Author Archives: admin


Dr. Oz takes on those bogus for-profit stem cell clinics–and cuts them to shreds – Chicago Tribune

The undercover investigation youre about to see today is going to make you really angry, because were exposing the worst kind of scam one that takes advantage of those most vulnerable, stealing not just their money, but their hope, their dignity.

Thats how Dr. Mehmet Oz introduces a series of segments scheduled to run on his daytime television program Tuesday. His quarry: those for-profit clinics offering supposed stem cell treatments for an implausible host of diseases unproven, unlikelyand very expensive cures.

We reported on this noisome corner of medical pseudo-sciencelast year, outlining theabsence of scientific support for their treatmentand their intensive marketing pitches to hopeful patients. We reported that in a survey of stem cell tourism, stem cell scientist Paul Knoepfler of UC Davis and bioethicist Leigh Turner of the University of Minnesotaidentified 570 clinicsaround the U.S. offering stem cell interventions. Scores were concentrated in such hotspots as Beverly Hills, Phoenixand New York. Many were offering unproven therapies featuring the termstem cell as a marketing veneer.

Dr. Ozs investigation of these clinics is a worthy addition to public awareness. Its must-viewing for patients and families desperate enough to contemplate turning to such clinics for succor, and for state and federal regulators and law enforcement agencies that should be riding herd on thembut have almost universally given them a pass. Oz calls on the Food and Drug Administration and other regulators to step in and stop this now, thats how bad its become.

Weve been critical of Dr. Oz in the past for purveying untested medical nostrums, as have many other critics. But his investigation of the stem cell clinics is a model of public service. He musters his entire arsenal of crowd-pleasing techniques his forceful, impassioneddelivery, his cultivated aura of medical authority, and his credibility with his audience to the best purpose.

The investigation is the product of the shows so-calledmedical unit and its chief of staff, Michael Crupain, a medical doctor and public health specialist who was hired from Consumer Reports about a year and a half ago. At one point during his research for the program Crupain dialed in to a webinar in which prospective patients were recruited by a clinic. It was like watching someone sell a time-share, he told me an observation that made it into the show.

The three segments, which take up about half of Tuesdays scheduled program, include undercover visits to clinics in New York by Elizabeth Leamy, a reporter on the program, along with a former patient. At one point we see a clinic employee claim that hestreated 44 patients for multiple sclerosis, and every single patient had vast improvement. The investigators are pitched $15,000 treatments and encouraged to spread it out on their credit cards. (No insurer will cover these untested and unproven therapies.) One promoter seen on tape acknowledges to the undercover team, We dont know the exact mechanism of everything we do, but counselsthem, We just know that it works, we use it. If it works and its safe [and] its reasonable in cost, you know, why not?

Why not, indeed? Because the targets of these pitches are at the end of their rope, vulnerable to scamsters,and often have to make immense sacrifices to pay the fees. Doctors and others can prey on their vulnerability, Oz observes.

Oz displays a list of the conditions the clinics claim to treat joint pain, autism, Parkinsons, Alzheimers, stroke, emphysema, and blindness, among many others. He explains that its impossible for a one-size-fits-all treatment to cure them all: It defies basic medical know-how, which means they are not telling us the truth. He lucidly describes their supposed technique, which involves extracting stem cells from the patients by liposuction, separating the stem cells by centrifuge and treating them with some sort of enzyme, then reinjecting them in the patients body and waiting for the concoction to do its magic.

He offers a withering assessment of doctors who claim to be engaged in clinical trials of stem cell treatments butask you to give money upfront and mortgage your house and borrow fromyour friends credit cards thats not how medicine should be practiced.

Oz is assisted by talk show host and multiple sclerosis patient Montel Williams and Sally Temple, a stem cell scientistwho is president of theInternational Society for Stem Cell Research. Temple explains that real research into stem cell treatments takes years and aims to develop treatments that can receive FDA approval. She quite properly underscoresthe dangerto legitimate research posed by bogus clinics offering medically dubious treatments.

