Author Archives: admin


Study: heart failure stem cell therapy safe, shows early signs of effectiveness – The San Diego Union-Tribune

A stem cell treatment for heart failure patients is safe and shows early signs of effectiveness, according to a study published Wednesday.

The study was conducted by Japanese researchers in 27 patients, who received transplants of stem cells taken from their own thigh muscles. There were no major complications, and most patients showed considerable improvement in their symptoms.

The study was published in the open-access Journal of the American Heart Association. Dr Yoshiki Sawa of Osaka University Graduate School of Medicine was the senior author. It can be found at j.mp/stemheart.

However, two San Diego cardiologists who do stem cell research on heart disease cautioned that similar clinical trials have shown promise over the years, only to fail at the end for various reasons. There is no approved stem cell therapy for heart failure.

So while the trial itself appears to be well-conducted, the researchers are very far from actually proving their treatment is effective, said Dr. Richard Schatz of Scripps Health and Dr. Eric Adler of UC San Diego School of Medicine.

For one thing, the trial was small, they said, and larger trials are where the most rigorous scientific evaluations are made.

These early trials have looked beneficial in the past, Adler said. When we do the larger trials, the results are more equivocal.

Adler said the signs of efficacy in this trial are modest. For example, the change in ejection fraction, a measurement of efficiency in pumping blood, rose from 27 percent to 30 percent in 15 of the 27 patients. Their heart failure was associated with a lack of blood flow, or ischemia. The remaining non-ischemic patients actually had a slight decline.

The entire field of stem cell and regenerative therapy for heart disease has been a disappointment to date, Schatz said.

Weve been at it for 20 years now, and we dont have a product or a positive (late-stage) trial, so that tells you pretty much everything you need to know, he said. Its not for lack of trying or billions of dollars invested. Its just very, very difficult.

The cardiac field has had more success with other technologies, such as cardiac stents. Schatz is the co-inventor of the first stent.

In the study, the researchers acknowledge that previous attempts had only been modestly effective. They devised a method of producing sheets of muscle stem cells and attaching them to the inner layer of the sac that encloses the heart, a layer that rests directly on the heart surface.

The stem cell sheets stimulate healing by producing chemicals that stimulate cardiac regeneration, the study said. The cells themselves dont survive in the long term, but by the time they die they have served their purpose.

Loss of function

Heart failure is a progressive disease in which the heart gradually loses its ability to pump blood. This can be triggered by a heart attack or any other cause that damages the heart muscle.

When damaged heart muscle is replaced with scar tissue, as often happens, the heart loses pumping capacity. It becomes overstressed, and its output of blood declines. This limits the patients ability to engage in intensive physical activity. In advanced cases, patients may become bedridden.

Existing treatments include drugs and LVAD units, which take over some of the hearts function to relieve stress. Some drugs may help the heart work more efficiently, but none have been shown to improve heart failure by actually regenerating lost heart muscle.

Stem cell therapy is tested in patients who havent responded well to other treatments. Trials have been and are being conducted in San Diego area hospitals.

Scripps Health has been testing a cardiac stem cell therapy from Los Angeles-based Capricor. The cells, taken from donor hearts, are injected into the coronary artery, where they are expected to settle in the heart and encourage regrowth.

UC San Diego is testing a heart failure therapy from Teva Pharmaceutical Industries. It consists of bone marrow derived mesenchymal precursor cells. These can give rise to several different cell types, including muscle cells.

And many other trials are going on throughout the country and internationally.

Adler and Schatz said theres reason for optimism in the long run, as technologies improve.

Just because the other trials have been negative doesnt mean this technique wont be beneficial, Adler said. Its just too early to tell.

That said, Schatz emphasized that the nature of the three-phase clinical trial process means that the show-stoppers for a treatment typically appear late.

Tighter standards needed

Clean trials trials where we all agree that this is the patient population we want to look at, are needed, he said.

For example, heart failure comes in two types, he said. Ischemic heart failure is caused by heart attacks and blocked arteries, which impede blood flow. Non-ischemic heart failure can be caused by damage from diseases, such as a virus.

Non-ischemics can be younger people, in their 20s and 30s, while the ischemic patients are older. Mixing those patient groups in a single trial is a mistake, he said.

