Author Archives: admin


Scientists Hope to Use Stem Cells to Reverse Death in Controversial Study – Futurism

In BriefBioquark is about to begin a trial that will attempt to bringbrain-dead patients back to life using stem cells. However, thetrial is raising numerous scientific and ethical questions forother experts in the field. Back From The Dead

Researchers seem to be setting their sights on increasinglylofty goals when it comes to the human body from the worlds first human head transplant, to fighting aging, and now reversing death altogether. Yes, you read that right. A company called Bioquarkhopes to bring people who have been declared clinically brain-dead back to life. The Philadelphia-based biotech company is expected to start on the project later this year.

This trial was originally intended to go forward in 2016 in India, but regulators shut it down. Assuming this plan will be substantially similar, it will enroll 20 patients who will undergo various treatments. The stem cell injection will come first, with the stem cells isolated from that patients own blood or fat. Next, the protein blend gets injected directly into the spinal cord, which is intended to foster growth of new neurons. The laser therapy and nerve stimulation follow for 15 days, with the aim of prompting the neurons to make connections. Meanwhile, the researchers will monitor both behavior and EEGs for any signs of the treatment causing any changes.

While there is some basis in science for each step in the process, the entire regimen is under major scrutiny. The electrical stimulation of the median nerve has been tested, but most evidence exists in the form of case studies. Dr. Ed Cooper has described dozens of these cases, and indicates that the technique can have some limited success in some patients in comas. However, comas and brain death are very different, and Bioquarks process raises more questions for most researchers than it answers.

One issue researchers are raising about this study is informed consent. How can participants in the trial consent, and how should researchers complete their trial paperwork given that the participants are legally dead and how can brain death be conclusively confirmed, anyway? What would happen if any brain activity did return, and what would the patients mental state be? Could anything beyond extreme brain damage even be possible?

As reported by Stat News, In 2016, neurologist Dr. Ariane Lewis and bioethicist Arthur Caplan wrote in Critical Care that the trial is dubious, has no scientific foundation, and suffers from an at best, ethically questionable, and at worst, outright unethical nature. According to Stat News, despite his earlier work with electrical stimulation of the median nerve, Dr. Cooper also doubts Bioquarks method, and feels there is no way this technique could work on someone who is brain-dead. The technique, he said, relies on there being a functional brain stem one of the structures that most motor neurons go through before connecting with the cortex proper. If theres no functional brain stem, then it cant work.

Pediatric surgeon Charles Cox, who is not involved in Bioquarks work, agrees with Cooper, commenting to Stat News on Bioquarks full protocol, its not the absolute craziest thing Ive ever heard, but I think the probability of that working is next to zero. I think [someone reviving] would technically be a miracle.

Pastor remains optimistic about Bioquarks protocol. I give us a pretty good chance, he said. I just think its a matter of putting it all together and getting the right people and the right minds on it.

More here:
Scientists Hope to Use Stem Cells to Reverse Death in Controversial Study - Futurism

China Is About to Begin the World’s First Clinical Trial With Embryonic Stem Cells – Futurism

In BriefTwo clinical trials will begin using embryonic stem cells inChina to treat Parkinson's disease and blindness. These trialsrepresent a new set of regulations on embryonic stem cells in Chinaand possibly a new era of research around the world. First Stem Cell Trials

Surgeons in Zhengzhou, China, will soon begin the first clinical trial of embryonic stem cells (ESCs) in the world as they open the skulls of Parkinsons patients and inject the ESCs into their brains. The goal for the 4 million or so immature embryonic neuron cells to treat the debilitating symptoms of the Parkinsons disease. After the injections, the patients skulls will be closed up, and they will return home to wait and see if the treatment pans out.

A second medical team, also in Zhengzhou, will target age-related blindness caused by macular degeneration using ESCs. In that trial, the ESCs will hopefully replace lost retinal cells.