Theyre saying they can cure a whole host of diseases, and we know they cant, she says. We are really concerned that its going to undermine the genuinely good work thats being done.

Crupain considers the stem cell investigation to be Dr. Oz at his best. Hes right.

Keep up to date with Michael Hiltzik. Follow@hiltzikmon Twitter, see hisFacebook page, or emailmichael.hiltzik@latimes.com.

Return to Michael Hiltzik's blog.

Read more here:
Dr. Oz takes on those bogus for-profit stem cell clinics--and cuts them to shreds - Chicago Tribune

Novel Nanofiber Matrix Improves Stem Cell Production – R & D Magazine

A new nanofiber-on-microfiber matrix could lead to more and better quality stem cells for disease treatment and regenerative therapies.

The matrix, produced by researchers from Kyoto University in Japan, is made of gelatin nanofibers on a synthetic polymer microfiber mesh and may provide a better way to culture large quantities of healthy human stem cells.

Researchers have been developing 3D culturing systems to allow human pluripotent stem cells (hPSC) to grow and interact with their surroundings in all three dimensions, as they would inside the human body, rather than in two dimensions like they do in a petri dish.

Pluripotent stems cells can differentiate into any type of adult cell and have potential for tissue regeneration therapies, treating diseases and for research.

The majority of 3D culturing systems have limitations and result in low quantities and quality of cultured cells.

The research team was able to fabricate gelatin nanofibers onto a microfiber sheet made of synthetic, biodegradable polyglycolic acid. They then seeded human embryonic stem cells onto the matrix in a cell culture medium.

The matrix allowed for an easy exchange of growth factors and supplements from the culture medium to the cells.

The stem cells also adhered well to the matrix, resulting in robust cell growth. After four days of culture more than 95 percent of the cells grew and formed colonies.

The research team also scaled up the process by designing a gas-permeable cell culture bag in which multiple cell-loaded, folded fiber-to-fiber matrices were placed.

The system was designed so that minimal changes were needed to the internal environment, which reduced the amount of stress placed on the cells. This also yielded a large number of cells compared to conventional 2D and 3D culture methods.

Our method offers an efficient way to expand hPSCs of high quality within a shorter term, the research team wrote in a statement. Additionally, as nanofiber matrices are advantageous for culturing other adherent cells, including hPSC-derived differentiated cells, FF matrix might be applicable to the large-scale production of differentiated functional cells for various applications.

According to the study, clinical-grade scaffolds and high-quality hPSCs are required for cell expansion as well as easy handling and manipulation of the products.

Current hPSC culture methods do not fulfill these requirements because of a lack of proper extracellular matrices (ECM) and cell culture wares.

The layered nano-on-micro fibrous cellular matrix mimicking ECM enables easy handling and manipulation of cultured cells.

The results show that the matrix supports effective hPSC culture with maintenance of their pluripotency and normal chromosomes over two months, as well as effective scaled-up expansion with fold increases of 54.115.6 and 40.48.4 in cell number per week for H1 human embryonic stem cells and 253G1 human induced pluripotent stem cells, respectively.

The study was published in Biomaterials.

Continued here:
Novel Nanofiber Matrix Improves Stem Cell Production - R & D Magazine

Type 1 diabetes: Reprogramming liver cells may lead to new treatments – Medical News Today

Researchers have discovered a way to reprogram mouse liver cells into precursor pancreatic cells by changing the expression of a single gene. They suggest that the finding is an important step toward showing that reprogramming liver cells might offer a way forward for the treatment of type 1 diabetes in humans.

The team - led by researchers from the Max Delbrck Center for Molecular Medicine in Berlin, Germany - reports the study in the journal Nature Communications.

Diabetes is a chronic disease that develops either when the body cannot make enough insulin, or when it cannot effectively use the insulin that it does make. Insulin is a hormone that regulates blood sugar, or glucose, and it helps to convert glucose from food into energy for cells.

Uncontrolled diabetes leads to high blood sugar, or hyperglycemia, which over time causes serious damage to many parts of the body, including the heart, blood vessels, nerves, eyes, and kidneys.

