Author Archives: admin


Running Doc on how to treat Plantar Fasciitis – New York Daily News

NEW YORK DAILY NEWS

Sunday, August 27, 2017, 6:00 AM

Dear Running Doc:

Good afternoon. I hope you are having a fun weekend. I have had PF for 1.5 years now. I have tried stretching, cortisone, PRP injections, etc. and nothing has worked.

I love to run but had to give up last year and would love to get back to running. I have tried a few orthotics but have not tried custom fitted ones. What would you recommend? I live in Houston. I have seen a few foot and ankle surgeons but nothing has worked.

Thank you for your advice. Where is your office? Do you treat people in your office for PF?

Best, Jeff W., Houston, TX

I and the New York Daily News hope you and family are safe during this horrific storm.

The good news is your PF (Plantar Fasciitis) should not prevent you from running for more than three weeks. In my office practice in New York City, no one has had to give up running due to Plantar Fasciitis.

Plantar Fasciitis is an inflammation of tight connective tissue on the bottom of the foot making up its arch. A simple routine of ice, stretching, golf ball exercise, custom orthotics and sometimes PRP is all that is needed to get you back to run soon. Lets go through them to be sure you are doing them correctly. Leaving one out may cause the Plantar Fasciitis to linger.

Ice: You must ice the painful area for 20 minutes twice a day. Use a Ziploc freezer bag filled with ice and water. The water raises the temperature to 32 degrees to prevent freezer burn. Just plant your foot on the ice water bag in the morning after you have woken up and the evening before you go to sleep. Avoid those ice contraptions that are too cold.

Stretching: The Plantar Fascia connective tissue attaches around the heal bone to the calf muscles. It acts as a fulcrum (as we learned in high school). Therefore, stretching both the calf muscles (gastroc and soleus) helps loosen the tight Plantar Fascia. Wall push-ups with the knee both straight and bent should accomplish this. When the Plantar Fascia is less tight, there is less inflammation.

Golf Ball Exercise: A hard golf ball rolled back and forth over the most painful part of your arch for 30 minutes daily should do the trick. Remember with this exercise that your condition will hurt more before it hurts less. Dont get discouraged. Some people use a frozen water bottle for this exercise. In my experience, using a golf ball once a day and doing the ice separately twice a day works better than trying to combine these two steps together.

Custom Orthotics: Custom full-length flexible orthotics are a necessary step to combat Plantar Fasciitis. They stabilize the ligaments and prevent it from coming back. Over-the-counter orthotics are as good as over-the-counter glasses. You do need orthotics custom made properly.

Platelet Rich Plasma (PRP): First, Jeff, stay away from cortisone injections. Cortisone weakens soft tissues and, in my experience, causes an increased risk for further problems. If you do all the above steps, you may never need to get to PRP. If you have a bone spur coming out as a pointed projection from your heal, PRP may be necessary. Usually a PRP treatment is done with two treatments 24 to 72 hours apart.

I hope Jeff that the above information helps you to regain your running at a level that makes you comfortable. If you have any further questions, please do not hesitate to write again.

Enjoy the Ride!

***

Lewis G. Maharam, MD, FACSM is one of the worlds most extensively credentialed and well-known sports health experts. Better known as Running Doc, Maharam is author of Running Docs Guide to Healthy Running and past medical director of the NYC Marathon and Rock n Roll Marathon series. He is Medical Director of the Leukemia & Lymphoma Societys Team in Training program. He is also past president of the New York Chapter of the American College of Sports Medicine. Learn more at runningdoc.com.

Want your question answered in this column? Write to running doc at runningdoc@nydailynews.com.

See the rest here:
Running Doc on how to treat Plantar Fasciitis - New York Daily News

In utero stem cell transplants may replace riskier childhood transplants for multiple conditions – Medical Xpress

August 31, 2017 by Suzanne Leigh Tippi MacKenzie, MD, a pediatric and fetal surgeon at UCSF Benioff Childrens Hospital San Francisco, is the principal investigator for a clinical trial that will use in utero stem cell transplants to treat fetuses with an inherited disorder that restricts the bloods ability to carry oxygen to vital organs. Credit: Cindy Chew

UCSF Benioff Children's Hospitals in San Francisco and Oakland will pioneer stem cell transplants for a uniquely challenging patient population: second-trimester fetuses stricken with a potentially fatal disease.

The two hospitals are enrolling 10 pregnant women in the first phase of a clinical trial to treat fetuses with an inherited disorder that restricts the blood's ability to carry oxygen to vital organs. The trial, the first of its kind in the world, is funded by a $12.1 million grant from the California Institute for Regenerative Medicine.