Both trials signal a new era in stem cell treatments and their regulation in China. Before 2015, China lacked a clear regulatory framework in this area, and this led to various unproven treatments making use of stem cells popping up on the market. The countrys researchers hope to solve this problem through these new regulations and groundbreaking clinical trials like these two.

It will be a major new direction for China, Beijing Institute of Transfusion Medicine stem-cell scientist Pei Xuetao told Nature.Xuetaosposition is no surprise, since heis on the central-government committee thatapproved the trials.

However, the scientific community isnt entirely unified in its support of the trials, and not everyone is convinced that they will be successful. Scripps Research Institute stem cell biologist Jeanne Loring saidshe thinks the choice of cell in the Parkinsons disease trial is not specialized enough to achieve the intended results. Not knowing what the cells will become is troubling, Loring told Nature.

Memorial Sloan Kettering Cancer Center stem-cell biologist Lorenz Studer, who has years of experience characterizing these kinds of neurons in advance to prepare for clinical trials of his own, told Nature that support is not very strong for the use of precursor cells. I am somewhat surprised and concerned, as I have not seen any peer-reviewed preclinical data on this approach, he said.

However, the Chinese research team is confident about their plans. Chinese Academy of Sciences Institute of Zoology stem cell specialist Qi Zhou, who is leading both ESC trials, saidthat the animal trials conducted thus far have been promising. We have all the imaging data, behavioral data, and molecular data to support efficacy, Zhou told Nature.

If Zhou and the rest of the team is correct, this will represent a major step forward for the entire world and usher in a new era of stem cellresearch.

Read more from the original source:
China Is About to Begin the World's First Clinical Trial With Embryonic Stem Cells - Futurism

Stem Cell Software Firm Cellara Eyes Mid-June for Commercial … – Xconomy

Xconomy Wisconsin

A 2015 study in the journal PLOS Biology estimated that $28 billion is spent annually in the U.S. on preclinical research that is not reproducible.

One reason for what some researchers have called a crisis in reproducibility is that in certain types of laboratories, some scientists still track their day-to-day research activities in paper notebooksor, worse yet, in their heads. Thats according to Scott Fulton, CEO of Madison, WI-based Cellara. The startup is developing software designed for researchers in stem cell labs that it says can improve reproducibility of experiments and collaboration among groups around the world.

Formed in 2012, Cellara has been working with several organizations in Wisconsin to develop and test its digital tools. The company plans to formally launch its CultureTrax software to the market later this month in Boston at the annual meeting of the International Society for Stem Cell Research.

Stem cells are undifferentiated cells that can be programmed to turn into specific cell types. Fulton says there are about 25,000 stem cell culture labs worldwide. Some of them have computerized systems for tracking cell cultures, he says, but many still use paper.

We interviewed more than 200 stem cell scientists over the last several years, he says. We found that [many] plan, track, and document all of their cell culture work using paper lab notebooks, just like Louis Pasteur did.

The name CultureTrax comes from culture track, which according to company materials refers to a combination of a cell line, container, and protocolthe predefined steps that make up a scientific experiment. Researchers who are growing stem cells can use Cellaras software to document the contents of containersand their individual compartmentsas well as what actions theyve taken within a given protocol. Users can also record observations and upload images to monitor whether cells are morphing or proliferating.

Many researchers who work with stem cells do so while standing or sitting in front of biosafety cabinets. Cellara provides customers with an iPad mount that can be attached to cabinets, so that users can more easily switch between logging information and hands-on work with the cells. The startups Web-based software is designed to run on both mobile devices and computers. Fulton says that stem cell scientists do the bulk of their documentation while sitting at their desks.

Multiple labs at both the Medical College of Wisconsin, which is located in the Milwaukee area, and the University of Wisconsin-Madison are currently using CultureTrax. Another recently signed customer is Kings College London, which has a stem cell and regenerative medicine department.

Alex Vodenlich, vice president of business development at Cellara, says the functions and ease of use of his companys software also makes it a useful tool for training aspiring stem cell technicians.