In the United States, an estimated 29.1 million people have diabetes, including 8.1 million who are undiagnosed.

The most common type of diabetes is type 2, in which the body cannot use insulin effectively. Type 1 diabetes, in which the body does not make enough insulin, accounts for around 5 percent of diabetes cases in adults.

The new study is likely to interest researchers developing treatments for type 1 diabetes. In people with type 1 diabetes, the immune system attacks the insulin-producing beta cells of the pancreas.

Researchers in regenerative medicine are exploring ways to generate new populations of pancreatic beta cells as a possible avenue for the treatment of type 1 diabetes.

Fast facts about type 1 diabetes

Learn more about type 1 diabetes

The new study concerns a method called cell reprogramming, in which it is possible to convert one type of cell into another type of cell, by tweaking genes.

An obvious source of cells for reprogramming into insulin-producing beta cells might be other types of cell in the pancreas.

In their study paper, the researchers mention other research that shows such pancreatic cells display a high degree of the necessary "cellular plasticity."

However, the researchers chose to focus on liver cells because, from a clinical perspective, they offer important advantages over pancreatic cells; for example, they are more accessible and abundant.

They also cite studies that have partially corrected hyperglycemia in diabetic mice by reprogramming liver cells into pancreatic beta cells.

The new study shows how just by changing the expression of a single gene called TGIF2, the team was able to coax mouse liver cells to take on a less specialized state and then stimulate them to develop into cells with pancreatic features.

When the researchers transplanted the modified cells into diabetic mice, the animals' blood sugar levels improved, suggesting the cells were behaving in a way similar to pancreatic beta cells.

The researchers identified TGIF2 (Three-Amino-acid-Loop-Extension homeobox TG-interacting factor 2) by running gene expression profiling tests on immature liver and pancreas cells isolated from mouse embryos as the cells differentiated toward their particular cell fates.

They found that at a particular differentiation branchpoint, the expression of TGIF2 changes in opposite directions as the cells commit to either liver or pancreatic fates.

The authors note that their study shows that "TGIF2 is a developmental regulator of pancreas versus liver fate decision," and when expressed in adult mouse liver cells, it suppresses the transcription program for liver cells and induces a subset of pancreatic genes.

There is still a lot of work to do to investigate whether the results with mice translate to humans. The team has already started working on human liver cells.

"There are differences between mice and humans, which we still have to overcome. But we are well on the path to developing a 'proof of concept' for future therapies."

Senior author Dr. Francesca M. Spagnoli, Max Delbrck Center

Learn how type 1 diabetes kills some insulin-producing cells but not others.

Originally posted here:
Type 1 diabetes: Reprogramming liver cells may lead to new treatments - Medical News Today

Area medical clinic offers regenerative cell treatment – RiverBender.com

WOOD RIVER - There is an alternative to using prescription drugs or resorting to joint surgery for pain relief. Dr. Michael Harbison, DC, MCS-P, CCCPC, of iCAN Clinic in Wood River, Illinois, is holding an informational seminar on the use of regenerative cellular medicine for pain relief at 7 p.m. on Tuesday, February 21st, at his clinic located at 203 E. Ferguson Avenue in Wood River.

Harbison, who recently changed the name of his clinic from AlignLife of Wood River to iCAN Clinic, researched regenerative cellular medicine and, based on significant advancements in stem cell research, realized the importance of stem cell injections for treating people suffering from inflammation, reduced mobility, sports injuries, tissue and ligament damage or chronic pain.

Our mission at iCAN Clinic is to help our patients unlock the God given potential of their body. said Harbison. Stem cells are the bodys master cells and can develop into all other cells, so not only is pain relieved, it is possible new cartilage, ligaments and bone can be regenerated. Stem cell therapy gives our patients a choice other than surgery and/or a regimen of possibly addictive narcotics. Harbison went on to say Thats an easy choice to make given that this therapy has been known provide full relief to patients after only one treatment. Generally, the repair process begins immediately and the repair process can continue for up to eight additional months from the date of the initial procedure.

