Author Archives: admin


Orbsen Therapeutics Receives Approval from European Regulators … – Business Wire (press release)

NEW YORK--(BUSINESS WIRE)--Orbsen Therapeutics (www.orbsentherapeutics.com) breakthrough stromal cell immunotherapy, OBRCEL-M, developed as part of NEPHSTROM, a European Union Horizon 2020-funded research project coordinated by NUI Galway, has been approved to begin testing in a randomised, double blind, and placebo-controlled European clinical trial to treat diabetic kidney disease.

CEO of Orbsen Therapeutics, Dr Larry Couture, commented: This approval is an important step toward the clinical demonstration of the tremendous potential of Orbsens off-the-shelf allogeneic ORBCEL-M second generation stromal cell immunotherapy for the treatment of chronic diseases such as diabetic kidney disease.

Orbsens ORBCEL-M, a novel highly purified positively-selected stromal cell therapy for diabetic kidney disease, has demonstrated significant improvements in kidney function in pre-clinical models of diabetic kidney disease, which represents a significant step towards preparing this therapy for clinical application.

Chief Scientific Officer at Orbsen Therapeutics, Dr Steve Elliman, said: Approval of this first-in-man trial of ORBCEL-M is the result of a collaborative effort comprising Orbsen and nine clinical and cell manufacturing teams across Europe and was made possible by the EU Horizon 2020 program.

Diabetic kidney disease is the single leading cause of end stage renal disease in the industrialised world, accounting for 40% of new cases of end stage renal disease in the US and EU. The five-year mortality rate is 39% a rate comparable to many cancers.

Dr Elliman added: ORBCEL-M offers new hope for patients with diabetic kidney disease, a leading cause of death in the US and Europe, and a disease for which no new treatments have been approved in nearly 2 decades.

The pan-European clinical trial is being led by the renowned nephrologist, Professor Giuseppe Remuzzi at the Mario Negri Institute in Bergamo, Italy with clinical trial recruitment sites in Italy, Ireland (HRB Clinical Research Facility, Galway), and the UK (UHBFT, Birmingham and BHSCT, Belfast).

The primary aim of the clinical trial is to establish the safety and efficacy of ORBCEL-M, and to show that important markers of diabetic kidney disease are improved, thereby indicating the safety and efficiency of ORBCEL-M.

Commenting on the approval, Professor Timothy OBrien, Dean of the College of Medicine, Nursing and Health Sciences at NUI Galway, and NEPHSTROM coordinator, said: This approval is a vital step towards the initiation of clinical development of this promising new approach to the treatment of DKD, and patient enrolment will commence this summer.

The trial successfully secured voluntary harmonisation procedure (VHP) approval in April 2017. The VHP is designed to simplify clinical trials across multiple European member states by providing a centralised application procedure for clinical trial approval.

Dr Jack Kavanaugh, Orbsens chairman stated: I am thrilled to be associated with Orbsen, a leader in regenerative therapy, the incredible Orbsen team that has been assembled and its association with NEPHSTROM and NUI Galway.

About Orbsen Therapeutics

Orbsen Therapeutics, Ltd. is a leading company in the development of regenerative medicine therapies across a range of diseases and medical conditions. Founded in 2006, Orbsen Therapeutics Ltd., is a privately held company led by global leaders in the field of regenerative medicine. The company, which spun-out from Irelands Regenerative Medicine Institute at the National University or Ireland, Galway, has developed proprietary technologies that enables the isolation of pure and allogeneic stromal cells from human tissues which can be purified from a single donor, expanded and frozen to generate multiple doses of a high-margin, off the shelf therapeutic product.

For more information please contact info@orbsentherapeutics.com.

About NUI Galway

The University was established in the heart of Galway City, on the west coast of Ireland, in 1845. Since then it has advanced knowledge teaching and learning, through research and innovation, and community engagement.

With an extensive network of industry, community and academic collaborators around the world, NUI Galway researchers are tackling some of the most pressing issues of our times. Internationally renowned research centres based here include CRAM Centre for Research in Medical Devices, Insight Centre for Data Analytics, Moore Institute, Institute for Life course and Society and The Ryan Institute for Environmental, Marine and Energy.

For more information contact Gwen OSullivan, Press and Information Officer, NUI Galway at gwen.osullivan@nuigalway.ie

View original post here:
Orbsen Therapeutics Receives Approval from European Regulators ... - Business Wire (press release)

Stem Cell Glossary – Closer Look at Stem Cells

Stem cell science involves many technical terms. This glossary covers many of the common terms you will encounter in reading about stem cells.

Adult stem cells A commonly used term for tissue-specific stem cells, cells that can give rise to the specialized cells in specific tissues. Includes all stem cells other than pluripotent stem cells such as embryonic and induced pluripotent stem cells.

Back to Top

Autologous Cells or tissues from the same individual; an autologous bone marrow transplant involves one individual as both donor and recipient.

Back to Top

Basic research Research designed to increase knowledge and understanding (as opposed to research designed with the primary goal to solve a problem).

Back to Top

Blastocyst A transient, hollow ball of 150 to 200 cells formed in early embryonic development that contains the inner cell mass, from which the embryo develops, and an outer layer of cell called the trophoblast, which forms the placenta.

