From immunology to artificial intelligence: revolutionizing latent … – Military Medical Research
World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization; 2022. https://www.who.int/teams/global-tuberculosis-programme/tb-reports
Bagcchi S. WHOs global tuberculosis report 2022. Lancet Microbe. 2023;4(1):e20.
Article PubMed Google Scholar
Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12(8):58191.
Article CAS PubMed Google Scholar
Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis. 2017;64(2):e1-33.
Article PubMed Google Scholar
Cohen A, Mathiasen VD, Schon T, Wejse C. The global prevalence of latent tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2019;54(3):1900655.
Article PubMed Google Scholar
Khabibullina NF, Kutuzova DM, Burmistrova IA, Lyadova IV. The biological and clinical aspects of a latent tuberculosis infection. Trop Med Infect Dis. 2022;7(3):48.
Article PubMed PubMed Central Google Scholar
Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13(10):e1002152.
Article PubMed PubMed Central Google Scholar
Jilani TN, Avula A, Zafar Gondal A, Siddiqui AH. Active tuberculosis. In: StatPearls. Treasure Island (FL): StatPearls Publishing LLC; 2023.
Ding C, Hu M, Guo W, Hu W, Li X, Wang S, et al. Prevalence trends of latent tuberculosis infection at the global, regional, and country levels from 19902019. Int J Infect Dis. 2022;122:46.
Article PubMed Google Scholar
Kiazyk S, Ball TB. Latent tuberculosis infection: an overview. Can Commun Dis Rep. 2017;43(34):626.
Article CAS PubMed PubMed Central Google Scholar
Luo Y, Xue Y, Song H, Tang G, Liu W, Bai H, et al. Machine learning based on routine laboratory indicators promoting the discrimination between active tuberculosis and latent tuberculosis infection. J Infect. 2022;84(5):64857.
Article PubMed Google Scholar
Estvez O, Anibarro L, Garet E, Pallares , Barcia L, Calvio L, et al. An RNA-seq based machine learning approach identifies latent tuberculosis patients with an active tuberculosis profile. Front Immunol. 2020;11:1470.
Article PubMed PubMed Central Google Scholar
Gong W, Wu X. Differential diagnosis of latent tuberculosis infection and active tuberculosis: a key to a successful tuberculosis control strategy. Front Microbiol. 2021;12(3126):745592.
Article PubMed PubMed Central Google Scholar
Chee CBE, Reves R, Zhang Y, Belknap R. Latent tuberculosis infection: opportunities and challenges. Respirology. 2018;23(10):893900.
Article PubMed Google Scholar
Hauck FR, Neese BH, Panchal AS, El-Amin W. Identification and management of latent tuberculosis infection. Am Fam Physician. 2009;79(10):87986.
PubMed Google Scholar
Gutti G, Arya K, Singh SK. Latent tuberculosis infection (LTBI) and its potential targets: an investigation into dormant phase pathogens. Mini Rev Med Chem. 2019;19(19):162742.
Article CAS PubMed Google Scholar
Yang Z, Rosenthal M, Rosenberg NA, Talarico S, Zhang L, Marrs C, et al. How dormant is Mycobacterium tuberculosis during latency? A study integrating genomics and molecular epidemiology. Infect Genet Evol. 2011;11(5):11647.
Article PubMed PubMed Central Google Scholar
Gordon SV, Eiglmeier K, Garnier T, Brosch R, Parkhill J, Barrell B, et al. Genomics of Mycobacterium bovis. Tuberculosis. 2001;81(12):15763.
Article CAS PubMed Google Scholar
Chen J, Su X, Zhang Y, Wang S, Shao L, Wu J, et al. Novel recombinant RD2- and RD11-encoded Mycobacterium tuberculosis antigens are potential candidates for diagnosis of tuberculosis infections in BCG-vaccinated individuals. Microbes Infect. 2009;11(1011):87685.
Article CAS PubMed Google Scholar
Meier NR, Jacobsen M, Ottenhoff THM, Ritz N. A systematic review on novel Mycobacterium tuberculosis antigens and their discriminatory potential for the diagnosis of latent and active tuberculosis. Front Immunol. 2018;9:2476.
Article PubMed PubMed Central Google Scholar
Ji P, Fan X, Wu K, Lu S. Research progress on the antigens associated with latent infection of Mycobacterium tuberculosis. Zhonghua Wei Sheng Wu Xue He Mian Yi Xue Za Zhi. 2015;35(1):5964 (in Chinese).
CAS Google Scholar
Zellweger JP, Sotgiu G, Corradi M, Durando P. The diagnosis of latent tuberculosis infection (LTBI): currently available tests, future developments, and perspectives to eliminate tuberculosis (TB). Med Lav. 2020;111(3):17083.
PubMed PubMed Central Google Scholar
Crouser ED, White P, Caceres EG, Julian MW, Papp AC, Locke LW, et al. A novel in vitro human granuloma model of sarcoidosis and latent tuberculosis infection. Am J Respir Cell Mol Biol. 2017;57(4):48798.
Article CAS PubMed PubMed Central Google Scholar
Rosser A, Stover C, Pareek M, Mukamolova GV. Resuscitation-promoting factors are important determinants of the pathophysiology in Mycobacterium tuberculosis infection. Crit Rev Microbiol. 2017;43(5):62130.
Article CAS PubMed Google Scholar
Downing KJ, Mischenko VV, Shleeva MO, Young DI, Young M, Kaprelyants AS, et al. Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro. Infect Immun. 2005;73(5):303843.
Article CAS PubMed PubMed Central Google Scholar
Arroyo L, Marn D, Franken KLMC, Ottenhoff THM, Barrera LF. Potential of DosR and Rpf antigens from Mycobacterium tuberculosis to discriminate between latent and active tuberculosis in a tuberculosis endemic population of Medellin Colombia. BMC Infect Dis. 2018;18(1):26.