Cellara has formed a partnership with Madison Collegea nearby school that offers a variety of associate degree programs and certificates, including one in stem cell technologiesto train students using a version of the startups software. The program is supported in part by a $661,000 grant the National Science Foundation awarded the schoolin 2015.

Thats a whole other adjacent markettrying to educate the next generation of stem cell scientists, Vodenlich says.

Cellara has worked with Acumium, another software company based in Madison, to write the code for CultureTrax. Dan Costello, founder and CEO of Acumium, is one of Cellaras larger investors, Fulton says.

The startup has raised about $1.8 million in debt and equity funding to date, Fulton says. He says Cellara has spent about $1.5 million building CultureTrax, and is about 90 percent Next Page

Jeff Buchanan is the editor of Xconomy Wisconsin. Email: jbuchanan@xconomy.com

View post:
Stem Cell Software Firm Cellara Eyes Mid-June for Commercial ... - Xconomy

Mice headed for space to test bone-building drug developed at UCLA – UCLA Newsroom

What do space travel, rodents and a bone-building protein all have in common? A team of UCLA scientists is bringing these three elements together to test an experimental drug that could one day result in a treatment for osteoporosis, which affects more than 200 million people worldwide.

The drug could also potentially help those with bone damage or loss, a condition that afflicts people with traumatic bone injury, such as injured military service members, as well as astronautswho lose bone density while in space.

Led by Dr. Chia Soo and Dr. Kang Ting, who met and married while working on this project, as well as Dr. Ben Wu, the UCLA research team is scheduled to send40 rodents to the International Space Station this week. Once there, the rodents will receive injections of the experimental drug, which is based on a bone-building protein called NELL-1. The project is being done in collaboration with NASA and the Center for the Advancement of Science in Space, which manages the U.S. National Laboratory on the space station.

This is really a pivotal point in the study of NELL-1s effect on bone density, said Soo, principal investigator on the study, the vice chair for research in the UCLA Division of Plastic and Reconstructive Surgery, and a member of theUCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. We would not be at this point without many years of funding and support from the National Institutes of Health, the California Institute for Regenerative Medicine and several UCLA departments and centers. We are honored to conduct the next phase of our research in the U.S. National Laboratory.

The UCLA researchers have been conducting studies on NELL-1 for more than 18 years and were excited when Julie Robinson, NASA's chief scientist for the International Space Station Program, visited UCLA in early 2014 and encouraged them to submit a grant that would fund their NELL-1 research in space. The teamreceived the necessary fundingfrom the Center for the Advancement of Science in Space in September 2014 to move forward with the project.

The preparations have been very exciting; weve had conference calls with NASAs Ames Research Center every two weeks to go over all the fine details, said Dr. Jin Hee Kwak, an assistant professor of orthodontics in theUCLA School of Dentistryand project manager on the study. Everything is choreographed down to the tiniestdetails, such as whetheryoure going to fill a syringe half way or all the way that small amount affects the total weight of the rocket.

SpaceXs Dragon spacecraft is currently targeted to blast off from Kennedy Space Center in Florida today. It will bethe first time that UCLA scientists send rodents to the International Space Station. After living in microgravity and receiving NELL-1 injections for about four weeks, half of the rodents will return from space andland in the Pacific Ocean off the coast of Baja, California.

This marks the first time that American researchers will bring back live rodents from the International Space Station. After retrieval, the rodents will be returned to UCLA where they will continue to receive the NELL-1 drug for an additional four weeks. The remaining half of the rodents that stay in the space station will also receive an additional four-week dosage of the drug and will return to UCLA later.

To prepare for the space project and eventual clinical use, we chemically modified NELL-1 to stay active longer, said Wu, who is chair of the division of advanced prosthodontics in the UCLA School of Dentistry and professor in the schools of engineering and medicine. We also engineered the NELL-1 protein with a special molecule that binds to bone, so the molecule directs NELL-1 to its correct target, similar to how a homing device directs a missile.