Back to Top

Bone marrow stromal cells A general term for non-blood cells in the bone marrow, such as fibroblasts, adipocytes (fat cells) and bone- and cartilage-forming cells that provide support for blood cells. Contained within this population of cells are multipotent bone marrow stromal stem cells that can self-renew and give rise to bone, cartilage, adipocytes and fibroblasts.

Back to Top

Cardiomyocytes The functional muscle cells of the heart that allow it to beat continuously and rhythmically.

Back to Top

Clinical translation The process of using scientific knowledge to design, develop and apply new ways to diagnose, stop or fix what goes wrong in a particular disease or injury; the process by which basic scientific research becomes medicine.

Back to Top

Clinical trial Tests on human subjects designed to evaluate the safety and/or effectiveness of new medical treatments.

Back to Top

Cord blood The blood in the umbilical cord and placenta after child birth. Cord blood contains hematopoietic stem cells, also known as cord blood stem cells, which can regenerate the blood and immune system and can be used to treat some blood disorders such as leukemia or anemia. Cord blood can be stored long-term in blood banks for either public or private use. Also called umbilical cord blood.

Back to Top

Cytoplasm Fluid inside a cell, but outside the nucleus.

Back to Top

Differentiation The process by which cells become increasingly specialized to carry out specific functions in tissues and organs.

Back to Top

Drug discovery The systematic process of discovering new drugs.

Back to Top

Drug screening The process of testing large numbers of potential drug candidates for activity, function and/or toxicity in defined assays.

Back to Top

Embryo Generally used to describe the stage of development between fertilization and the fetal stage; the embryonic stage ends 7-8 weeks after fertilization in humans.

Back to Top

Embryonic stem cells (ESCs) Undifferentiated cells derived from the inner cell mass of the blastocyst; these cells have the potential to give rise to all cell types in the fully formed organism and undergo self-renewal.

Back to Top

Fibroblast A common connective or support cell found within most tissues of the body.

Back to Top

Glucose A simple sugar that cells use for energy.

Back to Top

Hematopoietic Blood-forming; hematopoietic stem cells give rise to all the cell types in the blood.

Back to Top

Immunomodulatory The ability to modify the immune system or an immune response.

Back to Top

Induced pluripotent stem cells (iPSCs) Embryonic-like stem cells that are derived from reprogrammed, adult cells, such as skin cells. Like ESCs, iPS cells are pluripotent and can self-renew.

Back to Top

In vitro Latin for in glass. In biomedical research this refers to experiments that are done outside the body in an artificial environment, such as the study of isolated cells in controlled laboratory conditions (also known as cell culture).

Back to Top

In vivo Latin for within the living. In biomedical research this refers to experiments that are done in a living organism. Experiments in model systems such as mice or fruit flies are an example of in vivo research.

Back to Top

Islets of Langerhans Clusters in the pancreas where insulin-producing beta cells live.

Back to Top

Macula A small spot at the back of the retina, densely packed with the rods and cones that receive light, which is responsible for high-resolution central vision.

Back to Top

Mesenchymal stem cells (MSCs) A term used to describe cells isolated from the connective tissue that surrounds other tissues and organs. MSCs were first isolated from the bone marrow and shown to be capable of making bone, cartilage and fat cells. MSCs are now grown from other tissues, such as fat and cord blood. Not all MSCs are the same and their characteristics depend on where in the body they come from and how they are isolated and grown. May also be called mesenchymal stromal cells.

Back to Top

Multipotent stem cells Stem cells that can give rise to several different types of specialized cells in specific tissues; for example, blood stem cells can produce the different types of cells that make up the blood, but not the cells of other organs such as the liver or the brain.

Back to Top

Neuron An electrically excitable cell that processes and transmits information through electrical and chemical signals in the central and peripheral nervous systems.

Back to Top

Pancreatic beta cells Cells responsible for making and releasing insulin, the hormone responsible for regulating blood sugar levels. Type I diabetes occurs when these cells are attacked and destroyed by the body's immune system.

Back to Top

Photoreceptors Rod or cone cells in the retina that receive light and send signals to the optic nerve, which passes along these signals to the brain.

Back to Top

Placebo A pill, injection or other treatment that has no therapeutic benefit; often used as a control in clinical trials to see whether new treatments work better than no treatment.

Back to Top

Placebo effect Perceived or actual improvement in symptoms that cannot be attributed to the placebo itself and therefore must be the result of the patient's (or other interested person's) belief in the treatment's effectiveness.

Back to Top

Pluripotent stem cells Stem cells that can become all the cell types that are found in an embryo, fetus or adult, such as embryonic stem cells or induced pluripotent (iPS) cells.

Back to Top

Preclinical research Laboratory research on cells, tissues and/or animals for the purpose of discovering new drugs or therapies.

Back to Top

Precursor cells An intermediate cell type between stem cells and differentiated cells. Precursor cells have the potential to give rise to a limited number or type of specialized cells. Also called progenitor cells.

Back to Top

Progenitor cells An intermediate cell type between stem cells and differentiated cells. Progenitor cells have the potential to give rise to a limited number or type of specialized cells and have a reduced capacity for self-renewal. Also called precursor cells.

Back to Top

Regenerative Medicine An interdisciplinary branch of medicine with the goal of replacing, regenerating or repairing damaged tissue to restore normal function. Regenerative treatments can include cellular therapy, gene therapy and tissue engineering approaches.

