Author Archives: admin


NSI Stem Cell | What Is Stem Cell Therapy?

Stem Cell Therapy is about using your bodys own stem cells to regenerate new healthy cells. So if you or someone you love is suffering, please read on to find out who can be helped and how.

Our Adipose(Fat)-Derived Stem Cell Therapy is an innovative treatment indicated for a wide variety of conditions from physical injuries to COPD and even Lupus. Yet, many people are just learning about it now for the first time.

These are not embryonic stem cells or cells from fetuses. These regenerative cells come straight from your own body just a few hours before their injected back into your body and put to work to heal disease or dysfunction.

We use Adipose(fat)-derived stem cells because they are easy to access, and they are multipotent which means that they have the ability to differentiate into muscle, tendons, ligaments, bone and cartilage. Once introduced into the damaged or diseased area, the stem cells can then work their magic to heal your damaged tissue and regenerate new healthy tissue.

Stem Cell Therapy offers significant potential for development of tissues that can replace diseased and damaged areas in the body.

See more here:
NSI Stem Cell | What Is Stem Cell Therapy?

Blood-Forming Stem Cell Transplants – National Cancer Institute

What are bone marrow and hematopoietic stem cells?

Bone marrow is the soft, sponge-like material found inside bones. It contains immature cells known as hematopoietic or blood-forming stem cells. (Hematopoietic stem cells are different from embryonic stem cells. Embryonic stem cells can develop into every type of cell in the body.) Hematopoietic stem cells divide to form more blood-forming stem cells, or they mature into one of three types of blood cells: white blood cells, which fight infection; red blood cells, which carry oxygen; and platelets, which help the blood to clot. Most hematopoietic stem cells are found in the bone marrow, but some cells, called peripheral blood stem cells (PBSCs), are found in the bloodstream. Blood in the umbilical cord also contains hematopoietic stem cells. Cells from any of these sources can be used in transplants.

What are bone marrow transplantation and peripheral blood stem cell transplantation?

Bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT) are procedures that restore stem cells that have been destroyed by high doses of chemotherapy and/or radiation therapy. There are three types of transplants:

Why are BMT and PBSCT used in cancer treatment?

One reason BMT and PBSCT are used in cancer treatment is to make it possible for patients to receive very high doses of chemotherapy and/or radiation therapy. To understand more about why BMT and PBSCT are used, it is helpful to understand how chemotherapy and radiation therapy work.

Chemotherapy and radiation therapy generally affect cells that divide rapidly. They are used to treat cancer because cancer cells divide more often than most healthy cells. However, because bone marrow cells also divide frequently, high-dose treatments can severely damage or destroy the patients bone marrow. Without healthy bone marrow, the patient is no longer able to make the blood cells needed to carry oxygen, fight infection, and prevent bleeding. BMT and PBSCT replace stem cells destroyed by treatment. The healthy, transplanted stem cells can restore the bone marrows ability to produce the blood cells the patient needs.

In some types of leukemia, the graft-versus-tumor (GVT) effect that occurs after allogeneic BMT and PBSCT is crucial to the effectiveness of the treatment. GVT occurs when white blood cells from the donor (the graft) identify the cancer cells that remain in the patients body after the chemotherapy and/or radiation therapy (the tumor) as foreign and attack them.

What types of cancer are treated with BMT and PBSCT?

BMT and PBSCT are most commonly used in the treatment of leukemia and lymphoma. They are most effective when the leukemia or lymphoma is in remission (the signs and symptoms of cancer have disappeared). BMT and PBSCT are also used to treat other cancers such as neuroblastoma (cancer that arises in immature nerve cells and affects mostly infants and children) and multiple myeloma. Researchers are evaluating BMT and PBSCT in clinical trials (research studies) for the treatment of various types of cancer.

How are the donors stem cells matched to the patients stem cells in allogeneic or syngeneic transplantation?

To minimize potential side effects, doctors most often use transplanted stem cells that match the patients own stem cells as closely as possible. People have different sets of proteins, called human leukocyte-associated (HLA) antigens, on the surface of their cells. The set of proteins, called the HLA type, is identified by a special blood test.

In most cases, the success of allogeneic transplantation depends in part on how well the HLA antigens of the donors stem cells match those of the recipients stem cells. The higher the number of matching HLA antigens, the greater the chance that the patients body will accept the donors stem cells. In general, patients are less likely to develop a complication known as graft-versus-host disease (GVHD) if the stem cells of the donor and patient are closely matched.

Close relatives, especially brothers and sisters, are more likely than unrelated people to be HLA-matched. However, only 25 to 35 percent of patients have an HLA-matched sibling. The chances of obtaining HLA-matched stem cells from an unrelated donor are slightly better, approximately 50 percent. Among unrelated donors, HLA-matching is greatly improved when the donor and recipient have the same ethnic and racial background. Although the number of donors is increasing overall, individuals from certain ethnic and racial groups still have a lower chance of finding a matching donor. Large volunteer donor registries can assist in finding an appropriate unrelated donor.

Because identical twins have the same genes, they have the same set of HLA antigens. As a result, the patients body will accept a transplant from an identical twin. However, identical twins represent a small number of all births, so syngeneic transplantation is rare.