Theyre different animals, Schatz said.

Another pitfall is failing to screen carefully enough to enroll only patients likely to benefit, Schatz said.

You can have a patient who has chest pain, and coronary disease just incidentally, he said.

His shoulder or chest pain is from a virus. So he goes into the trial and gets a placebo injection in his arm of cortisone, and his arm pain goes away. And because hes in that placebo group, hes counted as a success the pain went away. It has nothing to do with his heart. Thats an extreme example, but we actually saw that happen.

In a failed gene therapy trial for heart disease, some patients apparently had received the injection in the wrong location, missing the heart muscle, Schatz said.

You assume they got the gene, but they didnt, Schatz said. The study was negative, and thats why I think it was negative.

Such errors dont show up in Phase 1 trials, Adler and Schatz said, because theyre focused on evaluating safety. And these early trials dont have many patients, there arent enough to comfortably determine the therapy is really effective.

By the last stage of the trial, these sources of error have often been identified and trial standards have tightened up. And thats when the faulty assumptions made early appear as the trial ends in failure.

Despite those forbidding hurdles, Adler said research should continue.

This disease is killing a lot of people. Theres not going to be enough hearts to go around for transplant. Theres six million Americans with heart failure, and theres 2,000 heart transplants a year. So coming up with novel regenerative cell-based therapy is something were still excited about.

bradley.fikes@sduniontribune.com

(619) 293-1020

More here:
Study: heart failure stem cell therapy safe, shows early signs of effectiveness - The San Diego Union-Tribune

Fundraiser for Galway girl’s life-changing stem cell treatment – Connacht Tribune Group

Nicola Lavin, nee Glynn, who is originally from Menlo, was diagnosed with Lyme Disease last year following a 16-year battle with an invisible bacteria which has attacked her organs and her immune system.

A table quiz will take place at Monroes Tavern, Dominick Street, next Thursday night (April 13) to support the young Galway mother who is suffering from the debilitating disease.

Nicola (38) can trace her troubles back to a bite from a tick during a summer in New York in 2000.

This resulted in heart failure while she was pregnant with her son, but she was only correctly diagnosed by a laboratory in Germany last year.

Over the years, her health has deteriorated so much that she is unable to work in the career she loves and has no quality of life. At times, she can barely comb her hair or brush her teeth.

Stem cell treatment in Germany can change Nicolas life and give her a second chance. Her friends and family have rallied around Nicola to organise this table quiz in a bid to transform her life. The treatment will cost 23,000.

A table quiz will take place in Monroes on Thursday April 13th at 8pm to help raise the much needed funds that will make such a difference. Donations can also be made through Go Fund Me.

The rest is here:
Fundraiser for Galway girl's life-changing stem cell treatment - Connacht Tribune Group

In four related papers, researchers describe new and improved tools for stem cell research – Phys.Org

April 6, 2017 A false color scanning electron micrograph of cultured human neuron from induced pluripotent stem cell. Credit: Mark Ellisman and Thomas Deerinck, National Center for Microscopy and Imaging Research, UC San Diego.

Induced pluripotent stem cells (iPSCs), derived from human adult cells and capable of being differentiated to become a variety of cell types, are a powerful tool for studying everything from molecular processes underlying human diseases to elusive genetic variants associated with human phenotypes.

In a new paper published online April 6 in Stem Cell Reports, a large team of researchers led by senior author Kelly Frazer, PhD, professor of pediatrics and director of the Institute for Genomic Medicine at University of California San Diego School of Medicine describe a new collection of 222 systematically derived and characterized iPSC lines generated as part of the National Heart, Lung and Blood Institute's NextGen consortium.

Dubbed iPSCORE for "iPSC Collection for Omic Research," Frazer said the novel collection addresses several significant issues that currently hamper using iPSCs as a model system for human genetic studies investigating the segregation of traits, such as lack of large numbers of molecularly well-phenotyped lines and representation of ethnic diversity as well as participants from families and genetically unrelated individuals.