Discovered in 1996 by Ting, NELL-1 has a powerful effect on tissue-specific stem cells that create bone-building cells called osteoblasts. When exposed to NELL-1, the stem cells create osteoblasts that are much more effective at building bone. Furthermore, NELL-1 reduces the function of osteoclasts, which are the cells that break down bone.

Ourpreclinical studiesshow that NELL-1s dual effect on both osteoblasts and osteoclasts significantly increases bone density, said Ting, chair of the section of orthodontics and the division of growth and development in the UCLA School of Dentistry.

After the age of 50, humans typically lose about 0.5 percent of their bone mass each year. But in space, bone loss significantly increases due to the lack of gravity. It is commonly known that bone density is improved by physical activity that puts pressure on bone, which helps it stay strong. Without gravitys pressure, astronauts can lose around 1.5 percent of their bone mass each month. Therefore, space is an ideal testing environmentfor NELL-1s effect on bone density.

Courtesy of Techshot, Inc.

A bone densitometer will accompany the mice to the space station. It measures the bone density of the animals.

Research on NELL-1 is supported by past or current grants from the National Institute of Dental and Craniofacial Research, the National Institute of Arthritis and Musculoskeletal and SkinDiseases, the California Institute for Regenerative Medicine, the UCLA Broad Stem Cell Research Center, the UCLA School of Dentistry, the UCLA Department of Orthopaedic Surgery and the UCLA Orthopaedic Hospital Research Center.

The experimental NELL-1 drug described above is used in preclinical tests only and has not been tested in humans or approved by the Food and Drug Administration as safe and effective for use in humans.

Wu, Ting and Soo are inventors on multiple NELL-1-related patents and principalfounders of Bone Biologics Corp., which is a licensee of NELL-1 patents from the UC Regents. The UC Regents also hold equity in the company.

View original post here:
Mice headed for space to test bone-building drug developed at UCLA - UCLA Newsroom

SpaceX to launch heart, bone health experiments to space station – CU Boulder Today

Editors note: The SpaceX Falcon 9 rocket scheduled to launch today from Florida was delayed due to weather conditions. The launch has been rescheduled for Saturday, June 3.

A SpaceX rocket wasslated to launch two University of Colorado Boulder-built payloads to the International Space Station (ISS) from Florida on Thursday, including oneto look at changes in cardiovascular stem cells in microgravity that may someday help combat heart disease on Earth.

The Dragon spacecraft

The second payload will be used for rodent studies testing a novel treatment for bone loss in space, which has been documented in both astronauts and mice. The two payloads were developed by BioServe Space Technologies, a research center within the Ann and H.J Smead Department of Aerospace Engineering,

We have a solid relationship with SpaceX and NASA that allows us to regularly fly our flight hardware to the International Space Station, said BioServe Director Louis Stodieck. The low gravity of space provides a unique environment for biomedical experiments that cannot be reproduced on Earth, and our faculty, staff and students are very experienced in designing and building custom payloads for our academic, commercial and government partners.

The experiments will be launched on a SpaceX Falcon 9 rocket from Cape Canaveral, Florida, and carried to the ISS on the companys Dragon spacecraft. The SpaceX-CRS-11 mission launching Thursday marks BioServes 55th mission to space.

The cardiovascular cell experiments, designed by Associate Professor Mary Kearns-Jonker of the Loma Linda University School of Medicine in Loma Linda, California, will investigate how low gravity affects stem cells, including physical and molecular changes. While spaceflight is known to affect cardiac cell structure and function, the biological basis for such impacts is not clearly understood, said BioServe Associate director Stefanie Countryman.

As part of the study, the researchers will be comparing changes in heart muscle stem cells in space with similar cells simultaneously cultured on Earth, said Countryman. Researchers are hopeful the findings could help lead to stem cell therapies to repair damaged cardiac tissue. The findings also could confirm suspicions by scientists that microgravity speeds up the aging process, Countryman said.