How is bone marrow obtained for transplantation?

The stem cells used in BMT come from the liquid center of the bone, called the marrow. In general, the procedure for obtaining bone marrow, which is called harvesting, is similar for all three types of BMTs (autologous, syngeneic, and allogeneic). The donor is given either general anesthesia, which puts the person to sleep during the procedure, or regional anesthesia, which causes loss of feeling below the waist. Needles are inserted through the skin over the pelvic (hip) bone or, in rare cases, the sternum (breastbone), and into the bone marrow to draw the marrow out of the bone. Harvesting the marrow takes about an hour.

The harvested bone marrow is then processed to remove blood and bone fragments. Harvested bone marrow can be combined with a preservative and frozen to keep the stem cells alive until they are needed. This technique is known as cryopreservation. Stem cells can be cryopreserved for many years.

How are PBSCs obtained for transplantation?

The stem cells used in PBSCT come from the bloodstream. A process called apheresis or leukapheresis is used to obtain PBSCs for transplantation. For 4 or 5 days before apheresis, the donor may be given a medication to increase the number of stem cells released into the bloodstream. In apheresis, blood is removed through a large vein in the arm or a central venous catheter (a flexible tube that is placed in a large vein in the neck, chest, or groin area). The blood goes through a machine that removes the stem cells. The blood is then returned to the donor and the collected cells are stored. Apheresis typically takes 4 to 6 hours. The stem cells are then frozen until they are given to the recipient.

How are umbilical cord stem cells obtained for transplantation?

Stem cells also may be retrieved from umbilical cord blood. For this to occur, the mother must contact a cord blood bank before the babys birth. The cord blood bank may request that she complete a questionnaire and give a small blood sample.

Cord blood banks may be public or commercial. Public cord blood banks accept donations of cord blood and may provide the donated stem cells to another matched individual in their network. In contrast, commercial cord blood banks will store the cord blood for the family, in case it is needed later for the child or another family member.

After the baby is born and the umbilical cord has been cut, blood is retrieved from the umbilical cord and placenta. This process poses minimal health risk to the mother or the child. If the mother agrees, the umbilical cord blood is processed and frozen for storage by the cord blood bank. Only a small amount of blood can be retrieved from the umbilical cord and placenta, so the collected stem cells are typically used for children or small adults.

Are any risks associated with donating bone marrow?

Because only a small amount of bone marrow is removed, donating usually does not pose any significant problems for the donor. The most serious risk associated with donating bone marrow involves the use of anesthesia during the procedure.

The area where the bone marrow was taken out may feel stiff or sore for a few days, and the donor may feel tired. Within a few weeks, the donors body replaces the donated marrow; however, the time required for a donor to recover varies. Some people are back to their usual routine within 2 or 3 days, while others may take up to 3 to 4 weeks to fully recover their strength.

Are any risks associated with donating PBSCs?

Apheresis usually causes minimal discomfort. During apheresis, the person may feel lightheadedness, chills, numbness around the lips, and cramping in the hands. Unlike bone marrow donation, PBSC donation does not require anesthesia. The medication that is given to stimulate the mobilization (release) of stem cells from the marrow into the bloodstream may cause bone and muscle aches, headaches, fatigue, nausea, vomiting, and/or difficulty sleeping. These side effects generally stop within 2 to 3 days of the last dose of the medication.

How does the patient receive the stem cells during the transplant?

After being treated with high-dose anticancer drugs and/or radiation, the patient receives the stem cells through an intravenous (IV) line just like a blood transfusion. This part of the transplant takes 1 to 5 hours.

Are any special measures taken when the cancer patient is also the donor (autologous transplant)?

The stem cells used for autologous transplantation must be relatively free of cancer cells. The harvested cells can sometimes be treated before transplantation in a process known as purging to get rid of cancer cells. This process can remove some cancer cells from the harvested cells and minimize the chance that cancer will come back. Because purging may damage some healthy stem cells, more cells are obtained from the patient before the transplant so that enough healthy stem cells will remain after purging.

What happens after the stem cells have been transplanted to the patient?

After entering the bloodstream, the stem cells travel to the bone marrow, where they begin to produce new white blood cells, red blood cells, and platelets in a process known as engraftment. Engraftment usually occurs within about 2 to 4 weeks after transplantation. Doctors monitor it by checking blood counts on a frequent basis. Complete recovery of immune function takes much longer, howeverup to several months for autologous transplant recipients and 1 to 2 years for patients receiving allogeneic or syngeneic transplants. Doctors evaluate the results of various blood tests to confirm that new blood cells are being produced and that the cancer has not returned. Bone marrow aspiration (the removal of a small sample of bone marrow through a needle for examination under a microscope) can also help doctors determine how well the new marrow is working.

What are the possible side effects of BMT and PBSCT?

The major risk of both treatments is an increased susceptibility to infection and bleeding as a result of the high-dose cancer treatment. Doctors may give the patient antibiotics to prevent or treat infection. They may also give the patient transfusions of platelets to prevent bleeding and red blood cells to treat anemia. Patients who undergo BMT and PBSCT may experience short-term side effects such as nausea, vomiting, fatigue, loss of appetite, mouth sores, hair loss, and skin reactions.