Alpha thalassemia (ATM) affects 5 percent of the world's population, but is significantly more prevalent in China, Southeast Asia, India and the Middle East parts of the globe where many residents of the San Francisco Bay Area claim their origins. In its most extreme form, alpha thalassemia major (ATM), the condition leads to progressive anemia and heart failure before birth. Standard treatment in the United States includes lifelong blood transfusions.

Stem cell transplants from a matched donor in childhood have proven to be curative in some cases, but patients face risks, including graft-versus-host disease and serious side effects from immune-suppression drugs.

The trial is based on the premise that risks could be minimized by harnessing the "tolerance" between the pregnant woman and fetus before birth, said principal investigator Tippi MacKenzie, MD, a pediatric and fetal surgeon at UCSF Benioff Children's Hospital San Francisco.

Hope That Procedure Could Be Adopted Worldwide

"In performing the procedure in utero when the fetus's immune system is underdeveloped, we can avoid the aggressive treatments required for postnatal transplants for children with alpha thalassemia," MacKenzie said. "Eventually, the procedure may become a treatment option in parts of the world where ATM is most common. Due to lack of treatment possibilities in many countries, most pregnancies are either terminated on diagnosis or result in fetal demise," she said.

The trial follows a decades-long odyssey marked by triumphs and tribulations for researchers in the field. Fetal transplants using stem cells from other fetuses to treat blood disorders were carried out in the 1980s, but were only marginally successful due to engraftment failure. Researchers around the world searched for answers by turning to animal studies.

'Eureka Moment' Spurred Sea Change

"The fetus, unlike a fully developed human, can accept foreign cells, because its immune system is not yet primed to fight bacteria and viruses," said MacKenzie. "This undeveloped immune system benefits the fetus throughout the pregnancy, because it prevents it from launching an immune response to its mother's cells that are naturally circulating in its bloodstream."

Further research led to Mackenzie's "eureka moment," when it was discovered that the mother's immune system is actually responsible for rejecting other cells that are transplanted into the fetus. If the mother's cells are transplanted, they can engraft without being rejected. "This led to a sea change in our strategy to use maternal cells for the transplants," she said.

In the trial, bone marrow will be collected from women who are between 18 and 25 weeks pregnant, with a fetal diagnosis of ATM. The bone marrow cells will be processed and hematopoietic cells immature stem cells that can evolve into all types of blood cells will be singled out from the mix. They will then be injected through the woman's abdomen, into the umbilical vein of the fetus, where they can circulate through the bloodstream, developing into healthy mature blood cells.

The procedure is not without risks to the fetus and the pregnant woman. To minimize risks, the researchers restricted the trial to ATM, since the fetus is already undergoing blood transfusions. "An additional procedure for the transplantation is not necessary, since the maternal stem cells are infused at the same time as an in utero blood transfusion," said Elliott Vichinsky, MD, director of hematology/oncology at UCSF Benioff Children's Hospital Oakland, who will head the hematologic management of the fetus and newborn. "This should reduce additional risks to the fetus." Since the underlying disease causes complications, the woman will be monitored throughout her pregnancy and the fetus will continue to receive blood transfusions until birth.

UCSF is a pioneer in thalassemia research and the birthplace of fetal surgery. UCSF Benioff Children's Hospital Oakland is home to the Northern California Comprehensive Thalassemia Center, which was established in 1991 and is now the largest such program nationwide, with a focus on caring for patients and leading research into new treatments.

"We are excited about launching this trial, which combines the expertise of UCSF Benioff Children's Hospitals in San Francisco and Oakland. This study offers families with a usually fatal ATM pregnancy the chance of survival and cure," said Vichinsky, who founded the Northern California Comprehensive Thalassemia Center.

Treatment May Be Tested for Sickle Cell Anemia

Patient recruitment will continue for five years, during which pregnant women and their babies will be followed after birth for 30 days and one year respectively. If successful, the procedure will be carried out for fetuses with beta thalassemia, a more common and less serious variant of the disorder, as well as sickle cell anemia, in collaboration with Children's Hospital of Philadelphia. Other conditions requiring stem cell transplants after birth may be considered, said MacKenzie.

The incidence of ATM is unknown because most fetuses with the disorder die before delivery. The condition occurs when both parents are carriers for thalassemia. In places where women have access to prenatal care, ATM is usually suspected on ultrasound and confirmed by DNA analysis in the second trimester.

Explore further: Immune system drives pregnancy complications after fetal surgery in mice

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read this article:
In utero stem cell transplants may replace riskier childhood transplants for multiple conditions - Medical Xpress

Human Stem Cells Fight Parkinson’s Disease in Monkeys – Scientific American

LONDON (Reuters)Scientists have successfully used reprogrammed stem cells to restore functioning brain cells in monkeys, raising hopes the technique could be used in future to help patients with Parkinsons disease.