But it wasnt until Dr. Harbison found an ethical source of stem cells that he decided to offer the therapy. Harbison said that the Stem Cell Institute of America provides stem cells that were taken from placentas that were donated by mothers after the birth of their child. There was no destruction of life in the process of obtaining these stem cells.

Harbison is excited about offering the new stem cell therapy because hes seen its results.

Seating for the Tuesday, February 21st, seminar is limited so reservations are required. To reserve a seat for the 7:00 p.m. program, contact iCAN Clinic at 618-254-2273.

Stem Cell Therapy Seminar Tuesday February 21, 7:00 PM

iCAN Clinic

203 E Ferguson Ave.

Wood River, IL 62095

618-254-2273

http://www.iCANClinic.org

Send your news tips to news@riverbender.com or on twitter @RiverBenderNews

Purchase photos from this article Print Version Submit a News Tip

Share this story with your friends and family.

Here is the original post:
Area medical clinic offers regenerative cell treatment - RiverBender.com

Family Plans To Seek Compensation For Lacks’ Cells – CBS Local


CBS Local
Family Plans To Seek Compensation For Lacks' Cells
CBS Local
BALTIMORE (WJZ) The family of Henrietta Lacks is suing Johns Hopkins Medicine for using Lacks' blood cells without her permission 66 years ago. For years, Henrietta's oldest son along with his son say they have been turned down by attorneys who ...
Henrietta Lacks family members plan to sue Johns Hopkins MedicineFox Baltimore
Henrietta Lacks's family wants compensation for her cellsWashington Post

all 8 news articles »

Continued here:
Family Plans To Seek Compensation For Lacks' Cells - CBS Local

Scientists show ‘matchmaker’ role for protein behind SMA – Medical Xpress

February 14, 2017 Credit: axelle b/public domain

A puzzling question has lurked behind SMA (spinal muscular atrophy), the leading genetic cause of death in infants.

The disorder leads to reduced levels of the SMN protein, which is thought to be involved in processing RNA, something that occurs in every cell in the body. So why does interfering with a process that happens everywhere affect motor neurons first?

Scientists at Emory University School of Medicine have been building a case for an answer. It's because motor neurons have long axons. And RNA must be transported to the end of the axons for motor neurons to survive and keep us moving, eating and breathing.

Now the Emory researchers have a detailed picture for what they think the SMN protein is doing, and how its deficiency causes problems in SMA patients' cells. The findings are published in Cell Reports.

"Our model explains the specificitywhy motor neurons are so vulnerable to reductions in SMN," says Wilfried Rossoll, PhD, assistant professor of cell biology at Emory University School of Medicine. "What's new is that we have a mechanism."

Rossoll and his colleagues showed that the SMN protein is acting like a "matchmaker" for messenger RNA that needs partners to transport it into the cell axon.

RNA carries messages from DNA, huddled in the nucleus, to the rest of the cell so that proteins can be produced locally. But RNA can't do that on its own, Rossoll says.

In the paper, the scientists call SMN a "molecular chaperone." That means SMN helps RNA hook up with processing and transport proteins, but doesn't stay attached once the connections are made.

"It loads the truck, but it's not on the truck," Rossoll says.

Using fluorescence inside living cells as well as biochemistry, they showed that SMN promotes an interaction between the 'zipcode' region of a test RNA and a transport protein. Some of the experiments included cells from SMA patients, obtained through a collaboration with Han Phan, MD, a pediatric neurologist at Children's Healthcare of Atlanta, and the Laboratory for Translational Cell Biology at Emory.

The first author of the paper is Paul Donlin-Asp, PhD, a former Biochemistry, Cell and Developmental Biology graduate student, now at the Max Planck Institute in Frankfurt,. Co-senior author is Gary Bassell, PhD, chair of the Department of Cell biology at Emory University School of Medicine.

Scientists have known for 20 years that SMN is necessary in every cell of the body, since disrupting the gene in a mouse causes early embryonic death, before muscle or nerve cells form.

However, humans have two SMN genes, one more than mice, so a mutation in the first gene usually leads to reduced levels of SMN protein but not its elimination.