Potential long-term risks include complications of the pretransplant chemotherapy and radiation therapy, such as infertility (the inability to produce children); cataracts (clouding of the lens of the eye, which causes loss of vision); secondary (new) cancers; and damage to the liver, kidneys, lungs, and/or heart.

With allogeneic transplants, GVHD sometimes develops when white blood cells from the donor (the graft) identify cells in the patients body (the host) as foreign and attack them. The most commonly damaged organs are the skin, liver, and intestines. This complication can develop within a few weeks of the transplant (acute GVHD) or much later (chronic GVHD). To prevent this complication, the patient may receive medications that suppress the immune system. Additionally, the donated stem cells can be treated to remove the white blood cells that cause GVHD in a process called T-cell depletion. If GVHD develops, it can be very serious and is treated with steroids or other immunosuppressive agents. GVHD can be difficult to treat, but some studies suggest that patients with leukemia who develop GVHD are less likely to have the cancer come back. Clinical trials are being conducted to find ways to prevent and treat GVHD.

The likelihood and severity of complications are specific to the patients treatment and should be discussed with the patients doctor.

What is a mini-transplant?

A mini-transplant (also called a non-myeloablative or reduced-intensity transplant) is a type of allogeneic transplant. This approach is being studied in clinical trials for the treatment of several types of cancer, including leukemia, lymphoma, multiple myeloma, and other cancers of the blood.

A mini-transplant uses lower, less toxic doses of chemotherapy and/or radiation to prepare the patient for an allogeneic transplant. The use of lower doses of anticancer drugs and radiation eliminates some, but not all, of the patients bone marrow. It also reduces the number of cancer cells and suppresses the patients immune system to prevent rejection of the transplant.

Unlike traditional BMT or PBSCT, cells from both the donor and the patient may exist in the patients body for some time after a mini-transplant. Once the cells from the donor begin to engraft, they may cause the GVT effect and work to destroy the cancer cells that were not eliminated by the anticancer drugs and/or radiation. To boost the GVT effect, the patient may be given an injection of the donors white blood cells. This procedure is called a donor lymphocyte infusion.

What is a tandem transplant?

A tandem transplant is a type of autologous transplant. This method is being studied in clinical trials for the treatment of several types of cancer, including multiple myeloma and germ cell cancer. During a tandem transplant, a patient receives two sequential courses of high-dose chemotherapy with stem cell transplant. Typically, the two courses are given several weeks to several months apart. Researchers hope that this method can prevent the cancer from recurring (coming back) at a later time.

How do patients cover the cost of BMT or PBSCT?

Advances in treatment methods, including the use of PBSCT, have reduced the amount of time many patients must spend in the hospital by speeding recovery. This shorter recovery time has brought about a reduction in cost. However, because BMT and PBSCT are complicated technical procedures, they are very expensive. Many health insurance companies cover some of the costs of transplantation for certain types of cancer. Insurers may also cover a portion of the costs if special care is required when the patient returns home.

There are options for relieving the financial burden associated with BMT and PBSCT. A hospital social worker is a valuable resource in planning for these financial needs. Federal government programs and local service organizations may also be able to help.

NCIs Cancer Information Service (CIS) can provide patients and their families with additional information about sources of financial assistance at 18004226237 (18004CANCER). NCI is part of the National Institutes of Health.

What are the costs of donating bone marrow, PBSCs, or umbilical cord blood?

All medical costs for the donation procedure are covered by Be The Match, or by the patients medical insurance, as are travel expenses and other non-medical costs. The only costs to the donor might be time taken off from work.

A woman can donate her babys umbilical cord blood to public cord blood banks at no charge. However, commercial blood banks do charge varying fees to store umbilical cord blood for the private use of the patient or his or her family.

Where can people get more information about potential donors and transplant centers?

The National Marrow Donor Program (NMDP), a nonprofit organization, manages the worlds largest registry of more than 11 million potential donors and cord blood units. The NMDP operates Be The Match, which helps connect patients with matching donors.

A list of U.S. transplant centers that perform allogeneic transplants can be found at BeTheMatch.org/access. The list includes descriptions of the centers, their transplant experience, and survival statistics, as well as financial and contact information.

Where can people get more information about clinical trials of BMT and PBSCT?

Clinical trials that include BMT and PBSCT are a treatment option for some patients. Information about ongoing clinical trials is available from NCIs CIS at 18004226237 (18004CANCER) or on NCIs website.

Continue reading here:
Blood-Forming Stem Cell Transplants - National Cancer Institute

Why Induced Pluripotent Stem Cells Are Vital for Glaucoma …

One of the most significant discoveries in regeneration research occurred when scientists learned that mature stem cells could be reprogrammedturned back into young stem cellsthen used to grow any type of new tissue. This revelation changed everything the experts thought they knew about cell development. Until then, they hadnt dreamed they could turn back the hands of time in old stem cells.