Since Parkinsons is caused by a lack of dopamine made by brain cells, researchers have long hoped to use stem cells to restore normal production of the neurotransmitter chemical.

Now, for the first time, Japanese researchers have shown that human induced pluripotent stem cells (iPS) can be administered safely and effectively to treat primates with symptoms of the debilitating disease.

So-called iPS cells are made by removing mature cells from an individualoften from the skinand reprogramming them to behave like embryonic stem cells. They can then be coaxed into dopamine-producing brain cells.

The scientists from Kyoto University, a world-leader in iPS technology, said their experiment indicated that this approach could potentially be used for the clinical treatment of human patients with Parkinsons.

In addition to boosting dopamine production, the tests showed improved movement in affected monkeys and no tumors in their brains for at least two years.

The human iPS cells used in the experiment worked whether they came from healthy individuals or Parkinsons disease patients, the Japanese team reported in the journal Nature on Wednesday.

This is extremely promising research demonstrating that a safe and highly effective cell therapy for Parkinsons can be produced in the lab, said Tilo Kunath of the MRC Centre for Regenerative Medicine, University of Edinburgh, who was not involved in the research.

The next step will be to test the treatment in a first-in-human clinical trial, which Jun Takahashi of Kyoto University told Reuters he hoped to start by the end of 2018.

Any widespread use of the new therapy is still many years away, but the research has significantly reduced previous uncertainties about iPS-derived cell grafts.

The fact that this research uses iPS cells rather human embryonic stem cells means the treatment would be acceptable in countries such as Ireland and much of Latin America, where embryonic cells are banned.

Excitement about the promise of stem cells has led to hundreds of medical centers springing up around the world claiming to be able to repair damaged tissue in conditions such as multiple sclerosis and Parkinsons.

While some treatments for cancer and skin grafts have been approved by regulators, many other potential therapies are only in early-stage development, prompting a warning last month by health experts about the dangers of stem-cell tourism.

Read more:
Human Stem Cells Fight Parkinson's Disease in Monkeys - Scientific American

Puppies benefit from stem cell treatment for children with spina bifida – University of California

A pair of English bulldog puppies are the first patients to be successfully treated with a unique therapy a combination of surgery and stem cells developed at the University of California, Davis, to help preserve lower-limb function in children with spina bifida.

Because dogs with the birth defect frequently have little control of their hindquarters, they also have little hope for a future. They are typically euthanized as puppies.

At their postsurgery re-check at 4 months old, however, the siblings, named Darla and Spanky, showed off their abilities to walk, run and play to their doctor,veterinary neurosurgeon Beverly Sturges.

The initial results of the surgery are promising, as far as hind limb control, said Sturges. Both dogs seemed to have improved range of motion and control of their limbs.

The dogs have since been adopted, and continue to do well at their home in New Mexico.

Spina bifida occurs when spinal tissue improperly fuses in utero, causing a range of cognitive, mobility, urinary and bowel disabilities in about 1,500 to 2,000 children born in the U.S. each year. The dogs procedure, which involved surgical techniques developed byfetal surgeon Diana Farmerof UC Davis Health together with a cellular treatment developed by stem cell scientistsAijun WangandDori Borjesson, director of the universitysVeterinary Institute for Regenerative Cures, represents a major step toward curing spina bifida for both humans and dogs.

Farmer pioneered the use of surgery prior to birth to improve brain development in children with spina bifida. She later showed that prenatal surgery combined with human placenta-derived mesenchymal stromal cells (PMSCs), held in place with a cellular scaffold, helped research lambs born with the disorder walk without noticeable disability.

Sturges wanted to find out if the surgery-plus-stem-cell approach could give dogs closer-to-normal lives along with better chances of survival and adoption. At 10-weeks old, Darla and Spanky were transported from Southern California Bulldog Rescue to the UC Davis veterinary hospital, where they were the first dogs to receive the treatment, this time using canine instead of human PMSCs.

Another distinction for Darla and Spanky is that their treatment occurred after birth, since prenatal diagnosis of spina bifida is not performed on dogs, Sturges explained. The disorder becomes apparent between 1 and 2 weeks of age, when puppies show hind-end weakness, poor muscle tone, incoordination and abnormal use of their tails.

UC Davis is the only place where this type of cross-disciplinary, transformational medicine could happen, according to Farmer.

Its rare to have a combination of excellent medical and veterinary schools and strong commitment to advancing stem cell science at one institution, she said.