Back to Top

Reprogramming In the context of stem cell biology, this refers to the conversion of differentiated cells, such as fibroblasts, into embryonic-like iPS cells by artificially altering the expression of key genes.

Back to Top

Retinal pigment epithelium A single-cell layer behind the rods and cones in the retina that provide support functions for the rods and cones.

Back to Top

RNA Ribonucleic acid; it "reads" DNA and acts as a messenger for carrying out genetic instructions.

Back to Top

Scientific method A systematic process designed to understand a specific observation through the collection of measurable, empirical evidence; emphasis on measurable and repeatable experiments and results that test a specific hypothesis.

Back to Top

Self-renewal A special type of cell division in stem cells by which they make copies of themselves.

Back to Top

Somatic stem cells Scientific term for tissue-specific or adult stem cells.

Back to Top

Stem cells Cells that have both the capacity to self-renew (make more stem cells by cell division) and to differentiate into mature, specialized cells.

Back to Top

Stem cell tourism The travel to another state, region or country specifically for the purpose of undergoing a stem cell treatment available at that location. This phrase is also used to refer to the pursuit of untested and unregulated stem cell treatments.

Back to Top

Teratoma A benign tumor that usually consists of several types of tissue cells that are foreign to the tissue in which the tumor is located.

Back to Top

Tissue A group of cells with a similar function or embryological origin. Tissues organize further to become organs.

Back to Top

Tissue-specific stem cells Stem cells that can give rise to the specialized cells in specific tissues; blood stem cells, for example, can produce the different types of cells that make up the blood, but not the cells of other organs such as the liver or the brain. Includes all stem cells other than pluripotent stem cells such as embryonic and induced pluripotent cells. Also called adult or somatic stem cells.

Back to Top

Totipotent The ability to give rise to all the cells of the body and cells that arent part of the body but support embryonic development, such as the placenta and umbilical cord.

Back to Top

Translational research Research that focuses on how to use knowledge gleaned from basic research to develop new drugs, treatments or therapies.

Back to Top

Zygote The single cell formed when a sperm cell fuses with an egg cell.

Link:
Stem Cell Glossary - Closer Look at Stem Cells

What are induced pluripotent stem cells or iPS cells? – Stem …

In November 2007 scientists announced they had developed a new way to cause mature human cells to resemble pluripotent stem cells - similar in many ways to human embryonic stem cells. By simply altering the expression of just four genes using genetic modification, the mature cells were 'induced' to become more primitive, stem cells and were referred to as 'induced' pluripotent stem (iPS) cells.

Initially iPS cells were generated using viruses to change gene expression, however since the initial discovery, technologies for reprogramming cells are moving very quickly and researchers are now investigating the use of new methods that do not use viruses which can cause permanent and potentially harmful changes in the cells. If they are able to be made safely, and on a large scale, iPS cells could possibly be used to provide a source of cells to replace cells damaged following illness or disease. It may even be possible to make stem cells for therapy from a patient's own cells and thereby avoid the use of anti-rejection medications.

However, right now scientists are using this method to create disease specific cells for research by taking a cells - maybe from a skin biopsy - from a patient with a genetic disorder, such as Huntingtons disease, and then using the iPS cells to study the disease in the laboratory. Scientist hope that such an approach will help them understand the development and progression of certain diseases, and assist in the development and testing of new drugs to treat disease.

While the discovery of iPS cells was a very important development, more research needs to be done to discover if they will offer the same research value as embryonic stem cells and if they will be as useful for therapy.

To learn more about iPS cells watch What are induced pluripotent stem cells? in our video library.

See the rest here:
What are induced pluripotent stem cells or iPS cells? - Stem ...

A New Epigenetic Barrier to Induced Pluripotent Stem Cells – WhatIsEpigenetics.com

By adding theright concoction of ingredients, scientists can reprogram youreverydaysomatic cell intoan inducedpluripotentstemcell(IPSC) that is,aculturedcellthat has the ability todifferentiate into almost any othercelltypein response to specificenvironmentalfactors, similar to an embryonic stem cell. Thisinnovativetechnology allows the study of the molecularmechanismsofearlydevelopmentanddisease,withouttheethical restrictionsassociated withembryonic stem cells.

Not surprisingly, the possibility of utilizing induced pluripotent stem cells in the field of regenerative medicine is of important focus to many scientists. In a recent post, we touched on the potential ability of vitamins A and C to enhance the erasure of epigenetic memory required for cell reprogramming. Because these special types of cells can propagate indefinitely and form any other cell type in the body such as neurons, liver, and heart cells we may be able to replace lost organs, repair tissue, and even generate type O red blood cells, which can be used in transfusions for people with any blood type.

Greatso whats the problem?

Unfortunately, thereare drawbacksto this technology, namely the efficiency of reprogramming.Many IPSCsdo not actually gain completepluripotency. Epigenetic modifications are heavily implicated during the reprogramming process whereby the epigenetic makeup of the cell is completely overhauledto first encourage the expression of pluripotent genes and thenremodelled to encourage the expression of genes associated withthefinalcell typethattheIPSCwillbecome. As the epigenome plays a crucial role inreprogramming,inconsistenciesof pluripotencyacrossIPSClinesmaybedue toepigenetic barriers.