Now stem cells are poised to make a similar impact on glaucoma research and treatment, as adult stem cells can be taken from the eye or skin, and used to try to replace damaged cells in your eye. Stem cell treatment may one day restore vision lost to glaucoma, so this is a topic glaucoma patients and research supporters will want to know about.

At the start of life, embryonic stem cells are pluripotent, which means they have the remarkable ability to become any type of cell in the body. Following conception, stem cells rapidly reproduce to form clusters of cells that begin to specialize, or differentiate. Each cluster follows a different path, developing into the heart, brain, lungs, skin and every other tissue needed to build the human body.

Fully mature, adult stem cells continue to generate new cells, but only for the specific tissues where they live. For example, hair follicles have adult stem cells that regrow hair and adult stem cells in bone marrow give rise to blood cells, but they cant fill in for one another. These mature stem cells are the sentinels that guard your health, as they replace cells that are damaged due to normal wear-and-tear, injury and disease.

As long as theyre alive and thriving, adult stem cells continue to self-renew indefinitely, dividing and replicating as often as needed. Even if theyre inactive for a long time, they can jump back into action at a moments notice. But theres one thing they cant do: they cant reverse back into their pluripotent state. At least, they cant do that in their natural environment.

In the early 1960s, Sir John Bertrand Gurdon was a young developmental biologist searching for the answer to one question: Is it possible for adult stem cells to return to their immature state? He experimented with frog cells, transplanting mature stem cells into eggs that had their stem cells removed. After many trials, an astonishing thing happenedthe eggs grew into normal tadpoles. With that success, Gurdon proved that fully-differentiated adult stem cells retained the genetic information found in pluripotent embryonic cells.1

Nearly 50 years later, Shinya Yamanaka, MD, PhD and his co-workers published a stunning study. In a long series of experiments, he isolated 24 genes responsible for pluripotency. Then he reintroduced these genes into mature stem cells, individually and in various combinations, until he narrowed it down to four key genes. When used together, the four genes, now dubbed Yamanaka factors, accomplished the unbelievablethey reprogrammed adult stem cells, making them convert back into embryonic stem cells. The induced pluripotent stem cell had been discovered.2

Gurdon and Yamanaka were jointly awarded the 2012 Nobel Prize in Physiology or Medicine for these two discoveries.3 Of course, they both continued to study stem cells and, combined with results from other experts in the field, significant progress has been made. Now induced pluripotent stem cellsor iPS cells for shortcan be formed from human cells and they have a leading role in glaucoma research. Glaucoma Research Foundation gave our 2015 Visionary Award to Dr. Yamanaka to honor his pioneering work to improve global healthcare and treat blinding eye disease.

You may begin to hear a lot about iPS cells being used to develop treatments for glaucoma. When damaged cells in an area called the trabecular meshwork are replaced with iPS cells, intraocular pressure is normalized. If iPS cells could be used to restore parts of the retina, like photoreceptor, ganglion and Muller cells, vision could be restored. Heres one version of how the process might look:

A doctor takes a sample of cells called fibroblasts from a small area of skin on your arm. The fibroblasts are sent to a lab, put into a glass petri dish and injected with Yamanaka factors that convert them into induced pluripotent stem cells. Then substances known to trigger differentiation are added to the cells. They may be directed to become retinal ganglion cells, trabecular meshwork cells or another targeted cell in the eye. When a sufficient number of specialized cells are ready, theyre injected into the damaged eye, where they continue to grow and facilitate healing.4

This scenario isnt entirely hypothetical. Research using iPS cells to treat glaucoma is still in the early stages, but the European Commission has already authorized stem cell treatment for injured corneas. Their decision was based on clinical trials showing that healthy limbal stem cells could be taken from the cornea, expanded in the lab and transplanted back into the damaged part of the eye. The new iPS cells safely and effectively repaired the cornea and restored vision.5

Researchers also use iPS cells to create models of human cells and use them to learn how glaucoma progresses and to test emerging pharmaceutical treatments. Some of the most promising research uses iPS cells to develop models of retinal ganglion cells.6 Ganglion cells collect visual input and send it to the brainmore than a million ganglion cells are bundled together to form the optic nerveand theyre preferentially vulnerable among all retinal cells to glaucoma-inflicted damage.

Beyond their versatile uses, iPS cells have two other critical benefits. They allow glaucoma researchers to pursue new treatments while avoiding ethical concerns related to using embryonic stem cells. And best of all, when mature stem cells come from the same person who will use them for treatment, they dont have to worry about rejection by the immune system because the cells are already a genetic match. This is personalized medicine at a whole new level.

Much research has yet to be done, and clinical trials to test stem cell procedures on people with glaucoma are still down the road, yet the work accomplished so far shines enough light to show that answers are within reach. Glaucoma Research Foundation is determined to support research that will one day make the promise of restored vision come true.

Glaucoma Research Foundation depends on your donation to support research and patient education. Learn about the many ways you can join our cause.

More:
Why Induced Pluripotent Stem Cells Are Vital for Glaucoma ...

NY Stem Cell Treatment | Stem Cell Therapy Clinics …

Welcome to the New York Stem Cell Treatment Center. I am David Borenstein, MD, founder of the center, which is part of my practice, Manhattan Integrative Medicine.