"The iPSCORE collection contains 75 lines from people of non-European ancestry, including East Asian, South Asian, African American, Mexican American, and Multiracial. It includes multigenerational families and monozygotic twins," said Frazer. "This collection will enable us to study how genetic variation influences traits, both at a molecular and physiological level, in appropriate human cell types, such as heart muscle cells. It will help researchers investigate not only common but also rare, and even family-specific variations."

The Stem Cell Reports paper is, in fact, one of four related studies just published by different teams of scientists, each with Frazer as senior author. The other three studies all utilize the iPSCORE resource to either address important genetic questions or develop new tools for analyzing iPSC lines:

Explore further: Induced pluripotent stem cells don't increase genetic mutations

More information: "iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation Across a Variety of Cell Types," Stem Cell Reports: DOI: 10.1016/j.stemcr.2017.03.012

"Aberrant iPSC Methylation is Associated with Motif Enrichment and Gene Expression Changes in a Clone-Specific Manner Independent of Genetics," Cell Stem Cell: DOI: 10.1016/j.stem.2017.03.010

"Large-Scale Profiling Reveals the Influence of Genetic Variation on Gene Expression in Human Induced Pluripotent Stem Cells," Cell Stem Cell: DOI: 10.1016/j.stem.2017.03.009

"High-Throughput and Cost-Effective Characterization of Induced Pluripotent Stem Cells," Stem Cell Reports: DOI: 10.1016/j.stemcr.2017.03.011

It's been more than 10 years since Japanese researchers Shinya Yamanaka, M.D., Ph.D., and his graduate student Kazutoshi Takahashi, Ph.D., developed the breakthrough technique to return any adult cell to its earliest stage ...

University of Tsukuba-led researchers explored the function of the reprogramming factor KLF4 in production of induced pluripotent stem cells (iPSCs). KLF4 was shown to bind upstream of the Tcl1 target gene, which controls ...

Parkinson's disease (PD), a chronic, progressive and devastating neurodegenerative motor disease affecting as many as one million Americans, is complex. Its causes likely include a combination of genetic, environmental and ...

As the promise of using regenerative stem cell therapies draws closer, a consortium of biomedical scientists reports about 30 percent of induced pluripotent stem cells they analyzed from 10 research institutions were genetically ...

A multinational team of researchers led by stem cell scientists at the University of California, San Diego School of Medicine and Scripps Research Institute has documented specific genetic abnormalities that occur in human ...

How do you improve a Nobel Prize-winning discovery? Add a debilitating disease-causing gene mutation.

When scientists talk about laboratory stem cells being totipotent or pluripotent, they mean that the cells have the potential, like an embryo, to develop into any type of tissue in the body. What totipotent stem cells can ...

Viruses have a ubiquitous presence in the world. Their population is estimated to be 1031, 10 times greater than the nonillion (1030) of microbes on the planeta figure that surpasses the number of stars in the Milky Way. ...

Timesharing, researchers have found, isn't only for vacation properties.

Octopuses, squid, and cuttlefish often do not follow the genetic instructions in their DNA to the letter. Instead, they use enzymes to pluck out specific adenosine RNA bases (some of As, out of the As, Ts, Gs, and Us of RNA) ...

The DNA molecules in each one of the cells in a person's body, if laid end to end, would measure approximately two metres in length. Remarkably, however, cells are able to fold and compact their genetic material in the confined ...

In a major advance for fundamental biological research, UC San Francisco scientists have developed a tool capable of illuminating previously inscrutable cellular signaling networks that play a wide variety of roles in human ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See more here:
In four related papers, researchers describe new and improved tools for stem cell research - Phys.Org

UConn professor tackling cell research to treat cancer – UConn Daily Campus

Laijun Lai, an Associate Research Professor at the University of Connecticut is currently doing research to find treatment for cancers, autoimmune deficiencies and genetic diseases through the use of T cells and stem cells.

The first area of his research focuses on gene engineering approaches to treating cancers and autoimmune diseases.

Lais research has resulted in two patents and several grants from NIH, the American Cancer Society and the Connecticut Regenerative Medicine Fund.

We are very excited with our results. We believe that our research will eventually lead to the new approach in the treatment of cancer, autoimmune diseases or genetic diseases, such as (DGS), Lai said.

The progression of cancerous tumors is accompanied by a very significant suppression of the immune system, which interferes with the bodys ability to send an effective immune response in order to eliminate chemotherapy, Lai said.