UC Davis is also home to the One Healthinitiative aimed at finding novel treatmentslike thesefor diseases that affect both humans and animals.

Ive often said that I have the greatest job on the planet, because I get to help kids, Farmer said. Now my job is even better, because I get to help puppies too.

With additional evaluation and U.S. Food and Drug Administration approval, Farmer and Wang hope to test the therapy in human clinical trials. Sturges and Borjesson hope to do the same with a canine clinical trial. They hope the outcomes of their work help eradicate spina bifida in dogs and humans.

In the meantime, the team wants dog breeders to send more puppies with spina bifida to UC Davis for treatment and refinements that help the researchers fix an additional hallmark of spina bifida incontinence. While Darla and Spanky are very mobile and doing well on their feet, they still require diapers.

Further analysis of their progress will determine if the surgery improves their incontinence conditions, Sturges said.

Funding for this project was provided by the Veterinary Institute for Regenerative Cures (VIRC) at the UC Davis School of Veterinary Medicine, and the Surgical Bioengineering Lab at the UC Davis School of Medicine. Private donations to the veterinary school for stem cell research also contributed to this procedure. Farmer and Wangs spina bifida research is supported by funding from the National Institutes of Health, the California Institute for Regenerative Medicine, Shriners Hospitals for Children and the March of Dimes Foundation.

Originally posted here:
Puppies benefit from stem cell treatment for children with spina bifida - University of California

FDA to crack down on ‘unscrupulous’ stem cell clinics …

FILE -- The Sawgrass Medical Center, where the U.S. Stem Cell Clinic operates, in Sunrise, Fla., March 15, 2017. The Food and Drug Administration issued a warning letter to U.S. Stem Cell and announced a crackdown on other dangerous stem cell clinics, while at the same time pledging to ease the path to approval for companies and doctors with legitimate treatments in the growing field. (Scott McIntyre/The New York Times)

The U.S. Food and Drug Administration on Monday promised a nationwide crackdown on unscrupulous stem cell clinics, following years of reports that some clinics have offered lofty claims of potential medical benefits with scant, if any, medical evidence.

These dishonest actors exploit the sincere reports of the significant clinical potential of properly developed products, as a way of deceiving patients and preying on the optimism of patients facing bad illnesses. This puts the entire field at risk, wrote FDA Commissioner Dr. Scott Gottlieb, who was appointed in May. Products that are reliably and carefully developed will be harder to advance if bad actors are able to make hollow claims and market unsafe science.

Gottliebs statement, published Monday on the FDAs website, highlighted a warning letter issued to one Florida stem cell clinic on Thursday and the direct seizure of products from another clinic in California on Friday. Gottlieb said the agency is aware of other cases where unproven stem cell treatments have clearly harmed patients, and he promised additional enforcement actions in the coming months.

View original post here:
FDA to crack down on 'unscrupulous' stem cell clinics ...

Dr. Pawel Muranski to Head New Cellular Immunotherapy Laboratory at NewYork-Presbyterian/Columbia University … – Newswise (press release)

Newswise New York (August 31, 2017) Scientific innovator and physician Dr. Pawel Muranski has joined NewYork-Presbyterian and Columbia University Medical Center (CUMC) as director of cellular immunotherapy at the newly established Good Manufacturing Practices (GMP) cell production lab and assistant director of Transfusion Medicine and Cellular Therapy. He will also serve on the faculty of CUMC as Assistant Professor of Medicine, Pathology and Cell Biology, a principal investigator at Columbia Center for Translational Immunology (CCTI) and a member of Columbias Herbert Irving Comprehensive Cancer Center.

Were thrilled to have Dr. Muranski joining us to continue his innovative work, said Dr. Gary Schwartz, chief of the Division of Hematology/Oncology at NewYork-Presbyterian/CUMC and the Clyde 56 and Helen Wu Professor of Oncology (in medicine) at CUMC. His approach to T cell-based therapy holds so much potential and could revolutionize care for cancer patients, transplant patients and others.

Dr. Muranski is a hematologist who specializes in bone marrow transplantation and in developing adoptive T cell therapies, in which white blood cells called T lymphocytes are removed from a patient or a donor and then programmed to target viral infections, leukemic cells and solid tumors. Adoptive transfer of T cells, including Chimeric Antigen Receptor (CAR)-T therapy has shown great promise in early trials of patients with leukemia, lymphoma and several solid cancersin some cases leading to a complete remission.

Dr. Muranskis research will continue to focus on exploiting and enhancing the capability of engineered T cells to recognize and target cancerous cells or dangerous viruses. He has a particular interest in developing CD4+ T helper cellsthe master orchestrators of immune responseas a potentially powerful weapon against cancer. His T cells can also target viral infections in patients whose immune systems have been weakened by bone marrow or organ transplantation, cancer treatment, or autoimmune diseases.