Whether we are treating patients from New York City, Montreal or Toronto, we are dedicated to the advancement of quality care in the area of adult stem cell regenerative medicine. Our mission is to use advanced stem cell technology in order to improve the bodys ability to regenerate, heal and overcome a variety of inflammatory and degenerative conditions.

Therapies are provided at our stem cell clinic for patientsfrom all over the U.S. and around the world. Locations we serve includethe surrounding areas of Manhattan, Brooklyn, Queens, the Bronx, Staten Island, Nassau County, Suffolk County, Long Island, Westchester, New Jersey, Connecticut and Pennsylvania. We treat patientswho visit us from Canada as well, from cities such as Montreal and Toronto.

Feel free to learn more about our stem cell treatments and our stem cell clinic. If you have further questions please go ahead andcontact us, and if you would like to schedule an initial consultation, please fill out acandidate application.

Financing and banking options for stem cell therapy procedures with the New York Stem Cell Treatment Center are available through United Medical Credit. Thousands of patients have trusted United Medical Credit to secure affordable payment plans for their procedures. United Medical Credit can do the same for you!

Below are some of the benefits of choosing United Medical Credit to finance your stem cell therapy:

Dr. David Borenstein obtained his medical degree from the Technion Faculty of Medicine in Haifa, Israel and completed his internship at Staten Island University Hospital. He has completed residencies at: University Hospital at Stony Brook; Westchester County Medical Center; and St. Charles Hospital and Rehabilitation Center.

During the course of his career he has attended numerous specialized training courses in order to expand the scope of his medical expertise that he uses every day at his stem cell treatment center. He is board certified in Physical Medicine and Rehabilitation, certified in Medical Acupuncture, and is a member of numerous professional societies.

Dr. Borenstein has held many prestigious clinical appointments and positions in leading medical facilities. He has been published in the European Journal of Ultrasound and has been the Chief Investigator on a research project on Spinal Cord Injuries. He has conducted medical missions in North Korea, Ghana, Cuba, and other countries.

More here:
NY Stem Cell Treatment | Stem Cell Therapy Clinics ...

Characterization of Regenerative Phenotype of Unrestricted …

Stem cell transplantation is a promising therapeutic strategy to enhance axonal regeneration after spinal cord injury. Unrestricted somatic stem cells (USSC) isolated from human umbilical cord blood is an attractive stem cell population available at GMP grade without any ethical concerns. It has been shown that USSC transplantation into acute injured rat spinal cords leads to axonal regrowth and significant locomotor recovery, yet lacking cell replacement. Instead, USSC secrete trophic factors enhancing neurite growth of primary cortical neurons in vitro. Here, we applied a functional secretome approach characterizing proteins secreted by USSC for the first time and validated candidate neurite growth promoting factors using primary cortical neurons in vitro. By mass spectrometric analysis and exhaustive bioinformatic interrogation we identified 1156 proteins representing the secretome of USSC. Using Gene Ontology we revealed that USSC secretome contains proteins involved in a number of relevant biological processes of nerve regeneration such as cell adhesion, cell motion, blood vessel formation, cytoskeleton organization and extracellular matrix organization. We found for instance that 31 well-known neurite growth promoting factors like, e.g. neuronal growth regulator 1, NDNF, SPARC, and PEDF span the whole abundance range of USSC secretome. By the means of primary cortical neurons in vitro assays we verified SPARC and PEDF as significantly involved in USSC mediated neurite growth and therewith underline their role in improved locomotor recovery after transplantation. From our data we are convinced that USSC are a valuable tool in regenerative medicine as USSC's secretome contains a comprehensive network of trophic factors supporting nerve regeneration not only by a single process but also maintained its regenerative phenotype by a multitude of relevant biological processes.

2015 by The American Society for Biochemistry and Molecular Biology, Inc.

Original post:
Characterization of Regenerative Phenotype of Unrestricted ...

Gene Therapy Market – Size, Share, industry, Forecast …

Gene therapy is a burgeoning market within the pharmaceutical industry and is teeming with new opportunities. Transparency Market Researchs latest report titled Gene Therapy Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 2019 provides a comprehensive analysis of one of the most critical medical fields. The market analyses and estimates contained in this report are of special significance to pharmaceutical companies, educational institutes, marketing professionals, and entrepreneurs venturing into the gene therapy market.

Key highlights of this report include: market growth drivers and restraints, current trends and emerging opportunities, value chain analysis, estimates and forecasts of segment-wise growth, as well as a profiles of all leading players in the gene therapy market over the period of forecast. The report also leverages the Porters five forces model to analyze the future threats and bargaining power of stakeholders such as suppliers, consumers and manufacturers. Other macro and micro factors that are essential for the sustenance of existing market players are encompassed in this report.

Market overview

Gene therapy entails the use of DNA in the capacity of a drug, for the prevention or treatment of diseases. This is one of the most defining developments in the pharmaceutical industry, and is expected to have far-reaching implications on life-threatening diseases in the future. Some diseases that can be potentially treated using gene therapy include: cancer, HIV, and cystic fibrosis. It is anticipated that the clinical trial and biotechnology industry will largely benefit from gene therapy in the long run. And, it is possible that gene therapy could provide a cure for diseases that are regarded as being incurable today.