For the heart cell experiments, BioServe is providing high-tech, cell-culture hardware known as BioCells that will be loaded into shoebox-sized habitats on ISS. The experiments will be housed in BioServes Space Automated Bioproduct Lab (SABL), a newly updated smart incubator that will reduce the time astronauts spend manipulating the experiments.

The second experiment, created by Dr. Chia Soo of the UCLA School of Medicine, will test a new drug designed to not only block loss of bone but also to rebuild it.

The mice will ride in a NASA habitat designed for spaceflight to the ISS. Once on board, some mice will undergo injections with the new drug while others will be given a placebo. At the end of the experiments half of the mice will be returned to Earth in SpaceXs Dragon spacecraft and transported to UCLA for further study, said Stodieck, a scientific co-investigator on the experiment.

BioServes Space Automated Byproduct Lab

In addition to the two science experiments, BioServe is launching its third SABL unit to the ISS. Two SABL units are currently onboard ISS supporting multiple research experiments, including three previous stem cell experiments conducted by BioServe in collaboration with Stanford University, the Mayo Clinic and the University of Minnesota.

The addition of the third SABL unit will expand BioServes capabilities in an era of high-volume science on board the ISS, said Countryman.

BioServe researchers and students have flown hardware and experiments on missions aboard NASA space shuttles, the ISS and on Russian and Japanese government cargo rockets. BioServe previously has flown payloads on commercial cargo rockets developed by both SpaceX, headquartered in Hawthorne, California, and Orbital ATK, Inc. headquartered in Dulles, Virginia.

Since it was founded by NASA in 1987, BioServe has partnered with more than 100 companies and performed dozens of NASA-sponsored investigations. Itspartners include large and small pharmaceutical and biotechnology companies, universities and NASA-funded researchers, and investigations sponsored by the Center for the Advancement of Science in Space, which manages the ISS U.S. National Laboratory. CU-Boulder students are involved in all aspects of BioServe research efforts, said Stodieck.

Read the rest here:
SpaceX to launch heart, bone health experiments to space station - CU Boulder Today

Trials of Embryonic Stem Cells to Launch in China

Post Views: 17

In the next few months, surgeons in the Chinese city of Zhengzhou will carefully drill through the skulls of people with Parkinsons disease and inject 4 million immature neurons derived from human embryonic stem cells into their brains. Then they will patch the patients up, send them home and wait.

This will mark the start of the first clinical trial in China using human embryonic stem (ES) cells, and the first one worldwide aimed at treating Parkinsons disease using ES cells from fertilized embryos. In a second trial starting around the same time, a different team in Zhengzhou will use ES cells to target vision loss caused by age-related macular degeneration.

The experiments will also represent the first clinical trials of ES cells under regulations that China adopted in 2015, in an attempt to ensure the ethical and safe use of stem cells in the clinic. China previously had no clear regulatory framework, and many companies had used that gap as an excuse to market unproven stem-cell treatments.

It will be a major new direction for China, says Pei Xuetao, a stem-cell scientist at the Beijing Institute of Transfusion Medicine who is on the central-government committee that approved the trials. Other researchers who work on Parkinsons disease, however, worry that the trials might be misguided.

Both studies will take place at the First Affiliated Hospital ofZhengzhouUniversity in Henan province. In the first, surgeons will inject ES-cell-derived neuronal-precursor cells into the brains of individuals with Parkinsons disease. The only previous trial using ES cells to treat Parkinsons began last year in Australia; participants there received stem cells from parthenogenetic embryosunfertilized eggs that are triggered in the lab to start embryonic development.

In the other Zhengzhou trial, surgeons will take retinal cells derived from ES cells and transplant them into the eyes of people with age-related macular degeneration. The team will follow a similar procedure to that of previous ES-cell trials carried out by researchers in the United States and South Korea.

Qi Zhou, a stem-cell specialist at the Chinese Academy of Sciences Institute of Zoology in Beijing, is leading both efforts. For the Parkinsons trial, his team assessed hundreds of candidates and have so far have picked ten who best match the ES cells in the cell bank, to reduce the risk of the patients bodies rejecting the cells.