An antisense-based treatment called nusinersen, which removes a roadblock in the expression of the second SMN gene, was recently approved by the FDA.

Rossoll says his team's research helps to clarify SMN's role in motor neurons and other cells, and insights into its function could be important for optimizing delivery of the newly available treatment or development of additional treatments.

Explore further: Jammed molecular motors may play a role in the development of ALS

More information: Cell Reports, DOI: 10.1016/j.celrep.2017.01.059 , http://www.cell.com/cell-reports/fulltext/S2211-1247(17)30116-X

Journal reference: Cell Reports

Provided by: Emory University

Slowdowns in the transport and delivery of nutrients, proteins and signaling molecules within nerve cells may contribute to the development of the neurodegenerative disorder ALS, according to researchers at the University ...

New research from the Advanced Gene and Cell Therapy Lab at Royal Holloway, University of London has used pioneering stem cell techniques to better understand why certain cells are more at risk of degenerating in spinal muscular ...

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

For the first time, scientists found that in spinal muscular atrophy (SMA), the affected nerve cells that control muscle movement, or motor neurons, have defects in their mitochondria, which generate energy used by the cell. ...

Harvard Stem Cell Institute (HSCI) researchers studying spinal muscular atrophy (SMA) have found what they term "surprising similarities" between this childhood disorder that attacks motor neurons and amyotrophic lateral ...

A new study by a team of scientists from the University of Malta and the Institut de Gntique Molculaire de Montpellier (CNRS/Universit de Montpellier) could help develop treatment strategies for a crippling disorder ...

A puzzling question has lurked behind SMA (spinal muscular atrophy), the leading genetic cause of death in infants.

The acid test for a vaccine is: "Does it protect people from infection?" Emory Vaccine Center researchers have analyzed this issue for a leading malaria vaccine called RTS,S, and their results have identified candidate signatures, ...

Patients with inflammatory bowel disease are more likely to see dramatic shifts in the make-up of the community of microbes in their gut than healthy people, according to the results of a study published online Feb. 13 in ...

Walter and Eliza Hall Institute researchers have used advanced cellular, bioinformatics and imaging technology to reveal a long-lived type of stem cell in the breast that is responsible for the growth of the mammary glands ...

Research led by scientists at UC San Francisco and Case Western Reserve University School of Medicine has used brain "organoids"tiny 3-D models of human organs that scientists grow in a dish to study diseaseto identify ...

People with hemophilia require regular infusions of clotting factor to prevent them from experiencing uncontrolled bleeding. But a significant fraction develop antibodies against the clotting factor, essentially experiencing ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Here is the original post:
Scientists show 'matchmaker' role for protein behind SMA - Medical Xpress

Dutch Biopharma launches Phase III trial of Leukemia donor cell therapy – BioPharma-Reporter.com

Amsterdam-based Kiadis Biopharma has received Health Canada approval to initiate a global Phase III trial for an allogenic stem cell therapy for acute leukemia.

Kiadis cell therapy, ATIR101 (Allodepleted T-cell ImmunotheRapeutics) is a modified infusion of a family members donated lymphocytes Kiadis is developing to treat leukemia.

By treating the donor cells, the firm looks to reduce the risk of the patient developing severe Graft-versus-Host-Disease, a life-threatening immune response.

Using the contract research organisation (CRO) CTI Clinical Trial and Consulting Services Inc., the trial will enrol 195 patients across 40-50 clinical sites, including the US and Canada.

Kiadis has since submitted the trial protocol to the US FDA and several European regulators, with anticipated launch of ATIR101 in 2018.

The contract manufacturing organisation PCT LLC has been partnered with Kiadis for producing ATIR101 for the US and Canada since June last year, using PCTs Allendale, New Jersey facility.

For the European supply of the therapy, Kiadis will continue to work with the German Red Cross Blood Donor Service, Baden-Wrttemberg-Hessen e.V.,which provided GMP manufacturing services for the Phase II trial of ATIR101.