Currently, the concept of gene therapy is being validated by numerous pharmaceutical companies using clinical data, and there is a growing interest among venture capitalists to explore the commercial potential of gene therapy. However, the growth of the gene therapy market is largely dependent on the regulatory environment, and on approvals from industry bodies. Currently, most gene therapy products are still in the clinical trials phase II and phase III, of which a majority focuses on the treatment of cancer and cardiovascular diseases. The growing popularity of DNA vaccines has positively impacted the growth of this market, and there is a high possibility of gene therapy being practiced in clinics in the next few years, as encouraging results are emerging from the phase II/III trials.

This report profiles key players such as: AnGes MG, Transgene, Urigen Pharmaceuticals, GenVec, Vical, BioSante Pharmaceuticals, Oxford BioMedica, and Genzyme Corporation.

Major geographies analyzed under this research report are:

This report gives you access to decisive data such as:

Key highlights of this report

Read this article:
Gene Therapy Market - Size, Share, industry, Forecast ...

Stem Cell Therapy – Cendant Cellular Therapies – Denver …

Harnessing stem cells to cure disease is the hottest topic in joint injury, knee pain and arthritis treatment today. By using the adult stem cells found in our own bodies, we can amplify and speed up the natural healing process as well as grow new bone and cartilage to rebuild joints without the need for artificial replacements.

At Cendant Stem Cell Centerin Denver and our new Milwaukee Wisconsin clinic, we provide our patients with the most recent technological advancements available for treating orthopedic injuries and conditions. Our Stem Cell therapy procedureprovides treatment to repair damaged cartilage, restore function, eliminate hip, shoulder, back and knee pain and to prevent further joint destruction.

The patients adipose (fat) derived Stem Cells and/or bone marrow derived Stem Cells are injected alongwith Platelet Rich Plasma into the joint capsule space. These components are put on top of an Extracellular Fiber Matrixwhich is injected into the joint capsule before the introduction of Stem Cells. This FDA approved fiberis a major advancement in the Stem Cell procedure which gives Stem Cells a structure to bind and growupon inside the joint space. The technology allows us to treat older patients and patients with more aggressive joint disease who are facing replacement surgery or suffering from chronic pain.

The Stem Cell procedureis virtually painless, takes 3 hours and is performed under local anesthesia. It requires little to no downtime and is effective, fast and safe. Please visit our Video Testimonials page to hear from our patients and why they choose our Denver and Milwaukee stem cell clinics for their medical needs.

Ourunique approach to stem cell therapy does not offer a single franchised solution. Cendants multiple technologies provide case-driven stem cell treatment options to address individual patient needs.

Medical researchers are reporting remarkable results using platelet rich plasma and stem cellsin the treatment of common injuries, including:

What should patients expect after Stem Cell Therapy?

The noticeable regeneration of the joint tissue and cartilage typically starts to occur within 3 weeks. Most of our patients report asubstantialreduction in pain and improved function within 4-6 weeksafter treatment. Many report total pain elimination within 10-12 weeks. Within 3-5 daysafter the procedure, most patients can return to work and resume normal daily activities. Patients cannot start stressful activity or begin strenuous exercise for six weeks. Returning to stressful activity before six weeks may result in incomplete healing of the treated tissue.

Is this therapy safe?

Yes. Autologous PRP therapy and Stem Cell therapy has been used for over 10 years in surgical and orthopedic procedures. There are many research articles published on the safety of these therapies. Because a patients own blood and cells are used, there is little risk of a transmissible infection, no side effects and a very low risk of allergic reaction.

How many treatments are required?

We treat most patients aggressively upon the first visit with a mix of PRP, Extracellular Fiber Matrix and Stem Cells which all work together to create yourregenerative injection. Most patients need only 1 treatment but you could potentially have a follow up pure PRP injection which is thought of as a booster shot, the primary function of which is to stimulate continual stem cell growth.

Read the rest here:
Stem Cell Therapy - Cendant Cellular Therapies - Denver ...

NJMS Stem Cells – Rutgers New Jersey Medical School

Welcome to the Stem Cell and Regenerative Medicine Web Site.

This web portal was developed by Dr. Pranela Rameshwar, Department of Medicine, Division of Hematology-Oncology. The site is intended to provide educational materials on stem cell biology and the application to regenerative medicine/tissue repair. The students who have taken the graduate courses in stem cell biology as well as those who were involved in stem cell research participated in the development of the contents.

The course material is useful for clinical application for stem cell and for those in training such as residents and fellows. A comprehensive collection of FAQ's serves as a great resource and starting point for those seeking general information. Much of the information provided within the FAQ's is directly referenced, enabling interested parties to locate the associated primary literature for greater detail. Further, the Recommended Articles section contains a list of relevant articles sorted by category. Due to space limit it is impossible to list all of the articles and any omission is not deliberate. The reader is recommended to access other databases for further information on stem cell biology.

The Resources section is a great `jump-off' point for nearly all visitors seeking additional information. This section includes News Resources, various Reports and much more.

