the cells we need or want. Though we have discovered some basic protocols for limited induction of stem cells into specific organ tissues, we are far from growing a complete and viable human organ.

To date our best hope is focusing on developing a specific cell type and not the entire organ. For example the cells that produce insulin within a pancreas, but not the entire pancreas.

More:
What are Embryonic Stem Cells? - amaskincare.com

Woman Will Use Stem Cells From Her Baby’s Umbilical Cord To … – LifeNews.com

A pregnant British mom hopes she and her unborn baby will be the answer to help prolong her ailing brothers life.

Georgina Russell, of Preston, England, said she was desperate to help her brother, Ashley, when doctors diagnosed him with a slow-growing but deadly brain tumor earlier this year, according to the Daily Mail.

Georgina said she began researching his condition, glioblastoma, online and looking for answers that could save his life. She found one: her pregnancy.

Stem cells produced in the umbilical cord between her and her unborn baby potentially could be used in a treatment to shrink Ashleys tumor, according to the report. Once Georgina gives birth, she said doctors will be able to harvest and store the stem cells until Ashley needs them.

There is no harm to the baby or the mother when doctors harvest stem cells from the umbilical cord unlike embryonic stem cells, which only can be taken by killing a human life in the embryonic stage.

Georgina told the Mail: The blood from the cord is being used in trials across the world. It can do amazing things to help the body repair itself. If we store the stem cells, they can be kept to be used throughout Ashleys treatment when he needs them.

They might be able to inject them into the spinal fluid, to shrink the tumour on the brain, or they may be able to use the tissue grown from them to repair any damage to other parts of his body, if he has to have chemotherapy or radiotherapy.

Ashley Russell, a British military veteran, husband and father, said doctors found the tumor after he began suffering from headaches, dizzy spells and mini-seizures about six months ago. Later, he said he also began having blurred vision. Doctors ran a series of tests before discovering the tumor on his brain.

He said doctors suggested surgery, but the procedure has high risks. They gave him about five years to live, according to the report.

Georgina said she was devastated for her brother and his family, and she began researching ways to help him. In her research online, she said she discovered how stem cells collected from the umbilical cord are helping to treat people with tumors and other diseases.

PRO-LIFE COLLEGE STUDENT? LifeNews is looking for interns interested in writing, social media, or video creation. Contact us today.

Her brother said the idea seemed odd at first, but he is willing to try anything.

I am quite a positive person so although the diagnosis was difficult, I am determined to do whatever I can to keep going, Ashley said. I did think about not being around to see my little girl get married and knew that if there was anything that might help, I would give it a go.

Georgina currently is 33 weeks pregnant with her unborn child, the report states.

Stem cells are so powerful and his new niece or nephew could save his life, she said.

The family set up a JustGiving page to help pay for the storage of the stem cells and Ashleys treatment.

Adult stem cells and those from umbilical cords are proving to be live-saving, while life-destroying embryonic stem cells have not been effective.

David Prentice, vice president and research director for the Charlotte Lozier Institute, explained more about the effectiveness of these life-saving stem cells in 2014:

SUPPORT PRO-LIFE NEWS! Please help LifeNews.com with a donation

Umbilical cord blood stem cells have become an extremely valuable alternative to bone marrow adult stem cell transplants, ever since cord blood stem cells were first used for patients over 25 years ago. The first umbilical cord blood stem cell transplant was performed in October 1988, for a 5-year-old child with Fanconi anemia, a serious condition where the bone marrow fails to make blood cells. That patient is currently alive and healthy, 25 years after the cord blood stem cell transplant.

Prentice said more than 30,000 cord blood stem cell transplants have been done across the world. These stem cells have helped treat people with blood and bone marrow diseases, leukemia and genetic enzyme diseases, he said.

See the original post here:
Woman Will Use Stem Cells From Her Baby's Umbilical Cord To ... - LifeNews.com

Stem cells mimic sphere where embryos grow – Futurity: Research News

Researchers report that they have coaxed pluripotent human stem cells to grow on a specially engineered surface into structures that resemble the amniotic sac.