Manfred Rdiger, CEO of Kiadis Pharma said We have significant momentum now and the preparation of our MAA submission to EMA is progressing well.

Kiadis declined to comment further.

Read the rest here:
Dutch Biopharma launches Phase III trial of Leukemia donor cell therapy - BioPharma-Reporter.com

Clinical cell therapy guidelines for neurorestoration (China version 2016) – Dove Medical Press

Hongyun Huang,1 Lin Chen,2 Qingyan Zou,3 Fabin Han,4 Tiansheng Sun,5 Gengsheng Mao,1 Xijing He6

1Institute of Neurorestoratology, General Hospital of Armed Police Forces, 2Department of Neurosurgery, Yuquan Hospital, Tsinghua University, Beijing, 3Guangdong 999 Brain Hospital, Guangzhou, 4Centre for Stem Cells and Regenerative Medicine, Affiliated Hospital of Taishan Medical University, Liaocheng, Shandong, 5Department of Orthopedics, Beijing Army General Hospital, Beijing, 6Second Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, Peoples Republic of China

On behalf of the Chinese Association of Neurorestoratology and Chinese Branch of the International Association of Neurorestoratology

Abstract: Cell therapy has been shown to be a key clinical therapeutic option for central nervous system disease or damage, and >30 types of cells have been identified through preclinical studies as having the capacity for neurorestoration. To standardize the clinical procedures of cell therapy as one of the strategies for treating neurological disorders, the first set of guidelines governing the clinical application of neurorestoration was completed in 2011 by the Chinese Branch of the International Association of Neurorestoratology. Given the rapidly advancing state of the field, the Neurorestoratology Professional Committee of Chinese Medical Doctor Association (Chinese Association of Neurorestoratology) and the Chinese Branch of the International Association of Neurorestoratology have approved the current version known as the Clinical Cell Therapy Guidelines for Neurorestoration (China Version 2016). We hope this guideline will reflect the most recent results demonstrated in preclinical research, transnational studies, and evidence-based clinical studies, as well as guide clinical practice in applying cell therapy for neurorestoration.

Keywords: cell therapy, neurorestoration, China, clinical application

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Read the original post:
Clinical cell therapy guidelines for neurorestoration (China version 2016) - Dove Medical Press

INDYCAR legend Foyt plans to have stem cell therapy – IndyCar.com – INDYCAR

(This story originally appeared as exclusive content on the Verizon INDYCAR Mobile app. To download the app for smartphones, click here.)

AVONDALE, Ariz. At 82, A.J. Foyt's body has literally been beaten beyond his years.

The first four-time winner of the Indianapolis 500 has experienced everything from a broken back at a 1964 NASCAR race in Riverside, California, to two badly broken feet and legs in a horrible crash at Road America in a 1991 Indy car race.

Foyt retired from racing on pole qualifying day at the 1993 Indianapolis 500, but retirement hasn't been much easier. He was stung more than 200 times from an attack of killer bees in 2005, trapped under an overturned bulldozer on his Texas ranch in 2007 and had knee replacements and a hip replacement. In November 2014, Foyt underwent triple-bypass heart surgery and remained in the hospital for weeks afterward because of complications.

Foyt has survived it all but not without a struggle. He now is looking for a fountain of youth and told the Verizon INDYCAR Mobile App that he will undergo stem cell therapy in Cancun, Mexico.

They have to cut away some of the tissue from my stomach and it takes 8-10 weeks for it to grow back to produce the stem cells, Foyt said in an exclusive interview. I'll probably have it done soon so that we can begin the treatment within the next two to three months.

Adult stem cells are able to grow and become a cell for a specific tissue or organ, according to the National Institutes of Health. They are different from embryonic stem cells, which come from fertilized eggs or aborted fetuses. Embryonic stem cells can turn into cells for nearly any tissue in the body.

The procedure is not performed in the United States, so Foyt has found a medical facility in Mexico that can do the treatment that regenerates newer and younger cells. He said he will have stem cells injected into each ankle and shoulder, as well as into his blood.