Article PubMed PubMed Central Google Scholar
Zhu W, Plikaytis BB, Shinnick TM. Resuscitation factors from mycobacteria: homologs of Micrococcus luteus proteins. Tuberculosis. 2003;83(4):2619.
Article PubMed Google Scholar
Cohen-Gonsaud M, Barthe P, Bagnris C, Henderson B, Ward J, Roumestand C, et al. The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes. Nat Struct Mol Biol. 2005;12(3):2703.
Article CAS PubMed Google Scholar
Segueni N, Benmerzoug S, Rose S, Gauthier A, Bourigault ML, Reverchon F, et al. Innate myeloid cell TNFR1 mediates first line defence against primary Mycobacterium tuberculosis infection. Sci Rep. 2016;6:22454.
Article CAS PubMed PubMed Central Google Scholar
Koeken V, Verrall AJ, Netea MG, Hill PC, van Crevel R. Trained innate immunity and resistance to Mycobacterium tuberculosis infection. Clin Microbiol Infect. 2019;25(12):146872.
Article CAS PubMed Google Scholar
Cadena AM, Flynn JL, Fortune SM. The importance of first impressions: early events in Mycobacterium tuberculosis infection influence Outcome. MBio. 2016;7(2):e00342-e416.
Article CAS PubMed PubMed Central Google Scholar
McClean CM, Tobin DM. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis. 2016;74(7):ftw068.
Article PubMed PubMed Central Google Scholar
Hmama Z, Pea-Daz S, Joseph S, Av-Gay Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev. 2015;264(1):22032.
Article CAS PubMed Google Scholar
Middleton AM, Chadwick MV, Nicholson AG, Dewar A, Groger RK, Brown EJ, et al. Interaction of Mycobacterium tuberculosis with human respiratory mucosa. Tuberculosis. 2002;82(23):6978.
Article CAS PubMed Google Scholar
Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, et al. Foamy macrophages from tuberculous patients granulomas constitute a nutrient-rich reservoir for M tuberculosis persistence. PLoS Pathog. 2008;4(11):e1000204.
Article PubMed PubMed Central Google Scholar
Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol. 2013;191(2):77384.
Article CAS PubMed Google Scholar
El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M, et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol. 2008;9(12):1399406.
Article PubMed PubMed Central Google Scholar
Duque-Correa MA, Kuhl AA, Rodriguez PC, Zedler U, Schommer-Leitner S, Rao M, et al. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc Natl Acad Sci U S A. 2014;111(38):E402432.
Article CAS PubMed PubMed Central Google Scholar
Khan A, Hunter RL, Jagannath C. Emerging role of mesenchymal stem cells during tuberculosis: the fifth element in cell mediated immunity. Tuberculosis. 2016;101S:S45-52.
Article PubMed Google Scholar
Keane J, Balcewicz-Sablinska MK, Remold HG, Chupp GL, Meek BB, Fenton MJ, et al. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun. 1997;65(1):298304.
Article CAS PubMed PubMed Central Google Scholar
Harding JS, Schreiber HA, Sandor M. Granuloma transplantation: an approach to study Mycobacterium-host interactions. Front Microbiol. 2011;2:245.
Article PubMed PubMed Central Google Scholar
Gaffney E, Murphy D, Walsh A, Connolly S, Basdeo SA, Keane J, et al. Defining the role of neutrophils in the lung during infection: implications for tuberculosis disease. Front Immunol. 2022;13:984293.
Article CAS PubMed PubMed Central Google Scholar
Yang CT, Cambier CJ, Davis JM, Hall CJ, Crosier PS, Ramakrishnan L. Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe. 2012;12(3):30112.
Article CAS PubMed PubMed Central Google Scholar
Mantegazza AR, Savina A, Vermeulen M, Perez L, Geffner J, Hermine O, et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood. 2008;112(12):471222.
Article CAS PubMed PubMed Central Google Scholar
Barnes PF, Leedom JM, Chan LS, Wong SF, Shah J, Vachon LA, et al. Predictors of short-term prognosis in patients with pulmonary tuberculosis. J Infect Dis. 1988;158(2):36671.
Article CAS PubMed Google Scholar
Dallenga T, Schaible UE. Neutrophils in tuberculosisfirst line of defence or booster of disease and targets for host-directed therapy?. Pathog Dis. 2016;74(3):ftw012.
Article PubMed Google Scholar
Eruslanov EB, Lyadova IV, Kondratieva TK, Majorov KB, Scheglov IV, Orlova MO, et al. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun. 2005;73(3):174453.
Article CAS PubMed PubMed Central Google Scholar
Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol. 2009;10(8):899906.
Article CAS PubMed PubMed Central Google Scholar
Ahmad S, Amoudy HA, Thole JE, Young DB, Mustafa AS. Identification of a novel protein antigen encoded by a Mycobacterium tuberculosis-specific RD1 region gene. Scand J Immunol. 1999;49(5):51522.
Article CAS PubMed Google Scholar
Albayrak N, Dirix V, Aerts L, Van Praet A, Godefroid A, Dauby N, et al. Differential expression of maturation and activation markers on NK cells in patients with active and latent tuberculosis. J Leukoc Biol. 2022;111(5):103142.
Article CAS PubMed Google Scholar
Mah AY, Cooper MA. Metabolic regulation of natural killer cell IFN-gamma production. Crit Rev Immunol. 2016;36(2):13147.
Article PubMed PubMed Central Google Scholar
Read the rest here:
From immunology to artificial intelligence: revolutionizing latent ... - Military Medical Research