The 2015 regulations state that hospitals planning to carry out stem-cell clinical work must use government-certified ES-cell lines and pass hospital-review procedures. Zhous team completed four years of work with a monkey model of Parkinsons, and has met the government requirements, he says.

Parkinsons disease is caused by a deficit in dopamine produced by brain cells. Zhous team will coax ES cells to develop into precursors to neurons, and will then inject them into the striatum, a central region of the brain implicated in the disease.

In their unpublished study of 15 monkeys, the researchers did not observe any improvements in movement at first, says Zhou. But at the end of the first year, the team examined the brains of half the monkeys and found that the stem cells had turned into dopamine-releasing cells. He says that they saw 50% improvement in the remaining monkeys over the next several years. We have all the imaging data, behavioural data and molecular data to support efficacy, he says. They are preparing a publication, but Zhou says that they wanted to collect a full five years worth of animal data.

Jeanne Loring, a stem-cell biologist at the Scripps Research Institute in La Jolla, California, who is also planning stem-cell trials for Parkinsons, is concerned that the Australian and Chinese trials use neural precursors and not ES-cell-derived cells that have fully committed to becoming dopamine-producing cells. Precursor cells can turn into other kinds of neurons, and could accumulate dangerous mutations during their many divisions, says Loring. Not knowing what the cells will become is troubling.

But Zhou and the Australian team defend their choices. Russell Kern, chief scientific officer of the International Stem Cell Corporation in Carlsbad, California, which is providing the cells for and managing the Australian trial, says that in preclinical work, 97% of them became dopamine-releasing cells.

Lorenz Studer, a stem-cell biologist at the Memorial Sloan Kettering Cancer Center in New York City who has spent years characterizing such neurons ahead of his own planned clinical trials, says that support is not very strong for the use of precursor cells. I am somewhat surprised and concerned, as I have not seen any peer-reviewed preclinical data on this approach, he says.

Studers and Lorings teams are part of an international consortium that coordinates stem-cell treatments for Parkinsons. In the next two years, five groups in the consortium plan to run trials using cells fully committed to becoming dopamine-producing cells.

Regenerative neurobiologist Malin Parmar, who heads one of the teams at Lund University in Sweden, says that the groups are all rapidly moving towards clinical trials, and this field will be very exciting in the coming years.

Source & Credits: ScientificAmerican

See original here:
Trials of Embryonic Stem Cells to Launch in China

First adult cured of sickle cell at a Kansas hospital – Idaho Statesman

First adult cured of sickle cell at a Kansas hospital
Idaho Statesman
More public education about the cure and better recruitment of bone marrow donors could help more high-risk patients shed the disease, said Joseph McGuirk, medical director for blood and marrow transplant for the University of Kansas Health System.

and more »

View post:
First adult cured of sickle cell at a Kansas hospital - Idaho Statesman

Stem Cell Therapy – Checkbiotech.org (press release)

Stem Cell Therapy is poised to change the face of medicine.

Thousands of published studies and or testimonialscan be wrong! Regeneration or Regenerative Medicine has the ability to change almost all facets of medicine.

Doctors are using them on themselves to help with problems and or provide with a better quality of life, in-fact one doctor sais in a recent stem cell seminar that he would be doing them every year just for preventative maintenance.

Stem Cells have been studied for decades however in the past few years a real breakthrough in using Human UmbilicalCell Tissue (HUCT) being harvested from healthy mommy / healthy baby umbilical cords.

Studies have proved that the older you get the fewer stem cells in the body, ruling out the effectiveness of stem cells extracted from your aging body or your fat.

Statin drugs have been proven to diminishstem cells

Using Concentrated Umbilical-Cord Potentcy Stem Cells (CUP STEM CELLS) give you cell counts in the millions ffrom a newborn tht may allow stem cells to duplicate every 28 hours, over 65 or so cucles making CUP STEM CELLS very favorable to all the other options available in the past.