TRIM28: a novel epigenetic barrier

A team of scientists headed by Dr. Miles from The Netherlands Cancer institute recently uncovered a novel epigenetic barrier to the efficient induction of pluripotent stem cell reprogramming. Published in a recent issue of STEM CELLS, the paper highlights the use of a shRNA screen targeting over 670 epigenetic modifiers, revealing the involvement of TRIM28 in the resistance of cells transitioning from somatic to pluripotent state.

TRIM28, or Tripartite motif-containing 28, is involved in mediating transcriptional control by interacting with a certain domain in numerous transcription factors. Previous research shows that it plays a role in cellular differentiation and proliferation, DNA damage repair response, transcriptional regulation, and apoptosis.

By blocking the expression TRIM28 during reprogramming, the group demonstrated increases in the number of cells reaching pluripotency, as well as increased expression of a selection of 143 genes.

Analysis of the list of genes revealed the most statistically significant gene ontology term was unclassified. This result indicates TRIM28 does not regulate a specific pathway during reprogramming, states the authors.

It is known that TRIM28 gene encodes for a protein known to be involved in transcriptional regulation via the recruitment and formation of protein complexes that maintain repressive chromatin. Given this, researchers proposed the gene expression alterations, hence reprogramming differences, were likely to be associated with chromatin modification.

SEE ALSO: Maternal Smoking Epigenetically Harms Child Development

Subsequent tests supported this notion by establishing a proportion of the 143 genes to be located near H3K9me3 a repressive histone H3 modification which has shown to influence the transcription of genes that impedes the IPSC reprogramming process. When TRIM28 expression was blocked, the closer genes are to the H3K9me3 the greater the increase in expression. This suggests the role of TRIM28 in repressing the expression of genes involved in reprogramming via the maintenance of H3K9me3 heterochromatin site.

Whyis this important?

Due to the potential to produce almost anyothertype of cell, thetechnology ofIPSChas sparked excitement in the clinical sciences. The implementation ofIPSCto repair damaged or diseased tissue or to test/develop personalised medicines ison the horizon.By establishing barriers preventing the efficient transition of differentiated cells to pluripotent cells scientist canrefineIPSC generationto make the future clinical use ofIPSCsboth safe and efficient.

Source: Miles, D. C., de Vries, N. A., Gisler, S., Lieftink, C., Akhtar, W., Gogola, E., & Beijersbergen, R. L. (2017). TRIM28 is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming.STEM CELLS,35(1), 147-157.

Link:
A New Epigenetic Barrier to Induced Pluripotent Stem Cells - WhatIsEpigenetics.com

Is it time to start worrying about conscious human mini-brains? – PLoS Blogs (blog)

A human iPSC cerebral organoid in which pigmented retinal epithelial cells can be seen (from the work of McClure-Begley, Mike Klymkowsky, and William Old.)

The fact that experiments on people are severely constrained is a major obstacle in understanding human development and disease. Some of these constraints are moral and ethical and clearly appropriate and necessary given the depressing history of medical atrocities. Others are technical, associated with the slow pace of human development. The combination of moral and technical factors has driven experimental biologists to explore the behavior of a wide range of model systems from bacteria, yeasts, fruit flies, and worms to fish, frogs, birds, rodents, and primates. Justified by the deep evolutionary continuity between these organisms (after all, all organisms appear to be descended from a single common ancestor and share many molecular features), experimental evolution-based studies of model systems have led to many therapeutically valuable insights in humans something that I suspect a devotee of intelligent design creationism would be hard pressed to predict or explain (post link).

While humans are closely related to other mammals, it is immediately obvious that there are important differences after all people are instantly recognizable from members of other closely related species and certainly look and behave differently from mice. For example, the surface layer of our brains are extensively folded (they are known as gyrencephalic) while the brain of a mouse is smooth as a babys bottom (and referred to as lissencephalic). In humans, the failure of the brain cortex to fold is known as lissencephaly, a disorder associated with several severe neurological defects. With the advent of more and more genomic sequence data, we can identify human specific molecular (genomic) differences. Many of these sequence differences occur in regions of our DNA that regulate when and where specific genes are expressed. Sholtis & Noonan (1) provide an example: the HACNS1 locus is a 81 basepair region that is highly conserved in various vertebrates from birds to chimpanzees; there are 13 human specific changes in this sequence that appear to alter its activity, leading to human-specific changes in the expression of nearby genes (). At this point ~1000 genetic elements that are different in humans compared to other vertebrates have been identified and more are likely to emerge (2). Such human-specific changes can make modeling human-specific behaviors, at the cellular, tissue, organ, and organism level, in non-human model systems difficult and problematic (3,4). It is for this reason that scientists have attempted to generate better human specific systems.

One particularly promising approach is based on what are known as embryonic stem cells (ESCs) or pluripotent stem cells (PSCs). Human embryonic stem cells are generated from the inner cell mass of a human embryo and so involve the destruction of that embryo which raises a number of ethical and religious concerns as to when life begins (5)(more on that in a future post). Human pluripotent stem cells are isolated from adult tissues but in most cases require invasive harvesting methods that limit their usefulness. Both ESCs and PSCs can be grown in the laboratory and can be induced to differentiate into what are known as gastruloids. Such gastruloids can develop anterior-posterior (head-tail), dorsal-ventral (back-belly), and left-right axes analogous to those found in embryos (6) and adults (top panel). In the case of PSCs, the gastruloid (bottom panel ) is essentially a twin of the organism from which the PSCs were derived, a situation that raises difficult questions: is it a distinct individual, is it the property of the donor or the creation of a technician. The situation will be further complicated if (or rather, when) it becomes possible to generate viable embryos from such gastruloids.