In terms of autoimmune disease, disorders develop when the immune system targets and destroys the bodys own tissues, Lai said.

Therefore, the study investigates new approaches to enhance T cell function for use in the treatment of cancer, while also looking for new ways to inhibit T cell function to treat autoimmune disease, Lai said.

Several T cell inhibitor molecules have been identified. Were trying to find a new T cell inhibitor molecule by using the bioinformatic approach to identify several new genes that are related to T cell inhibitor molecules, Lai said.

He then used the gene engineering approach to produce recombinant proteins from these genes. And these preliminary studies have shown that in a dish, the proteins can inhibit T cell function.

By using the gene engineering approach we can enhance the immune function that can fight a lot of diseases, such as cancer and infections, Lai said.

The second area of my research is using stem cell technology to prevent and treat autoimmune disease, Lai said.

The thymus, an organ of the immune system, is the primary organ that naturally produces T cells for the body.

Thymic epithelial cells (TECs) mediate T cell selections, generating T cells that are able to react with foreign antigens, such as bacteria and viruses, Lai said.

In the prevention or treatment of autoimmune diseases, it would induce immune tolerance of certain antigens by using the mechanisms that would occur in the thymus under normal circumstances, Lai said.

However, the thymus undergoes age-dependent involution resulting in a serious compromise of T cell function in the elderly, Lai said. Many studies have shown that embryonic stem cells (ESCs) or pluripotent stem cells (iPSCs) have huge potential to treat many diseases because these cells can change into many types of cells in a dish.

Through the transplantation of ESCs can cause immune tolerance to the disease causative self-antigens and treat or even prevent autoimmune diseases such as Multiple Sclerosis, Lai wrote in a research statement.

The third area of my research is using stem cell technology to model and treat genetic diseases such as DiGeorge Syndromealso known as DGS, Lai said.

DGS is one of the most common genetic diseases in humans.

One of the characteristic features of DGS is that the patient has a profound thymic aplasia or hypoplasia that results in T cell immunodeficiency, Lai said, So we are going to determine the ability of ESC-derived TECs to prevent and treat DGS.

Here is the original post:
UConn professor tackling cell research to treat cancer - UConn Daily Campus

Frequency Therapeutics to Present at the 14th Stem Cell Research … – Business Wire (press release)

WOBURN, Mass.--(BUSINESS WIRE)--Frequency Therapeutics, a company spearheading the movement to restore hearing by harnessing the regenerative potential of progenitor cells in the body, today announced that Chris Loose, Ph.D., the Companys Co-founder and Chief Scientific Officer, will be presenting at the 14th Stem Cell Research and Regenerative Medicine Conference. The presentation titled, Progenitor Cell Activation - an Enabling Technology for In-Situ Tissue Regeneration, will look to explore the companys proprietary Progenitor Cell Activation (PCA) platform, founded on recent discoveries in progenitor cell biology by Bob Langer, Sc.D. at MIT and Jeff Karp, Ph.D., at Harvard. PCA is leading to a new class of drugs that regenerate healthy tissue within the body. The presentation will take place on Wednesday, April 5 at 4:50 p.m. The conference is being held from April 5 to 6 in Boston, MA.

The biology, chemistry and regenerative properties behind our PCA platform is quite exciting and has the potential to yield a whole new category of disease-modifying therapeutics for a wide range of degenerative conditions, said Dr. Loose. Our lead program is focused on the over 360 million people worldwide who suffer from hearing impairment, with no effective therapeutic solutions currently available. By targeting cellular regeneration within the inner ear to restore healthy tissue and reverse hearing loss, we look to develop a direct therapeutic approach through a locally applied drug without the need for surgical interventions.

Chris has provided exceptional leadership in translating the vision of our founders, Bob Langer and Jeff Karp, into a successful product development organization, said David Lucchino, President, Co-founder and CEO of Frequency. This presentation exemplifies the core of the research and development Frequency is performing with our PCA platform, and addresses our intent of advancing a first-in-class therapeutic option for chronic hearing loss.