Read more:
Stem Cell Therapy - Checkbiotech.org (press release)

Trials of embryonic stem cells to launch in China : Nature …

Jason Lee/Reuters

Former Chinese leader Deng Xiaoping had Parkinsons disease, one of the first targets of embryonic-stem-cell therapies being tested in China.

In the next few months, surgeons in the Chinese city of Zhengzhou will carefully drill through the skulls of people with Parkinsons disease and inject 4 million immature neurons derived from human embryonic stem cells into their brains. Then they will patch the patients up, send them home and wait.

This will mark the start of the first clinical trial in China using human embryonic stem (ES) cells, and the first one worldwide aimed at treating Parkinsons disease using ES cells from fertilized embryos. In a second trial starting around the same time, a different team in Zhengzhou will use ES cells to target vision loss caused by age-related macular degeneration.

The experiments will also represent the first clinical trials of ES cells under regulations that China adopted in 2015, in an attempt to ensure the ethical and safe use of stem cells in the clinic. China previously had no clear regulatory framework, and many companies had used that gap as an excuse to market unproven stem-cell treatments.

It will be a major new direction for China, says Pei Xuetao, a stem-cell scientist at the Beijing Institute of Transfusion Medicine who is on the central-government committee that approved the trials. Other researchers who work on Parkinsons disease, however, worry that the trials might be misguided.

Both studies will take place at the First Affiliated Hospital ofZhengzhouUniversity in Henan province. In the first, surgeons will inject ES-cell-derived neuronal-precursor cells into the brains of individuals with Parkinsons disease. The only previous trial using ES cells to treat Parkinsons began last year in Australia; participants there received stem cells from parthenogenetic embryosunfertilized eggs that are triggered in the lab to start embryonic development.

In the other Zhengzhou trial, surgeons will take retinal cells derived from ES cells and transplant them into the eyes of people with age-related macular degeneration. The team will follow a similar procedure to that of previous ES-cell trials carried out by researchers in the United States and South Korea.

Qi Zhou, a stem-cell specialist at the Chinese Academy of Sciences Institute of Zoology in Beijing, is leading both efforts. For the Parkinsons trial, his team assessed hundreds of candidates and have so far have picked ten who best match the ES cells in the cell bank, to reduce the risk of the patients bodies rejecting the cells.

The 2015 regulations state that hospitals planning to carry out stem-cell clinical work must use government-certified ES-cell lines and pass hospital-review procedures. Zhous team completed four years of work with a monkey model of Parkinsons, and has met the government requirements, he says.

Parkinsons disease is caused by a deficit in dopamine produced by brain cells. Zhous team will coax ES cells to develop into precursors to neurons, and will then inject them into the striatum, a central region of the brain implicated in the disease.

In their unpublished study of 15 monkeys, the researchers did not observe any improvements in movement at first, says Zhou. But at the end of the first year, the team examined the brains of half the monkeys and found that the stem cells had turned into dopamine-releasing cells. He says that they saw 50% improvement in the remaining monkeys over the next several years. We have all the imaging data, behavioural data and molecular data to support efficacy, he says. They are preparing a publication, but Zhou says that they wanted to collect a full five years worth of animal data.

Jeanne Loring, a stem-cell biologist at the Scripps Research Institute in La Jolla, California, who is also planning stem-cell trials for Parkinsons, is concerned that the Australian and Chinese trials use neural precursors and not ES-cell-derived cells that have fully committed to becoming dopamine-producing cells. Precursor cells can turn into other kinds of neurons, and could accumulate dangerous mutations during their many divisions, says Loring. Not knowing what the cells will become is troubling.

But Zhou and the Australian team defend their choices. Russell Kern, chief scientific officer of the International Stem Cell Corporation in Carlsbad, California, which is providing the cells for and managing the Australian trial, says that in preclinical work, 97% of them became dopamine-releasing cells.