Despite recent spectacular advances in the field of cancer immunotherapy, very few institutions have GMP laboratories with the capacity to grow and manipulate T cells, said Dr. Muranski. NewYork-Presbyterian and Columbia University Medical Center are now positioned to become leaders in cutting-edge cellular immunotherapies. Im excited to work with the team here on developing a comprehensive program that brings these innovative treatments to our patients.

In addition to his work in the GMP lab, Dr. Muranski will be working with Dr. Prakash Satwani, a pediatric hematologist and oncologist at NewYork-Presbyterian and associate professor of pediatrics at CUMC, on an upcoming major CAR-T cell initiative. He will also work closely with Dr. Markus Mapara, director of the Adult Blood and Marrow Transplantation Program at NewYork-Presbyterian/Columbia and professor of medicine at CUMC.

Dr. Muranski trained as a fellow at the Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH) in Bethesda, Maryland, where he performed innovative studies aimed at understanding of the role of CD4+ T cells as mediators of curative anti-tumor immunity. Most recently, he served in Hematology Branch, National Heart, Lung and Blood Institute (NHLBI) at the NIH, where his research focused on using T cell-based therapies to prevent viral infections in patients undergoing donor-based stem cell transplantation for blood cancers.

He earned his medical degree from the Medical University of Warsaw in Poland before completing a research fellowship at the Institute for Molecular Medicine and Genetics, Medical College of Georgia and a residency at St. Francis Hospital in Evanston, Illinois. He completed a clinical fellowship in hematology and oncology at the National Institutes of Health in Bethesda, Maryland.

NewYork-Presbyterian

NewYork-Presbyterian is one of the nations most comprehensive, integrated academic healthcare delivery systems, whose organizations are dedicated to providing the highest quality, most compassionate care and service to patients in the New York metropolitan area, nationally, and throughout the globe. In collaboration with two renowned medical schools, Weill Cornell Medicine and Columbia University Medical Center, NewYork-Presbyterian is consistently recognized as a leader in medical education, groundbreaking research and innovative, patient-centered clinical care.

NewYork-Presbyterian has four major divisions:

Columbia University Medical Center

Columbia University Medical Centerprovides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. The campus that Columbia University Medical Center shares with its hospital partner, NewYork-Presbyterian, is now called the Columbia University Irving Medical Center. For more information, visit cumc.columbia.eduorcolumbiadoctors.org.

Excerpt from:
Dr. Pawel Muranski to Head New Cellular Immunotherapy Laboratory at NewYork-Presbyterian/Columbia University ... - Newswise (press release)

FDA announces first US gene therapy approval for cancer treatment – CNN

The treatment, called Kymriah, aims to give some patients a second chance after first-line drugs have failed. This may happen in up to a fifth of patients, according to the FDA.

Each dose of Kymriah contains a patient's own immune cells, which are sent to a lab to be genetically modified using a virus. This therapy -- known as chimeric antigen receptor T-cell therapy, or CAR-T -- gives the cells the ability to recognize and kill the source of the cancer.

"We've never seen anything like this before and I believe this therapy may become the new standard of care for this patient population," said Dr. Stephan Grupp, director of cancer immunotherapy at Children's Hospital of Philadelphia, which spearheaded this research.

Based on available data, patients on the treatment have had an 89% chance of surviving at least six months and a 79% chance of surviving at least a year, with most being relapse-free at that point.

Most patients with ALL recover through other treatments such as radiation, chemotherapy and stem cells. But if the cancer recurs, the prognosis is poor.

"Kymriah is a first-of-its-kind treatment approach that fills an important unmet need for children and young adults with this serious disease," Dr. Peter Marks, director of the FDA's Center for Biologics Evaluation and Research, said in a statement.

The one-time treatment has a boxed warning for cytokine release syndrome or CRS, a life-threatening side effect that can cause blood pressure to drop dangerously low. It is caused by overactive genetically modified immune cells. The FDA said hospitals and clinics must become certified to distribute the treatment, meaning they are prepared to recognize and treat CRS and other potentially fatal neurological events. Novartis said it hopes to have an initial network of 20 treatment centers within a month with plans to expand that to 32 by the end of the year.

Kymriah has a $475,000 price tag; however, patients who do not respond within a month of treatment will not be charged, according to Novartis.

"Novartis is collaborating with (Centers for Medicaid Services) to make an outcomes-based approach available to allow for payment only when pediatric and young adult ALL patients respond to Kymriah by the end of the first month. Future potential indications would be reviewed for the most relevant outcomes-based approach," the drug company said in a statement.