Gumucio likens a PASE to a mismatched plastic Easter egg or a blue-and-red Pokmon ballwith two clearly divided halves of two kinds of cells

The first few weeks after sperm meets egg still hold many mysteries. Among them: what causes the process to fail, leading to many cases of infertility. Despite the importance of this critical stage, scientists havent had a good way to explore what can go wrong, or even what must go right, after the newly formed ball of cells implants in the wall of the human uterus.

But the new achievement with human stem cells may help change that. The tiny lab-grown structures could give researchers a chance to see what they couldnt before, while avoiding ethical issues associated with studying actual embryos.

The stem cells researchers used spontaneously developed some of the same structural and molecular features seen in a natural amniotic sac, which is an asymmetric, hollow ball-like structure containing cells that will give rise to a part of the placenta as well as the embryo itself.

But the structures lack other key components of the early embryo, so they cant develop into a fetus.

Its the first time a team has grown such a structure starting with stem cells, rather than coaxing a donated embryo to grow, as a few other teams have done.

As many as half of all pregnancies end in the first two weeks after fertilization, often before the woman is even aware she is pregnant. For some couples, there is a chronic inability to get past these critical early developmental steps, but we have not previously had a model that would allow us to explore the reasons why, says co-senior author Deborah Gumucio, professor of cell and developmental biology and professor of internal medicine at the University of Michigan.

We hope this work will make it possible for many scientists to dig deeper into the pathways involved in normal and abnormal development, so we can understand some of the most fascinating biology on earth.

The researchers have dubbed the new structure a post-implantation amniotic sac embryoid, or PASE. They describe how a PASE develops as a hollow spherical structure with two distinct halves that remain stable even as cells divide.

One half is made of cells that will become amniotic ectoderm, the other half consists of pluripotent epiblast cells that in nature make up the embryonic disc. The hollow center resembles the amniotic cavitywhich in normal development eventually gives rise to the fluid-filled sac that protects and cushions the fetus during development.

Gumucio likens a PASE to a mismatched plastic Easter egg or a blue-and-red Pokmon ballwith two clearly divided halves of two kinds of cells that maintain a stable form around a hollow center.

The team also reports details about the genes that became activated during the development of a PASE, and the signals that the cells in a PASE send to one another and to neighboring tissues. They show that a stable two-halved PASE structure relies on a signaling pathway called BMP-SMAD thats known to be critical to embryo development.

Gumucio says that the PASE structures even exhibit the earliest signs of initiating a primitive streak, although it did not fully develop. In a human embryo, the streak would start a process called gastrulation. Thats the division of new cells into three cell layersendoderm, mesoderm, and ectodermthat are essential to give rise to all organs and tissues in the body.

Besides working with genetic and infertility specialists to delve deeper into PASE biology as it relates to human infertility, the research team is hoping to explore additional characteristics of amnion tissue.

For example, early rupture of the amnion tissue can endanger a fetus or be the cause of a miscarriage. The team also intends to study which aspects of human amnion formation also occur in development of mouse amnion. The mouse embryo model is very attractive as an in vivo model for investigating human genetic diseases.

The research appears in the journal Nature Communications.

The teams work is overseen by a panel that monitors all work done with pluripotent stem cells at the university, and the studies are performed in accordance with laws regarding human stem cell research. The team ends experiments before the balls of cells effectively reach 14 developmental days, the cutoff used as an international limit on embryo researcheven though the work involves tissue that cannot form an embryo.

Some of the stem cell lines were derived at the University of Michigans privately funded MStem Cell Laboratory for human embryonic stem cells and the universitys Pluripotent Stem Cell Core.

The National Institutes of Health and the universitys Mechanical Engineering Startup Fund as well as the Rackham Predoctoral Fellowship funded the research. The team has worked with the universitys Office of Technology Transfer to apply for a patent on the method of generating amnion, for potential commercial use in wound healing.

Source: University of Michigan

Visit link:
Stem cells mimic sphere where embryos grow - Futurity: Research News

Vitamin C helps genes to kill off cells that would cause cancer – New Scientist

Could vitamin C help drugs fight leukaemia?

Steve Gschmeissner/SPL/Getty

By Aylin Woodward

Injections of vitamin C could be a way to help fight blood cancer. Experiments in mice suggest that the nutrient helps tell out-of-control cells to stop dividing and die.