The Nobel prize winning work of Kazutoshi Takahashi and Shinya Yamanaka (7), who devised methods to take differentiated (somatic) human cells and reprogram them into ESC/PSC-like cells, cells known as induced pluripotent stem cells (iPSCs)(8), represented a technical breakthrough that jump-started this field. While the original methods derived sample cells from tissue biopsies, it is possible to reprogramkidney epithelial cells recovered from urine, a non-invasive approach (9,10). Subsequently, Madeline Lancaster, Jurgen Knblich, and colleagues devised an approach by which such cells could be induced to form what they termed cerebral organoids; they used thismethod to examine the developmental defects associated with microencephaly (11). The value of the approach was rapidly recognized and a number of studies on human conditions, including lissencephaly (12), Zika-virus infection-induced microencephaly(13), and Downs syndrome (14); investigatorshave begun to exploit these methodsto study a range of human diseases.

The production of cerebral organoids from reprogrammed human somatic cells has also attracted the attention of the media (15). While mini-brain is certainly a catchier name, it is a less accurate description of a cerebral organoid, itself possibly a bit of an overstatement, since it is not clear exactly how cerebral such organoids are. For example, the developing brain is patterned by embryonic signals that establish its asymmetries; it forms at the anterior end of the neural tube (the nascent central nervous system and spinal cord) and with distinctive anterior-posterior, dorsal-ventral, and left-right asymmetries, something that simple cerebral organoids do not display. Moreover, current methods for generating cerebral organoids involve primarily what are known as neuroectodermal cells our nervous system (and that of other vertebrates) is a specialized form of the embryos surface layer that gets internalized during development. In the embryo, the developing neuroectoderm interacts with cells of the circulatory system (capillaries, veins, and arteries), formed by endothelial cells and what are known as pericytes that surround them. These cells, together with interactions with glial cells (astrocytes, a non-neuronal cell type) combine to form the blood brain barrier. Other glial cells (oligodendrocytes) are also present; in contrast, both types of glia (astrocytes and oligodendrocytes) are rare in the current generation of cerebral organoids. Finally, there are microglial cells, immune system cells that originate from outside the neuroectoderm; they invade and interact with neurons and glia as part of the brains dynamic neural system. The left panel of the figure shows, in highly schematic form how these cells interact (16). The right panel is a drawing of neural tissue stained by the Golgi method (17), which reveals~3-5% of the neurons present. There are at least as many glial cells present, as well as microglia, none of which are visible in the image. At this point, cerebral organoids typically contain few astrocytes and oligodendrocytes, no vasculature, and no microglia. Moreover, they grow to be about 1 to 3 mm in diameter over the course of 6 to 9 months; that is significantly smaller in volume than a fetal or newborns brain. While cerebral organoids can generate structures characteristic of retinal pigment epithelia (top figure) and photo-responsive neurons (18), such as those associated with the retina, an extension of the brain, it is not at all clear that there is any significant sensory input into the neuronal networks that are formed within a cerebral organoid, or any significant outputs, at least compared to the role that the human brain plays in controlling bodily and mental functions.

The reasonable question, then, must be whether a cerebral organoid, which is a relatively simple system of cells (although itself complex), is conscious. It becomes more reasonable as increasingly complex systems are developed, and such work is proceeding apace. Already researchers are manipulating the developing organoids environment to facilitate axis formation, and one can anticipate the introduction of vasculature. Indeed, the generation of microglia-like cells from iPSCs has been reported; such cells can be incorporated into cerebral organoids where they appear to respond to neuronal damage in much the same way as microglia behave in intact neural tissue (19).

We can ask ourselves, what would convince us that a cerebral organoid, living within a laboratory incubator, was conscious? How would such consciousnessmanifest itself? Through some specific pattern of neural activity, perhaps? As a biologist, albeit one primarily interested in molecular and cellular systems, I discount the idea, proposed by some physicists and philosophers as well as the more mystical, that consciousness is a universal property of matter (20,21). I take consciousness to be an emergent property of complex neural systems, generated by evolutionary mechanisms, builtduring embryonic and subsequent development, and influenced bysocial interactions (BLOG LINK) using information encoded within the human genome (something similar to this: A New Theory Explains How Consciousness Evolved). While a future concern, in a world full of more immediate and pressing issues, it will be interesting to listen to the academic, social, and political debate on what to do with mini-brains as they grow in complexity and perhaps inevitably, towards consciousness.

Footnotes and references

Thanks to Rebecca Klymkowsky, Esq. and Joshua Sanes, Ph.D. for editing anddisciplinarysupport.

The rest is here:
Is it time to start worrying about conscious human mini-brains? - PLoS Blogs (blog)

Stem Cells Offer New Solutions for Lung Disease – Miami’s Community Newspapers

Kristin Comella, Chief Science Officer

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States, and is projected to be the third by 2020. COPD is associated with an exaggerated chronic inflammatory response causing airway abnormalities. Patients typically undergo a progression of declining lung function, characterized by an increase of cough, shortness of breath, and mucus production. Extra-pulmonary manifestations of COPD include osteoporosis, cardiovascular disease, skeletal muscle abnormalities, and depression. There is currently no cure and the manifestations can only be treated symptomatically. It afflicts more than 5% of the population in many countries and accounts for more than 600 billion in health care costs, morbidity, and mortality.