It used to be you would have to go to Germany to get this procedure, but now it's available in Cancun and that is probably where I'll have it done, Foyt said Saturday during the Verizon IndyCar Series open test at Phoenix Raceway. I'm not in good health like I used to be and, if my son Larry hadn't taken over (running) the team four years ago, I would have had to shut it down. It's something he likes to do and I'm backing him 100 percent.

Foyt said he feels good to be his age after all the crap that I've been through.

I feel better this year than I did last year, Foyt continued. If I get to feeling bad, I probably won't show up at the race. But I'm going to do that stem cell deal. My wife, Lucy, has been pretty sick lately. Dan Pastorini (the former NFL quarterback) did it and it helped him. Peyton Manning (the former Indianapolis Colts and Denver Broncos quarterback) did it for his neck and it really helped him. Tony Dorsett (the former Dallas Cowboys running back) did it, so I think we should try it.

More here:
INDYCAR legend Foyt plans to have stem cell therapy - IndyCar.com - INDYCAR

Paralyzed Easton Teen Seeking Stem Cell Treatment In Bid To Move Legs Again – Westport Daily Voice

EASTON, Conn. --Hope is a big word in the Standen household in Easton these days.

Through a procedure at the Cell Medicine Institute in Panama, there is a 60 percent to 70 percent chance that Zach Standen a 17-year-old who became paralyzed from the waist down after a car accident last summer may regain some feeling and movement in his legs.

In the procedure, The stem cells are taken from your own bone marrow and human umbilical cords and are re-injected into your body," Zachs mother, Christine Standen, said in a phone interview.

The ultimate goal is for the stem cells from Zach's body to regenerate the nerves and neural connections for him to regain some feeling and function in his legs.

It's extremely important that Zach gets the treatment as soon as possible, his mother said. "He should get the stem cell therapy within a year of the accident since this is when the most healing occurs and before scar tissue is laid down," Christine Standen said. Once this happens, she said, muscle mass is lost and muscles begin to atrophy.

Related story: Easton teen is left paralyzed after car crash.

Zach's family has set up a GoFundMe page to raise the nearly $40,000 needed to pay for the treatment. So far, the page has been shared 687 times. With 313 donations, it has raised $18,194 out of a $100,000 goal.

The family is hoping to raise enough money to get Zach two stem cell treatments, which would greatly increase his chances for recovery.

In addition, a fundraiser has been established to benefit the cause for Zach. Through Feb. 28, a total of 15 percent of the cost of the Arbonne products from this page will be donated to Zach Standens Stem Cell Therapy Fund.

Zach and his mother, as well as Zachs girlfriend, Constance Rude, plan on taking the month-long trip to Panama.

We are hoping that Zach [who attends Joel Barlow High School in Redding] will get his homework assignments ahead of time," she said, adding that he will most likely have to take summer classes or make up some timein the fall.

In a post on Zachs GoFundMe Page, his mother wrote, As of right now, there has been very little progress physically and I can't see him being like this for the rest of his life. No walking, no bowel or bladder control, no sexual function, no feeling. This is no way to live if we can help it, especially for a 17 year old."

She said Zach's spirits are waning. "He is finding it difficult to study and is trying to maintain hope."

Aside from his medical issues, Zach has the life of a typical teenager he goes to school and hangs out with his friends.

Related story: A family seeks support for treatment for paralyzed son.

Zach goes twice a week to physical therapy at Gaylord Hospital in Wallingford. "He is working really hard, every day," said his mother.

Another fundraiser for Zachwill be a concert by the Grayson Hugh & The Moon Hawks & The Bobby Paltauf Band on March 11 at 7 p.m. at the Fairfield Theatre Company. A total of 25 percent of ticket sales will go toward Zach's Stem Cell Therapy Fund.

Christine Standen said she feels extreme gratitude toward for the support the family has received through this tough time. "We are so grateful to the entire community," she said.

For previous Daily Voice articles on Zach Standen, click here and here .

The rest is here:
Paralyzed Easton Teen Seeking Stem Cell Treatment In Bid To Move Legs Again - Westport Daily Voice