On Wednesday, the FDA also expanded approval for another drug, tocilizumab, to treat CRS in patients 2 and older.

Novartis is required to conduct followup study to assess the safety of the treatment long-term.

The rest is here:
FDA announces first US gene therapy approval for cancer treatment - CNN

‘Reprogrammed’ Stem Cells Fight Parkinson’s Disease in Monkeys – Voice of America

LONDON

Scientists have successfully used "reprogrammed" stem cells to restore functioning brain cells in monkeys, raising hopes the technique could be used in the future to help patients with Parkinson's disease.

Since Parkinson's is caused by a lack of dopamine made by brain cells, researchers have long hoped to use stem cells to restore normal production of the neurotransmitter chemical.

Now, for the first time, Japanese researchers have shown that human induced pluripotent stem cells (iPS) can be administered safely and effectively to treat primates with symptoms of the debilitating disease.

So-called iPS cells are made by removing mature cells from an individual often from the skin and reprogramming them to behave like embryonic stem cells. They can then be coaxed into dopamine-producing brain cells.

The scientists from Kyoto University, a world-leader in iPS technology, said their experiment indicated that this approach could potentially be used for the clinical treatment of human patients with Parkinson's.

In addition to boosting dopamine production, the tests showed improved movement in affected monkeys and no tumors in their brains for at least two years.

The human iPS cells used in the experiment worked whether they came from healthy individuals or Parkinson's disease patients, the Japanese team reported in the journal Nature on Wednesday.

"This is extremely promising research demonstrating that a safe and highly effective cell therapy for Parkinson's can be produced in the lab," said Tilo Kunath of the MRC Center for Regenerative Medicine, University of Edinburgh, who was not involved in the research.

The next step will be to test the treatment in a first-in-human clinical trial, which Jun Takahashi of Kyoto University told Reuters he hoped to start by the end of 2018.

Any widespread use of the new therapy is still many years away, but the research has significantly reduced previous uncertainties about iPS-derived cell grafts.

The fact that this research uses iPS cells rather human embryonic stem cells means the treatment would be acceptable in countries such as Ireland and much of Latin America, where embryonic cells are banned.

Excitement about the promise of stem cells has led to hundreds of medical centers springing up around the world claiming to be able to repair damaged tissue in conditions such as multiple sclerosis and Parkinson's.

While some treatments for cancer and skin grafts have been approved by regulators, many other potential therapies are only in early-stage development, prompting a warning last month by health experts about the dangers of "stem-cell tourism."

Go here to see the original:
'Reprogrammed' Stem Cells Fight Parkinson's Disease in Monkeys - Voice of America

Brain cell replacement for Parkinson’s boosted by monkey study – The San Diego Union-Tribune

A brain cell replacement therapy reduced Parkinsons disease symptoms in monkeys, Japanese researchers report in a study released Wednesday. The positive result boosts prospects to test the therapy in people.

The goal is to implant neurons derived from stem cells into the brains of Parkinsons patients, a project pursued by scientists in San Diego, New York, Britain and Sweden as well as in Japan. If all goes well, the neurons will function as replacements for those destroyed in the disease.

In addition, human testing of a related brain cell therapy from Carlsbads International Stem Cell Corp. is already under way in Australia.

While treatments exist for the movement disorders caused by Parkinsons, none of them actually halt progression. Replacing the brain cells destroyed in Parkinsons holds the promise of actually reversing the disease.

Moreover, success with Parkinsons could pave the way to treating many other neurodegenerative diseases, such as ALS (Lou Gehrigs disease) and perhaps Alzheimers, along with brain and spinal cord injuries. These afflictions cost hundreds of billions annually, and most importantly, produce immense suffering in patients and caregivers.

Years of extensive research are required before any such therapy can be tried in people. Testing in monkeys or other primates is often regarded as the last step before human treatment can be contemplated.

The study was published in the journal Nature. Its senior author was Jun Takahashi, a prominent stem cell researcher at Kyoto University in Kyoto, Japan. Go online to j.mp/parkips for the study.

There is precedent to suggest the therapy might work. Beginning decades ago, brain cells taken from human fetuses have been implanted into the brains of Parkinsons patients, with mixed results. Some patients experienced improved movement control. But others gained nothing, or experienced uncontrolled movements.

Scientists in the field say using stem cells should provide improved results. Stem cells can be made in greater quantity than the limited number of fetal brain cells available. In addition, the stem cells and neurons made from them can be analyzed for quality before implantation.

The study was praised by regenerative medicine researcher Tilo Kunath at the University of Edinburgh, in comments provided by the UK Science Media Centre.