Adult stem cells are found in every part of the body and their primary role is to heal and maintain the tissue in which they reside. Stem cells are unspecialized cells capable of renewing themselves by cell division. In addition, they have the ability to differentiate into specialized cell types. Adult stem cells can be harvested from a patients own tissue, such as adipose (fat) tissue, muscle, teeth, skin or bone marrow. One of the most plentiful sources of stem cells in the body is the fat tissue. In fact, approximately 500 times more stem cells can be obtained from fat than bone marrow. Stem cells derived from a patients own fat are referred to as adipose-derived stem cells (ADSCs). Adipose derived stem cells have been explored with respect to their activity in diseases involving significant inflammatory or degenerative components. More recently, adult stem cells have been identified as having the potential to reverse the effects of diseases like COPD.

The mixed population of cells that can be obtained from fat is called a stromal vascular fraction (SVF). The SVF can easily be isolated from fat tissue in approximately 30-90 minutes in a clinic setting (under local anesthesia) using a mini-lipoaspirate technique. The SVF contains all cellular elements of fat, excluding adipocytes. Tens to hundreds of millions of ADSCs can be obtained in the context of the SVF acquired from 20-200 ml of adipose tissue during this out-patient procedure. This sets the stage for their practical use at the point-of-care, in which a preparation of ASC can be provided for infusion or injection after the mini-liposuction. COPD patients who have undergone stem cell therapies often express the willingness to receive additional cell infusions if possible, due to a feeling of well-being associated with the injection. There is early evidence of feasibility and safety of infusions into the patients with COPD. In relevant studies, intravenous infusion of cultured adipose stem cells has been demonstrated to remarkably improve the onset and progression of smoke exposure-induced emphysema in rodents.

Stem cells possess enormous regenerative potential. The potential applications are virtually limitless. Patients can receive cutting edge treatments that are safe, compliant, and effective. Our team has successfully treated over 7000 patients with very few safety concerns reported. One day, stem cell treatments will be the gold standard of care for the treatment of most degenerative diseases. We are extremely encouraged by the positive patient results we are seeing from our physician-based treatments. Our hope is that stem cell therapy will provide relief and an improved quality of life for many patients. The future of medicine is here!

For additional information on Stem Cell Centers of Excellences South Miami clinic, visit http://www.stemcellcoe.com.

Connect To Your Customers & Grow Your Business

See the original post:
Stem Cells Offer New Solutions for Lung Disease - Miami's Community Newspapers

Revolutionary Israeli ALS Therapy Receives FDA Approval for Phase 3 Clinical Trials – TheTower.org

BrainStorm Cell Therapeuticsof Petah Tikva is recruiting American patients for a Phase 3 clinical study of itsNurOwn stem-cell treatmentintended to halt progression of amyotrophic lateral sclerosis (ALS).

The announcement was made in a patient webinar last week.

The NurOwn platform grew out of a technique developed at Tel Aviv University for growing and enhancing stem cells harvested from patients own bone marrow. The enhanced cells, injected via lumbar puncture, secrete elevated levels of nerve-growth factors believed to protect existing motor neurons, promote motor neuron growth and reestablish nerve-muscle interaction.

A 24-week Phase 2 safety study was concluded in 2016 on 48 participants (36 treated, 12 placebo) with possible, probable and definite ALS. This study was done at the University of Massachusetts Medical School, Massachusetts General Hospital and the Mayo Clinic.

The Phase 3 double-blind, placebo-controlled study, to begin enrollment in August, will look at efficacy and safety of repeated doses. The California Institute for Regenerative Medicine has awarded Brainstorm a $16 million grant to support the pivotal trial.

This study will accept 200 randomized study participants between the ages of 18 and 60 (half getting the treatment and half a placebo) at the three previous centers as well as California Pacific Medical Center in San Francisco, UC-Irvine near Los Angeles and another site not announced.

Potential participants must live within about 100 miles of one of the centers for ease of follow-up. They will receive three doses over a 16-week treatment phase and then undergo 28 weeks of follow-up.

BrainStorm President and CEO Chaim Lebovits said he hopes to get approval by the end of the year for a hospital exemption program in Israel an accelerated regulatory pathway that would clear the way for a first batch of 50 patients to receive NurOwn at Tel Aviv Sourasky Medical Center. However, there will be no compassionate treatment using NurOwn in Israel or elsewhere.

The NurOwn platform technology also has potential applications in any neurodegenerative disease, such as multiple sclerosis and Parkinsons.

(via Israel21c)

[Photo:TheMarker Online / YouTube]

The rest is here:
Revolutionary Israeli ALS Therapy Receives FDA Approval for Phase 3 Clinical Trials - TheTower.org

Cells that stand in the way of HIV cure: Discovery expands understanding of marrow’s role – Medical Xpress

July 31, 2017 Illustration incorporating gene-expression maps and cell images from the new research. Credit: University of Michigan

Every day, 17 million HIV-infected people around the world swallow pills that keep the virus inside them at bay.