Some blood cancers, including acute and chronic leukaemia, often involve mutations affecting a gene called TET2. This gene usually helps ensure that a type of stem cell matures properly to make white blood cells, and then eventually dies. But when TET2 mutates, these cells can start dividing uncontrollably, leading to cancer. Mutations in TET2 are involved in around 42,500 cancers in the US a year.

Luisa Cimmino and Benjamin Neel at the New York University School of Medicine and their colleagues have genetically engineered mice to have variable TET2 function. They found that a 50 per cent reduction in TET2 activity can be enough to induce cancer, but that TET2 activity needs to remain low if the disease is to continue developing. If we genetically restore TET2, it blocks unhealthy replication and kills the cells, says Cimmino.

Next, the team turned to vitamin C, because it is known to have an effect in embryonic stem cells, where it can activate TET2 and help keep cell replication in check.

The team injected mice with low TET2 activity with very high doses of vitamin C every day for 24 weeks and found that it slowed the progression of leukaemia. By the end of this period, a control group that got no injections had three times as many white blood cells a sign of pre-leukaemia.

When the team exposed human leukaemia cells in a dish to a cancer drug, they found they got better results when they added vitamin C.

Neel hopes that high doses of vitamin C will eventually be incorporated into cancer therapies. People who have acute myeloid leukemia are often of advanced age, and may die from chemotherapy. Vitamin C in combination with cancer drugs may provide an alternative approach.

But taking large amounts of vitamin C is unlikely to prevent you from getting cancer, says Neel. The mice were given 100 milligrams of vitamin C in each injection, the equivalent of about two oranges. But the average person weighs about 3000 times as much as a mouse. Because the body stops taking in the vitamin after around 500 milligrams, any therapies would need to supply vitamin C intravenously. You cant get the levels of it necessary to achieve the effects in this study by eating oranges, he says.

Journal reference: Cell, DOI: 10.1026/j.cell.2017.07.032

Read more: Choosing alternative cancer treatment doubles your risk of death

More on these topics:

Go here to read the rest:
Vitamin C helps genes to kill off cells that would cause cancer - New Scientist

Forever Labs preserves young stem cells to prevent your older self from aging – TechCrunch

Forever Labs, a startup in Y Combinators latest batch, is preserving adult stem cells with the aim to help you live longer and healthier.

Stem cells have the potential to become any type of cell needed in the body. Its very helpful to have younger stem cells from your own body on hand should you ever need some type of medical intervention, like a bone marrow transplant as the risk of rejection is greatly reduced when the cells are yours.

Mark Katakowski spent the last 15 years studying stem cells. What he found is that not only do we have less of them the older we get, but they also lose their function as we age.So, he and his co-founders Edward Cibor and Steve Clausnitzer started looking at how to bank them while they were young.

Clausnitzer banked his cells two years ago at the age of 38. So, while he is biologically now age 40, his cells remain the age in which they were harvested or as he calls it, stem cell time travel.

Steven Clausnitzer with his 38-year-old banked stem cells.

There are places offering stem cell therapy and Botox, he said.

Forever Labs is backed by a team of Ivy League-trained scientists with decades of experience between them. Jason Camm, chief medical officer for Thiel Capital, is also one of the companys medical advisors however, the startup is quick to point out it is not associated with Thiel Capital.

The process involves using a patented device to collect the cells. Forever Labs can then grow and bank your cells for $2,500, plus another $250 for storage per year (or a flat fee of $7,000 for life).

The startup is FDA-approved to bank these cells and is offering the service in seven states. What it does not have FDA approval for is the modification of those cells for rejuvenation therapy.

Katakowski refers to what the company is doing as longevity as a service, with the goal being to eventually take your banked cells and modify them to reverse the biological clock.

But that may take a few years. There are hundreds of clinical trials looking at stem cell uses right now. Forever Labs has also proposed its own clinical trial to take your stem cells and give them to your older cells.

Youll essentially young-blood effect yourself, Katakowski joked of course, in this case, youd be using your own blood made from your own stem cells, not the blood of random teens.

See more here:
Forever Labs preserves young stem cells to prevent your older self from aging - TechCrunch

UCLA scientists identify a new way to activate stem cells to make hair grow – UCLA Newsroom

UCLA researchers have discovered a new way to activate the stem cells in the hair follicle to make hair grow. The research, led by scientists Heather Christofk and William Lowry, may lead to new drugs that could promote hair growth for people with baldness or alopecia, which is hair loss associated with such factors as hormonal imbalance, stress, aging or chemotherapy treatment.