This is extremely promising research demonstrating that a safe and highly effective cell therapy for Parkinsons can be produced in the lab, Kunath said.

Such a therapy has the potential to reverse the symptoms of Parkinsons in patients by restoring their dopamine-producing neurons. The next stage will be to test these therapies in a first-in-human clinical trial.

In the study, researchers produced neurons that secrete dopamine, a neurotransmitter deficient in Parkinsons disease. These neurons were made from human stem cells derived from both healthy people and those with Parkinsons.

The researchers then implanted the human neurons into 10 monkeys whose own dopamine-making neurons had been destroyed. The monkeys were given immunosuppressive drugs to prevent rejection of the human cells.

The human neurons integrated into the brains of the monkeys and functioned as dopamine-making neurons. The monkeys improved in movement ability, save for one monkey that became ill and was euthanized. Both cells from healthy and Parkinsons patients were effective.

A companion study in Nature Communications demonstrated a method of immune-matching the cells to reduce the immune response. Takahashi was also senior author of that study. Go online to j.mp/ipsimmune for the study.

Both studies used artificial embryonic stem cells, called induced pluripotent stem cells (IPS). These act-alike cells are not derived from embryos, but are genetically reprogrammed from adult cells, usually skin cells.

The IPS cells appear to act virtually identically to embryonic stem cells, but dont raise the ethical objections many have to using embryonic stem cells. These cells were invented in 2006 by a team led by Shinya Yamanaka, a co-author of the Nature Communications study.

Moreover, the cells can be made from the patients themselves, which is not expected to cause an immune reaction. This is the approach taken by the San Diego team, including scientists at The Scripps Research Institute.

Carlsbads International Stem Cell Corp. uses a different approach. It starts with unfertilized, or parthenogenetic, human egg cells. These are grown into immature neurons that are implanted. The cells are expected to grow not only into dopamine-making neurons, but other kind of brain cells that preserve the remaining neurons.

The Australian clinical trial has gathered evidence of safety, and continued testing is under way determine efficacy.

The Nature study dovetails with research by the San Diego group, Summit for Stem Cell, (www.summitforstemcell.org), including scientists at The Scripps Research Institute and doctors at Scripps Health.

The group proposes to treat Parkinsons patients with neurons grown from their own IPS cells. The scientists have received funding from the California Institute for Regenerative Medicine, the states stem cell agency.

The studies support the personalized approach that we are taking for a neuron replacement therapy for Parkinson's disease patients, said Jeanne Loring and Andres Bratt-Leal, stem cell scientists at The Scripps Research Institute.

Two points from the studies should be highlighted, Loring and Bratt-Leal said by email.

Parkinson's disease is a late-onset disorder, they said. That means that there was nothing wrong with the neurons that people with Parkinson's were born with. Few PD patients have a family history of the disease, which suggests that genetic mutations did not cause their disease.

So for the great majority of patients, transplantation of their own neurons is a promising approach to relieving symptoms, without having to take expensive and risky immunosuppressive drugs, they said.

The Summit for Stem Cell scientists are members of an international partnership of laboratories developing neuron replacement therapies for Parkinsons, called GForce PD.

Takahashi belongs to the partnership, as do scientists in the UK, Sweden and New York. These use both embryonic and IPS stem cells. The Summit for Stem Cell effort is the only one using patient-matched IPS cells, Loring and Bratt-Leal said.

Brain cells reprogrammed to make dopamine, with goal of Parkinsons therapy

Parkinson's stem cell therapy shows signs of safety

Parkinson's therapy funded by California's stem cell agency

Dopamine-making neurons can be chemically controlled in animal model of Parkinson's

Stem cell clinical trial for Parkinson's begins

Summit for Stem Cell

bradley.fikes@sduniontribune.com

(619) 293-1020

Link:
Brain cell replacement for Parkinson's boosted by monkey study - The San Diego Union-Tribune

For Lowell native, stem cell match becomes a match as friends – Lowell Sun

From left to right: Richard Stone, a doctor at Dana-Farber Cancer Institute in Boston, poses with Peter Karalekas (center), 76, and Matthew Churitch, 22. Churitch donated stem cells to Karalekas two years ago, and he visited Dana-Farber with Karalekas earlier this summer. (Courtesy photo)

BOSTON -- After winding his way through Massachusetts, Connecticut, New Hampshire and Maine for 76 years, Peter Karalekas has a proclamation: He's a Southerner now.

He still lives in Kittery, Maine, just about an hour from the Lowell middle school where he taught for 21 years.

He has no plans to move.

Rather, Karalekas considers himself a Southerner because of his stem cells.