That is, as long as they swallow those pills every day for the rest of their life.

But no matter how many drugs they take, they'll always have the virus in them, lurking in their white blood cells like a fugitive from justice.

And if they ever stop, HIV will come out of hiding and bring down their immune system from the inside out, causing the disease known as AIDS and potentially spreading to others before killing them.

Now, new research into HIV's hiding places reveals new clues about exactly how it persists in the body for years. The discovery could speed the search for drugs that can flush HIV out of its long-term hideouts and cure an infection for good.

In a new paper in PLoS Pathogens, a team led by University of Michigan researcher Kathleen Collins, M.D., Ph.D. reports that HIV hides in more types of bone marrow cells than previously thought - and that when these cells divide, they can pass the virus's genetic material down to their "daughter" cells intact.

This keeps the infection going for years, without tipping off the armed guards of the immune system.

Collins and her colleagues made the discovery in bone marrow samples donated by dozens of long-term HIV patients treated at U-M's academic medical center, Michigan Medicine, and at Henry Ford Health System in Detroit.

Using funding from the National Institutes of Health, they found that HIV can hide in hematopoietic progenitor cells (HPCs), which also serve as the parents of new blood cells that replace worn-out ones on a regular basis. HIV tricks the cells into incorporating the virus's genetic material into the cells' own DNA.

"Looking for the cells that harbor functional HIV is like searching for a needle in a haystack. Our new results expand our understanding of the type of cells that can do it," says Collins, a professor of Microbiology and Immunology and of Infectious Disease at the U-M Medical School. "It's like a cancer biology problem, only the 'mutation' in the cells is the inserted viral genome."

HPCs are made by hematopoietic stem cells, the "master cells" of blood production found in the marrow. Previous research had shown that HIV can hide for years in the bone marrow.

But it was not known whether the virus persisted only in stem cells or whether the reservoir could include more differentiated progenitor cells. Demonstrating that progenitor cells form a long-lived reservoir of virus expands the number of cell types that need to be targeted.

By demonstrating that HIV genetic material can lurk in blood progenitor cells, the researchers extend other recent studies indicating that such cells can live for years, says Collins, whose lab team included lead author Nadia Sebastian, a U-M M.D./Ph.D. student.

She notes that from the point of view of the virus, finding a harbor in this kind of cell means it can hedge its bets, giving it a chance at survival and eventual reproduction if its host's defenses weaken. The virus that causes chicken pox - varicella - also does this, hiding out in nerve cells just under the skin for years until it awakens and causes the painful condition called shingles.

Knowing exactly what cells harbor HIV over the long-term is crucial to battling persistent infections. Other research has focused on the T cells that carry out key immune system functions.

"Having established this, now we're poised to ask if we can treat HIV infection by targeting hematopoietic progenitor cells," she explains. The team is evaluating potential drugs that could kill just these cells.

The research team on the new paper also includes former U-M stem cell researcher Sean Morrison, Ph.D., who now leads a research center at the University of Texas Southwestern Medical Center. Morrison's lab uses mice as a model to study stem and progenitor cells.

They find in the new paper that in order for HIV to infect a progenitor cell, that cell must have a type of receptor on its surface, called CD4, that the virus can attach to. Additionally, the researchers show that two subtypes of HIV can infect these cells: those that use the CXCR4 co-receptor to enter cells as well as those that use CCR5, which expands the types of HIVs that can potentially cause reservoirs.

Finding those progenitor cells in the marrow of the human patients who agreed to undergo a biopsy for the sake of pure research was tricky, Collins says. But thanks to them, researchers are a step closer to a day when HIV infection is no longer a life sentence for millions of people around the world.

"Moving from the state we're in, where patients will always have to be on these drugs, to a better form of therapy where they can stop, would have a huge effect," she says. "Today's medications have side effects, as well as financial costs. To get to the next step, we need to target the types of cells that form a latent infection, including these progenitor cells."

Explore further: Scientists find that persistent infections in mice exhaust progenitors of all blood cells

More information: Nadia T. Sebastian et al, CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo, PLOS Pathogens (2017). DOI: 10.1371/journal.ppat.1006509

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read more here:
Cells that stand in the way of HIV cure: Discovery expands understanding of marrow's role - Medical Xpress

More than 60 US clinics have sold unproven stem cell therapies for heart failure – New York Post

Stem cell therapy isnt approved to treat heart failure in the US, but dozens of clinics nationwide advertise the treatments anyway, often charging thousands of dollars for procedures that may not be safe or effective, a new study suggests.

Researchers found 61 centers offering stem cell therapies for heart failure as of last year in the US alone, including five that claimed to have performed more than 100 procedures. Only nine centers required copies of patients medical records and just one facility said it had a board certified cardiologist on staff.

We simply do not know anything about the quality of the treatment delivered at these centers, said senior study author Dr. Paul Hauptman director of heart failure at Saint Louis University Hospital.

These centers are not regulated in any way, Hauptman said by email.

Almost 6 million Americans have heart failure, and its one of the most common reasons older adults go to the hospital, according to the American Heart Association.

It happens when the heart muscle is too weak to effectively pump enough blood through the body. Symptoms can include fatigue, weight gain from fluid retention, shortness of breath and coughing or wheezing. Medications can help strengthen the heart and minimize fluid buildup in the body.