ABOUT PROGENITOR CELL ACTIVATION (PCA) Frequencys precise and controlled approach transiently causes Lgr5+ progenitor cells to divide and differentiate, much like what is seen in naturally regenerating tissues such as the skin and intestine. Frequency activates stemness through mimicking signals provided by neighboring cells (the stem cell niche) with small molecules, and this proprietary approach is known as the Progenitor Cell Activation (PCA) platform. Frequency believes that PCA has the potential to yield a whole new category of disease-modifying therapeutics for a wide range of degenerative conditions. To fuel its drug discovery programs, Frequency is leveraging a PCA screening platform using primary human cells, including cochlear progenitor cells and adult human progenitor cells from the GI tract. Frequencys initial focus is on chronic noise induced hearing loss. Other potential applications include skin disorders, gastrointestinal diseases, and diabetes.

ABOUT FREQUENCY THERAPEUTICS Frequency Therapeutics develops small molecule drugs that activate progenitor cells within the body to restore healthy tissue. Through the transitory activation of these progenitor cells, Frequency enables disease modification without the complexity of genetic engineering. Our lead program re-creates sensory cells in the inner ear to treat chronic noise induced hearing loss, which affects over 30 million people in the U.S. alone. http://www.frequencytx.com.

Originally posted here:
Frequency Therapeutics to Present at the 14th Stem Cell Research ... - Business Wire (press release)

NORTH AMERICA STEM CELL ASSAY MARKET FORECAST 2017-2025 – PR Newswire (press release)

LONDON, April 6, 2017 /PRNewswire/ -- KEY FINDINGS The North America stem cell assay market is expected to grow $1082 million by 2025. The market growth is expected at the CAGR of 21.69% in the forecast period. The base year considered for the market study is 2016. Rise in the adoption of stem cell assay, the evolvement of technology and increase spending in the stem cell assay market are the key drivers in the North America stem cell assay market. Download the full report: https://www.reportbuyer.com/product/4807895/

MARKET INSIGHTS The North America stem cell assay market is segmented on the basis of types of assay, product, kits, application, end-user and geography. The North America stem cell assay market by type is segmented into cell viability and toxicity assays, isolation and purification assays, cell identification assays, cell differentiation assays, cell function assays and cell apoptosis assays. The product of North America stem cell assay market is segmented into instruments and detection kits.

The kits of stem cell assay market are further segmented into adult stem cell kits, human embryonic stem cell kit. The stem cell market by application is further bifurcated into regenerative medicine and therapy development, drug discovery and development and clinical research market. The end-user of stem cell market is segmented into research institutes and industry research. The North America stem cell assay market by geography is segmented into US, Canada, and rest of North America. Increasing Adoption of Stem Cell Assay, improvement in the Technology, high expense in Stem Cell Research are the major drivers for the market growth in North America region. The rise in the adoption of stem cell assay for drug screening & testing is one of the major reasons driving the industry research Download the full report: https://www.reportbuyer.com/product/4807895/

About Reportbuyer Reportbuyer is a leading industry intelligence solution that provides all market research reports from top publishers http://www.reportbuyer.com

For more information: Sarah Smith Research Advisor at Reportbuyer.com Email: query@reportbuyer.com Tel: +44 208 816 85 48 Website: http://www.reportbuyer.com

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/north-america-stem-cell-assay-market-forecast-2017-2025-300436349.html

SOURCE ReportBuyer

http://www.reportbuyer.com

Original post:
NORTH AMERICA STEM CELL ASSAY MARKET FORECAST 2017-2025 - PR Newswire (press release)

Organogenesis Shares Successes and Best Practices for Cell-Based Product Manufacturing at the 6th Stem Cell … – PR Newswire (press release)

Apligraf (manufactured near the conference, in Canton, MA), and Dermagraft (manufactured in San Diego, CA), are FDA-approved Class III medical devices indicated for the treatment of diabetic foot ulcers. Apligraf is also indicated for the treatment of venous leg ulcers. More than 1 million units of the products have been shipped to date.

"One of the challenges we see with cell-based manufacturing is the transition from pilot to commercial scale production and the ability to perform large scale manufacturing at a low cost," said Dr. Pitkin. "At Organogenesis, we've achieved this successfully through process optimization and product consistency that includes multiple levels of quality control and safety."