The Current News section provides the latest news stories surrounding stem cell research and regenerative medicine. For additional news, please visit the News Resources section.

Research professionals are encouraged to visit the Seminar Series and Information for Researchers sections.

Please direct any questions regarding content or the seminar series to Dr. Pranela Rameshwar, course director of the stem cell course and Professor of Medicine, New Jersey Medical School.

Go here to see the original:
NJMS Stem Cells - Rutgers New Jersey Medical School

Adult Stem Cell Medicine Technology | Asymmetrex

Asymmetrex is a life sciences biotechnology company with a focus on innovating adult stem cell medicine technology that will advance the potential of adult tissue stem cells into routine medical practice. Adult tissue stem cells are found in the bodies of children and adults. They are a small fraction of the cells (less than 1 per 1000) that make up organs and tissues like the liver, cornea, skin, muscles, hair, brain, and bone marrow. Despite their small fraction, they are responsible for continuously renewing and repairing the body.

Because of their normal role in maintaining and restoring organs and tissues, tissue stem cells obtained from a donating person have an inherent ability to reconstitute severely damaged tissues due to injury or disease in another recipient person. Currently, tissue stem cell transplantation treatments of this type are only available for a few tissues, e.g., bone marrow and the cornea of the eye. There are many, many more tissues in the body for which stem cell transplantation therapies are needed, but not possible. The major cause of this shortcoming insufficient quantities of donor stem cells often also undermines the effectiveness of the tissue stem cell treatments that are available.

Asymmetrex holds adult stem cell patents for technologies that promotethe multiplication of adult tissue stem cells. Tested so far for tissue stem cells found in the liver, lung, pancreas, muscle, skin and hair follicle, the technologies have the potential to produce therapeutic human tissue stem cells by the pound, trillions of cells at a time. Unlike other presently popularized strategies based on pluripotent stem cells, Asymmetrexsadult stem cell medicine technologyproducesnormal cells without high rates of mutation or tumor-forming properties. A major pursuit of Asymmetrex is collaboration with strategic partners to develop robust manufacturing processes for producing medically important tissue stem cells and their differentiated derivative cells for use in transplantation therapies and drug development.

Another long-standing challenge in stem cell biomedicine is lack of means to identify and count tissue stem cells. Because of this need, even the available tissue stem cell therapies like bone marrow transplantation cannot be reliably optimized to achieve better treatment outcomes. This problem has existed for half a century because of the failure to discover biological markers found exclusively in or on adult tissue stem cells.

Employing its internationally recognized, special research expertise in unique adult tissue stem cell properties, Asymmetrex has developed several technologies that make it now possible to either count tissue stem cells directly or estimate their number precisely. This adult stem cell medicine technologyand innovation provide, for the first time, the means to monitor tissue stem cell number and quality for applications in regenerative medicine and drug development.

By continuing to discover and develop adult stem cell medicine technology for the production, identification, and quantification of restorative adult tissue stem cells, Asymmetrex will set the direction and pace of modern stem cell biomedicine. In addition to our current focus in developing stem cell toxicology assays for the pharmaceutical industry, we also license technologies for stem cell detection (including cancer stem cells) and stem cell expansion for user-exclusive applications.

View original post here:
Adult Stem Cell Medicine Technology | Asymmetrex

Somatic cell nuclear transfer – Wikipedia

In genetics and developmental biology, somatic cell nuclear transfer (SCNT) is a laboratory strategy for creating a viable embryo from a body cell and an egg cell. The technique consists of taking an enucleated oocyte (egg cell) and implanting a donor nucleus from a somatic (body) cell. It is used in both therapeutic and reproductive cloning. Dolly the Sheep became famous for being the first successful case of the reproductive cloning of a mammal.[1] "Therapeutic cloning" refers to the potential use of SCNT in regenerative medicine; this approach has been championed as an answer to the many issues concerning embryonic stem cells (ESC) and the destruction of viable embryos for medical use, though questions remain on how homologous the two cell types truly are.

The process of somatic cell nuclear transplant involves two different cells. The first being a female gamete, known as the ovum (egg/oocyte). In human SCNT experiments, these eggs are obtained through consenting donors, many times utilizing ovarian stimulation. The second being a somatic cell, referring to the cells of the human body. Skin cells, fat cells, and liver cells are only a few examples. The nucleus of the donor egg cell is removed and discarded, leaving it 'deprogrammed.' The nucleus of the somatic cell is also removed but is kept, the enucleated somatic cell is discarded. What is left is a lone somatic nucleus and an enucleated egg cell. These are then fused by inserting the somatic nucleus into the 'empty' ovum. After being inserted into the egg, the somatic cell nucleus is reprogrammed by its host egg cell. The ovum, now containing the somatic cell's nucleus, is stimulated with a shock and will begin to divide. The egg is now viable and capable of producing an adult organism containing all the necessary genetic information from just one parent. Development will ensue normally and after many mitotic divisions, this single cell forms a blastocyst (an early stage embryo with about 100 cells) with an identical genome to the original organism (i.e. a clone).[2] Stem cells can then be obtained by the destruction of this clone embryo for use in therapeutic cloning or in the case of reproductive cloning the clone embryo is implanted into a host mother for further development and brought to term.