While some experimental stem cell therapies for heart failure are currently being tested in late-stage human trials, none have won approval from the US Food and Drug Administration.

In theory, after a transplant, stem cells could permanently become part of the diseased heart and either help grow new healthy heart tissue or tell existing cells to work better, said Paul Knoepfler, a cell biology researcher at the University of California Davis School of Medicine in Sacramento who wasnt involved in the study.

Its also possible stem cells could temporarily visit the heart and stimulate a positive response in cells already there, he said.

Even though theres no conclusive proof yet that any stem cell treatments are safe and effective for heart failure, centers contacted for the study charge an average of $7,694 for each treatment using patients own stem cells and $6,038 for each procedure with donor stem cells.

In one instance, though, a clinic staff member said, If you have a million dollars to spend we will set you up with weekly infusions.

Hauptmans team had used a standard script when contacting each center, asking about the stem cell treatment itself, medical exams before and afterward and pricing.

Among the other responses they received from clinic staff were remarks such as, If you know anyone that can start an IV, a neighbor that is a nurse for example, we can send you the stem cells and that person can administer them to you and We hope you dont believe your doctor when they tell you there is nothing they can do, you were smart to call us.

None of the sites in the study discussed what methods they used to isolate or identify stem cells, though most claimed to use patients cells and 24 said they got cells from fat tissue.

Most centers claimed to deliver cells intravenously, researchers report in JAMA Internal Medicine.

This approach has been associated with complications such as stroke, in which infused cells block blood vessels in the brain, said Douglas Sipp, a researcher at RIKEN Center for Developmental Biology in Kobe, Japan, who wasnt involved in the study.

The biggest risk is that patients will waste their money, time and hopes on an unnecessary and useless invasive procedure, Sipp said by email.

If any stem cell treatment did ultimately prove safe and effective enough to win FDA approval, it would likely offer a significant improvement over the limited treatment options currently available, said Leigh Turner, a researcher at the University of Minnesota Center for Bioethics who wasnt involved in the study.

But its impossible to say what patients would get at unregulated clinics offering unapproved stem cell therapies, Turner said by email. In at least two cases unrelated to the current study, patients died after getting stem cell procedures at a clinic in Florida, and in another case at a different Florida clinic, a woman went blind, Turner noted.

Clinics marketing stem cell treatments to patients suffering from heart failure might be administering anything from slurries of mixed cells, some of which might be stem cells, to nothing more than cellular debris, Turner said. Often one can only speculate.

Originally posted here:
More than 60 US clinics have sold unproven stem cell therapies for heart failure - New York Post

Hypothalamic Stem Cells Could Provide New Insights Into Aging – Futurism

Hypothalamic Stem Cells

The hypothalamus is the region of the brain that helps to regulate internal conditions like body temperature and blood concentration, but new research shows that it may fail us as we age. The research indicates that as the hypothalamuss stem cells die off, the region actually starts to promote aging, causing mental and physical faculties to decline at a more rapid pace.

In the past, researchers have observed that the hypothalamus becomes inflamed over time. This lead them to posit that the area is connected to aging. Recent research on mice proved that reversing the inflammation in the hypothalamus increases the animals life span and slows physical deterioration. In this latest study, scientists focusedon the stem cells of the hypothalamus. In younger animals, these stem cells divide and replace damaged and dead cells. However, as this research shows, over time the number of stem cells present in the hypothalamus drops. Inold age, they are essentially gone.

The team believed they were on to something, but undertook some practical experiments to see if their ideas were borne out by the evidence. First, they altered mice genetically to ensure theyd be out of stem cells(at a point earlier than would occur naturally). Reducing the stem cells in the mice by around 70 percent meant a life span that was about 8 percent shorter. This accelerated loss of stem cells also caused a loss of coordination, endurance, and memory, as well as behavior that was less youthful, curious, and social. When the team injected stem cells into the hypothalami of middle-aged mice, those mice gained about about 10 percent more mental and physical capabilities compared to mice injected with regular brain cells.

Originally, scientists believed that the stem cell loss could besignificant because it meant the host was unable to repair and replace damaged and dead cells. However, when the hypothalami of middle-aged mice were injected with stem cells, they improved too rapidly for this to be thecorrect mechanism. Instead, the team suspected microRNAs might be at work.

The RNA molecules, called microRNAs, are manufactured and released by stem cells to carry messages to other cells. Practically, based on the messages they carry, microRNAs mayalter the proteins cells produce. The researchers discovered that the stem cells in the hypothalamus produce massive amounts of microRNAs contained in tiny exosomes. In fact, when they injected mice with exosomes packed with microRNA from young hypothalamus stem cells, the effects were almost as effective in slowing signs of mental and physical aging as injections of stem cells were.

Recent research has focused on the role of mitochondria in aging and on the use of induced pluripotent stem (iPS) cells in combatting aging in hematopoietic stem cells. Research from this year has also shown that cannabis-based treatment appears to reverse aging in the brains of mice. Concerning thisresearch, protecting or replacing the stem cells of the hypothalamus or somehow reinforcing or replacing the microRNA effects could slow aging in humans. This could mean testing current drugs such as acarbose (presently used to treat diabetes) to see if they can suppress the hypothalamic inflammation that causes the stem cells to die.

Read the rest here:
Hypothalamic Stem Cells Could Provide New Insights Into Aging - Futurism