He never exactly felt all that sick.

Karalekas worked tirelessly for decades, first as a teacher and coach at the James S. Daley Middle School in Lowell and then as the owner of a half-dozen T-Bones restaurants across New Hampshire.

Even despite the 12-hour days, seven days a week, in the grind of the restaurant industry, Karalekas felt healthy and rarely fell ill.

Peter Karalekas, left, a 76-year-old former Lowellian, smiles during his first meeting with Matthew Churitch, 22, of Nashville, Tennessee, who helped save Karalekas life by donating stem cells. (Courtesy photo)

The two, who do not have children, moved to Kittery 17 years ago.

Everything started to change in 2014.

Karalekas recalls being "short-winded," but he had very few other symptoms when he was diagnosed with myelodysplastic syndrome, a rare type of cancer in which the bone marrow is damaged and cannot produce enough blood cells.

The prognosis was not good.

"They said the only thing that would save me was a stem cell transplant," Karalekas said. "Otherwise, I had a couple of months to live, because my cells were all dropping drastically.

He went onto a registry, hoping for a donor to pop up, but doctors told him it could take from six months to two years to find the right match. Even with a transplant, Karalekas said, his chances of success were "30 to 40 percent."

The call came four weeks later.

Matthew Churitch got his call quickly, too.

He joined the National Marrow Donor Program's Be the Match Registry in 2014, the summer between his freshman and sophomore years at Clemson University. His mother had been on the registry to donate for years. Churitch's decision was simple: When a friend was diagnosed with leukemia, he knew he should sign up, too.

He did the requisite cheek swab, unsure if he would ever even be contacted to donate. By the time he had finished the following semester, he got the call.

A match was found.

Churitch went through several more levels of testing and preparation to donate stem cells to a stranger. He went to Clemson's student health center to have blood drawn.

He returned to his native Nashville, Tennessee, going to a medical center 10 days in a row to receive shots in his stomach that would stimulate his bone marrow and prepare his cells for transplant.

He sat for eight hours, a needle in each arm as his stem cells were filtered out so they could be transferred to Boston.

"Getting the shots isn't fun," he said. "You're pretty sore afterward for a few weeks. But knowing that the person on the other end is in hundreds and hundreds times more pain than any donor would ever go through -- that kind of pushed me through."

Karalekas and Churitch first connected via an anonymous letter, per the transplant registry's rules, updating Churitch on Karalekas's lengthy, isolated recovery. They were able to speak directly after a year.

Churitch dialed Karalekas' number on a lengthy walk to class, took a deep breath and hit the call button. Moments later, both men were crying and laughing.

"That was really awesome, just being able to hear his voice and recognize that there's somebody else on the other end of this," Churitch said. "A lot of people don't get the chance to connect with their recipients or their donors."

Karalekas wanted more. He told his wife early on that he wanted to meet his "angel from heaven," so when Churitch graduated Clemson earlier this year, Karalekas paid to bring the 22-year-old and his mother to New England.

In late June, Karalekas and his wife pulled into a pickup lane at Logan International Airport in Boston.

"I got out of the car, I charged over, and I gave them both a huge hug," Karalekas said.

Karalekas showed Churitch and his mother around for five days.They went on a private tour of Fenway Park; they wandered the historic streets of Portsmouth, New Hampshire; they visited Dana-Farber together to meet the team that treated Karalekas.

Both families quickly bonded. Karalekas recalls his brother George asking Churitch about his portable phone charger, expressing curiosity about how convenient it was. A few weeks later, a brand-new portable charger arrived at George's door, a gift from Churitch.

In January, Karalekas and his wife will vacation in Arizona and will cheer on Churitch's mother -- without Churitch even present -- in the Phoenix Marathon.

Donor and recipient talk every week.

"It's like we're a very, very close-knit family now," Karalekas said. "He's the son we never had."

Churitch is now in his first year at the University of South Carolina School of Medicine Greenville with hopes of becoming a physician. He hopes to use Karalekas's experience as inspiration for any patients facing future hardship, and he hopes that others, especially young people, will see their success and join the registry.

"You never know where that will take you," he said. "You can gain a friend for life, impact somebody and their family in need."

Karalekas said he feels he has a new life: His chances of beating the disease are now 97 percent, he says, up from the 30 percent or 40 percent when he started treatment. Thanks to the transplant from a handsome, athletic college student in Tennessee.

"I said, 'I'm a Southerner now,'" Karalekas said. "My stem cells are 99 percent this gentleman. I'm 99 percent him."

Follow Chris on Twitter @ChrisLisinski.

The rest is here:
For Lowell native, stem cell match becomes a match as friends - Lowell Sun