In Apligraf, keratinocyte stem cells are required to form the product's differentiated epidermis and provide increased levels of growth factors and cytokines, so it is vital that these cells are preserved through the manufacturing, shipping and distribution process. Through a scale-up manufacturing process that creates a three-dimensional bi-layered construct, Organogenesis is able to produce a bioengineered product with living cells on a consistent basis that delivers a therapeutic benefit to patients with hard-to-heal wounds.

"With five million Americans affected by diabetic foot ulcers and venous leg ulcers, it's crucial that we consistently produce and manufacture safe, reliable products that promote healing," added Dr. Pitkin. "Organogenesis is at the forefront of this effort, having developed a successful and reliable manufacturing process."

The 6th Stem Cell Product Development and Commercialization Conference presents information regarding cutting-edge developments in all areas of stem cell research, including the biology, medicine, applications and regulation of stem cells. Topics of discussion include recent developments in pre-clinical and clinical trials of stem cell therapy, regenerative medicine and tissue engineering, cancer stem cells, immunotherapy, stem cell reprogramming, and regulatory policies regarding stem cell research.

About Organogenesis Inc.Headquartered in Canton, Massachusetts, Organogenesis Inc. is a global leader in regenerative medicine, offering a portfolio of bioactive and acellular biomaterials products in advanced wound care and surgical biologics, including orthopedics and spine. Organogenesis' versatile portfolio is designed to treat a variety of patients with repair and regenerative needs. For more information, visit http://www.organogenesis.com.

CONTACT:Angelyn Lowe (781) 830-2353 alowe@organo.com

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/organogenesis-shares-successes-and-best-practices-for-cell-based-product-manufacturing-at-the-6th-stem-cell-product-development-and-commercialization-conference-300436140.html

SOURCE Organogenesis Inc.

http://organogenesis.com/

See the original post:
Organogenesis Shares Successes and Best Practices for Cell-Based Product Manufacturing at the 6th Stem Cell ... - PR Newswire (press release)

Stem Cell – Dr. Humeira Badsha Medical Center

What is so neat about PRP is how it works. Years ago, scientists unraveled some of the action mechanisms in the lab, and what was found is that the PDGF (platelet derived growth factor) activates pericytes. Later it was discovered that these pericytes were unactivated mesenchymal stem cells. Once these cells become activated, they act as general directors of healing and regeneration and release a myriad of cytokines and other factors that have trophic, anti-inflammatory, mitogenic, anti-scarring, and anti-infection attributes. In the case of the dental implants, osteoblasts were activated by the pericytes to realize improved bony in-growth of the implants. This action has been confirmed by laboratory investigations. In the case of osteoarthritis of the knee, the cartilage that is lost as an after-effect of the normal ageing process is not regrown but the environment is altered so that there is less pain, and less further loss of the knee cartilages. In many respects it alters the progression or worsening of the disease, and it is hoped by many that surgeries, such as knee replacements, are delayed or avoided all together. Today, PRP is used in many areas of medicine in the US and Europe for treating musculoskeletal problems, plastics, aesthetics, dermatology, general surgery, ENT, rheumatology, primary care, pain management, and physical medicine and rehabilitation. Negative side effects and complications are uncommon as with many current treatments and medications in use today.