Lorenz Studer, a stem-cell biologist at the Memorial Sloan Kettering Cancer Center in New York City who has spent years characterizing such neurons ahead of his own planned clinical trials, says that support is not very strong for the use of precursor cells. I am somewhat surprised and concerned, as I have not seen any peer-reviewed preclinical data on this approach, he says.

Studers and Lorings teams are part of an international consortium that coordinates stem-cell treatments for Parkinsons. In the next two years, five groups in the consortium plan to run trials using cells fully committed to becoming dopamine-producing cells.

Regenerative neurobiologist Malin Parmar, who heads one of the teams at Lund University in Sweden, says that the groups are all rapidly moving towards clinical trials, and this field will be very exciting in the coming years.

Read the original post:
Trials of embryonic stem cells to launch in China : Nature ...

World-first trials have been launched to treat Parkinson’s and blindness with embryonic stem cells – ScienceAlert

In a world first, surgeons in the Chinese city of Zhengzhou are planning to inject stem cells derived from human embryos into the brains of patients with Parkinson's disease with the aim of treating their debilitating symptoms.

Meanwhile, another medical team in the same city is aiming to target vision loss using embryonic stem cells (ESC) to replace lost cells in the retina, marking a new direction in China in the wake of major changes in how the country regulates stem cell treatments.

While similar treatments on Parkinson's patients have already been tested in Australia, those trials relied on cells taken from eggs that were forced to divide without first being fertilised in an effort to circumvent any ethical concerns.

Stem cells are a little like blank slates that are yet to take on a specific task. If you rewind the clock on any of your body's tissues, its cells will become less specialised, until you're left with a cell with a lot of potential to become nearly anything.

In the case of both kinds of embryonic stem cells, divided egg cells are subjected to various treatments to encourage them to develop into replacement cells that could treat a condition in a recipient.

The symptoms of Parkinson's disease are largely caused by a loss of nervous tissue deep inside the brain in an area called the basal ganglia.

Losing those cells means a loss of a neurotransmitter called dopamine, and with it a lower ability to control nervous impulses that would prevent muscles in the extremities from activating.

In the case of a condition called macular degeneration, damage to a layer of tissue called the retinal pigment epithelium at the back of the eye causes the light-catching cells above it to die.

By turning ESC into cells that can naturally develop into the tissues that have deteriorated such as the precursors to neurons that can produce dopamine, or into retinal tissue and then injecting it into the target site, the researchers hope to improve the lost functions.

Not everybody is convinced of the success of trials such as those being done in China and last year in Australia.

A stem cell biologist from the Scripps Research Institute in California, Jeanne Loring, believes the choice of cell used in both Parkinson's disease trials won't be specialised enough to match expected results.

"Not knowing what the cells will become is troubling," Loring told David Cyranoski at Nature.

But the research team in China remains confident in its decision.

Qi Zhou from the Chinese Academy of Sciences Institute of Zoology in Beijing is the stem cell specialist leading both sets of ESC trials, and says four years of animal trials conducted on monkeys have so far showed promising results.

"We have all the imaging data, behavioural data, and molecular data to support efficacy," Zhou told Nature.

He also claims the team conducting the Parkinson's trial have been selective with their potential candidates, choosing patients who will have the least chance of rejecting the ESCs from the cell bank.

In 2015, China introduced tough new regulations to deal with the growing problem of 'rogue clinics' offering stem cell treatments without due record keeping or process, making it hard to evaluate safety, or even the types of cells used in the treatments.

The changes are set to improve the ethics and safety of stem cell treatments by enforcing the use of cells through a regulatory body, ensuring informed patient consent, and permitting treatments only through authorised hospitals.

Time will tell if the regulations can be enforced, but for stem cell researchers, the changes are positive.

"It will be a major new direction for China," stem cell scientist Pei Xuetaotold Nature.

If the results are as good as the teams in Australia and China predict, it could also set new standards for the world.

Visit link:
World-first trials have been launched to treat Parkinson's and blindness with embryonic stem cells - ScienceAlert