The research was published in the journal Nature Cell Biology.

Hair follicle stem cells are long-lived cells in the hair follicle; they are present in the skin and produce hair throughout a persons lifetime. They are quiescent, meaning they are normally inactive, but they quickly activate during a new hair cycle, which is when new hair growth occurs. The quiescence of hair follicle stem cells is regulated by many factors. In certain cases they fail to activate, which is what causes hair loss.

In this study, Christofk and Lowry, of Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, found that hair follicle stem cell metabolism is different from other cells of the skin. Cellular metabolism involves the breakdown of the nutrients needed for cells to divide, make energy and respond to their environment. The process of metabolism uses enzymes that alter these nutrients to produce metabolites. As hair follicle stem cells consume the nutrient glucose a form of sugar from the bloodstream, they process the glucose to eventually produce a metabolite called pyruvate. The cells then can either send pyruvate to their mitochondria the part of the cell that creates energy or can convert pyruvate into another metabolite called lactate.

Our observations about hair follicle stem cell metabolism prompted us to examine whether genetically diminishing the entry of pyruvate into the mitochondria would force hair follicle stem cells to make more lactate, and if that would activate the cells and grow hair more quickly, said Christofk, an associate professor of biological chemistry and molecular and medical pharmacology.

The research team first blocked the production of lactate genetically in mice and showed that this prevented hair follicle stem cell activation. Conversely, in collaboration with the Rutter lab at University of Utah, they increased lactate production genetically in the mice and this accelerated hair follicle stem cell activation, increasing the hair cycle.

Before this, no one knew that increasing or decreasing the lactate would have an effect on hair follicle stem cells, said Lowry, a professor of molecular, cell and developmental biology. Once we saw how altering lactate production in the mice influenced hair growth, it led us to look for potential drugs that could be applied to the skin and have the same effect.

The team identified two drugs that, when applied to the skin of mice, influenced hair follicle stem cells in distinct ways to promote lactate production. The first drug, called RCGD423, activates a cellular signaling pathway called JAK-Stat, which transmits information from outside the cell to the nucleus of the cell. The research showed that JAK-Stat activation leads to the increased production of lactate and this in turn drives hair follicle stem cell activation and quicker hair growth. The other drug, called UK5099, blocks pyruvate from entering the mitochondria, which forces the production of lactate in the hair follicle stem cells and accelerates hair growth in mice.

Through this study, we gained a lot of interesting insight into new ways to activate stem cells, said Aimee Flores, a predoctoral trainee in Lowrys lab and first author of the study. The idea of using drugs to stimulate hair growth through hair follicle stem cells is very promising given how many millions of people, both men and women, deal with hair loss. I think weve only just begun to understand the critical role metabolism plays in hair growth and stem cells in general; Im looking forward to the potential application of these new findings for hair loss and beyond.

The use of RCGD423 to promote hair growth is covered by a provisional patent application filed by the UCLA Technology Development Group on behalf of UC Regents. The use of UK5099 to promote hair growth is covered by a separate provisional patent filed by the UCLA Technology Development Group on behalf of UC Regents, with Lowry and Christofk as inventors.

The experimental drugs described above were used in preclinical tests only and have not been tested in humans or approved by the Food and Drug Administration as safe and effective for use in humans.

The research was supported by a California Institute for Regenerative Medicine training grant, a New Idea Award from the Leukemia and Lymphoma Society, the National Cancer Institute (R25T CA098010), the National Institute of General Medical Sciences (R01-GM081686 and R01-GM0866465), the National Institutes of Health (RO1GM094232), an American Cancer Society Research Scholar Grant (RSG-16-111-01-MPC), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (5R01AR57409), a Rose Hills Foundation Research Award and the Gaba Fund. The Rose Hills award and the Gaba Fund are administered through the UCLA Broad Stem Cell Research Center.

Further research on the use of UK5099 is being funded by the UCLA Technology Development Group through funds from California State Assembly Bill 2664.

The rest is here:
UCLA scientists identify a new way to activate stem cells to make hair grow - UCLA Newsroom