Go here to read the rest:
Stem Cell - Dr. Humeira Badsha Medical Center

Stem Cell Transplant Making Rapid Progress – Financial Tribune

Around 6,000 hematopoietic stem cell transplantations are carried out annually in Iran using the patients own cells, and a far higher number are performed using cells from donors who are often close relatives of the patient, according to the Hematology-Oncology Research Center and Stem Cell Transplantation (HORCSCT) affiliated to the Tehran University of Medical Sciences. Ardeshir Qavamzadeh, head of the center, said the number of stem cell transplants is on par with developed countries. The success rate in the treatment of diseases requiring transplant is 67% at HORCSCT, ISNA quoted him as saying. Referring to the fast and progressive development of stem cell discipline in Iran, he said since 1983, when the adult leukemia specialty was initiated in the country, nearly 300 specialists have been trained in the field and there is at least one specialist in each province now. Today, one cannot find a treatment method of stem cell transplant in the worlds advanced research centers that is not available or practiced in Iran. We have reached a level where we can compete with the developed nations. HSCT Hubs There are 10 hubs for hematopoietic stem cell transplant (HSCT) in the country. Each includes medical universities from the provinces with one as the focal point. Medical universities of Zanjan, Qazvin, Alborz and Qom comprise one of the hubs with Zanjan as the center, said Mehdi Eskandari, education deputy at Zanjan University of Medical Sciences. HSCT is the transplantation of multi-potent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood. It may be autologous (when the patients own stem cells are used) or allogeneic (stem cells from a donor). It is a medical procedure in the field of hematology, most often performed for patients with certain cancers of the blood or bone marrow, such as multiple myeloma or leukemia. Since HSCT is a relatively risky procedure with many possible complications, it is reserved for patients with life-threatening diseases. However, as the survival rate following the procedure has increased, its use has expanded beyond cancer, including in autoimmune diseases, blood diseases like thalassaemia major, metabolic disorders, alcoholic liver, and even rheumatism.

Visit link:
Stem Cell Transplant Making Rapid Progress - Financial Tribune

GLOBAL STEM CELL MARKET FORECAST 2017-2025 – PR Newswire (press release)

LONDON, April 4, 2017 /PRNewswire/ -- KEY FINDINGS

The global market for stem cell is anticipated to expand at a CAGR of 25.76% during the forecast period of 2017-2025. The rise in neurodegenerative diseases is the primary factor for the growth of the stem cell market.

Download the full report: https://www.reportbuyer.com/product/4807905/

MARKET INSIGHTS The global stem cell market is segmented on the basis of product, technology, application, and geography. The stem cell market of the product is segmented into adult stem cell, embryonic stem cell, induced pluripotent stem cell market and rat neutral stem cell market. The stem cell market of technology is segmented into stem cell acquisition market, stem cell production market, stem cell cryopreservation market and stem cells expansion and sub-culture market. the application of the stem cell market is segmented into stem cells regenerative medicine market and drug discovery and development market. The stem cell market geography is segmented into North America, Europe, Asia-Pacific and rest of the world. the upsurge in neurodegenerative ailments, growing investments in R&D, government subsidy and sustenance, advancements in the applications of stem cell, significant growth in medical tourism, swelling stem cell banking are the major drivers for the stem cell market.

REGIONAL INSIGHTS The Stem Cell market in North America is expected to hold the largest share by 2025. Increased investments in research and development activities for the stem cell market and the presence of popular pharmaceutical market have contributed to the growth of the US market in the North American region. Asia- Pacific is anticipated to grow at CAGR of 26.23%, the fastest growing region among others. The growth of Asia-Pacific region is primarily driven due to growing incidences of chronic lifestyle diseases and government supports and their initiatives. Europe has generated revenue of $13556 million in 2016 which is set to increase by 2025. The Europe stem cell analysis market is primarily driven by the rising prevalence of chronic disorders such as cancer and cardiovascular disorders.

COMPETITIVE INSIGHTS The market players in the stem cell market are Cytori therapeutics Inc., Fibrocell science, Cellartis AB (acquired by Takara holdings Inc.), Biotime Inc., GE Healthcare, Thermo fisher scientific Pvt Ltd, Stem cell technologies, Cellular dynamics international (holding company Fujifilm), Vericel corporation (Aastrom bioscience), Brainstorm cell therapeutics, California stem cell Inc. (Holding company Caladrius biosciences, Inc. ), Beckton Dickinson and company, Stryker corporation, Celgene corporation. Some major companies involved in stem cell are; GE Healthcare, Stem cell technology, Thermo Fisher, Becton, Corning and many others.

Download the full report: https://www.reportbuyer.com/product/4807905/

About Reportbuyer Reportbuyer is a leading industry intelligence solution that provides all market research reports from top publishers http://www.reportbuyer.com

For more information: Sarah Smith Research Advisor at Reportbuyer.com Email: query@reportbuyer.com Tel: +44 208 816 85 48 Website: http://www.reportbuyer.com

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/global-stem-cell-market-forecast-2017-2025-300434766.html

See the original post:
GLOBAL STEM CELL MARKET FORECAST 2017-2025 - PR Newswire (press release)