Somatic cell nuclear transplantation has become a focus of study in stem cell research. The aim of carrying out this procedure is to obtain pluripotent cells from a cloned embryo. These cells genetically matched the donor organism from which they came.This gives them the ability to create patient specific pluripotent cells, which could then be used in therapies or disease research.[3]

Embryonic stem cells are undifferentiated cells of an embryo. These cells are deemed to have a pluripotent potential because they have the ability to give rise to all of the tissues found in an adult organism. This ability allows stem cells to create any cell type, which could then be transplanted to replace damaged or destroyed cells. Controversy surrounds human ESC work due to the destruction of viable human embryos. Leading scientists to seek an alternative method of obtaining stem cells, SCNT is one such method.

A potential use of stem cells genetically matched to a patient would be to create cell lines that have genes linked to a patient's particular disease. By doing so, an in vitro model could be created, would be useful for studying that particular disease, potentially discovering its pathophysiology, and discovering therapies.[4] For example, if a person with Parkinson's disease donated his or her somatic cells, the stem cells resulting from SCNT would have genes that contribute to Parkinson's disease. The disease specific stem cell lines could then be studied in order to better understand the condition.[5]

Another application of SCNT stem cell research is using the patient specific stem cell lines to generate tissues or even organs for transplant into the specific patient.[6] The resulting cells would be genetically identical to the somatic cell donor, thus avoiding any complications from immune system rejection.[5][7]

Only a handful of the labs in the world are currently using SCNT techniques in human stem cell research. In the United States, scientists at the Harvard Stem Cell Institute, the University of California San Francisco, the Oregon Health & Science University,[8]Stemagen (La Jolla, CA) and possibly Advanced Cell Technology are currently researching a technique to use somatic cell nuclear transfer to produce embryonic stem cells.[9] In the United Kingdom, the Human Fertilisation and Embryology Authority has granted permission to research groups at the Roslin Institute and the Newcastle Centre for Life.[10] SCNT may also be occurring in China.[11]

In 2005, a South Korean research team led by Professor Hwang Woo-suk, published claims to have derived stem cell lines via SCNT,[12] but supported those claims with fabricated data.[13] Recent evidence has proved that he in fact created a stem cell line from a parthenote.[14][15]

Though there has been numerous successes with cloning animals, questions remain concerning the mechanisms of reprogramming in the ovum. Despite many attempts, success in creating human nuclear transfer embryonic stem cells has been limited. There lies a problem in the human cell's ability to form a blastocyst; the cells fail to progress past the eight cell stage of development. This is thought to be a result from the somatic cell nucleus being unable to turn on embryonic genes crucial for proper development. These earlier experiments used procedures developed in non-primate animals with little success. A research group from the Oregon Health & Science University demonstrated SCNT procedures developed for primates successfully reprogrammed skin cells into stem cells. The key to their success was utilizing oocytes in metaphase II (MII) of the cell cycle. Egg cells in MII contain special factors in the cytoplasm that have a special ability in reprogramming implanted somatic cell nuclei into cells with pluripotent states. When the ovum's nucleus is removed, the cell loses its genetic information. This has been blamed for why enucleated eggs are hampered in their reprogramming ability. It is theorized the critical embryonic genes are physically linked to oocyte chromosomes, enucleation negatively affects these factors. Another possibility is removing the egg nucleus or inserting the somatic nucleus causes damage to the cytoplast, affecting reprogramming ability. Taking this into account the research group applied their new technique in an attempt to produce human SCNT stem cells. In May 2013, the Oregon group reported the successful derivation of human embryonic stem cell lines derived through SCNT, using fetal and infant donor cells. Using MII oocytes from volunteers and their improved SCNT procedure, human clone embryos were successfully produced. These embryos were of poor quality, lacking a substantial inner cell mass and poorly constructed trophectoderm. The imperfect embryos prevented the acquisition of human ESC. The addition of caffeine during the removal of the ovum's nucleus and injection of the somatic nucleus improved blastocyst formation and ESC isolation. The ESC obtain were found to be capable of producing teratomas, expressed pluripotent transcription factors, and expressed a normal 46XX karyotype, indicating these SCNT were in fact ESC-like.[8] This was the first instance of successfully using SCNT to reprogram human somatic cells. This study used fetal and infantile somatic cells to produce their ESC.

In April 2014, an international research team expanded on this break through. There remained the question of whether the same success could be accomplished using adult somatic cells. Epigenetic and age related changes were thought to possibly hinder an adult somatic cells ability to be reprogrammed. Implementing the procedure pioneered by the Oregon research group they indeed were able to grow stem cells generated by SCNT using adult cells from two donors, aged 35 and 75.Indicating age does not impede a cells ability to be reprogrammed[16][17]

Late April 2014, the New York Stem Cell Foundation was successful in creating SCNT stem cells derived from adult somatic cells. One of these lines of stem cells was derived from the donor cells of a type 1 diabetic. The group was then able to successfully culture these stem cells and induce differentiation. When injected into mice, cells of all three of the germ layers successfully formed. The most significant of these cells, were those who expressed insulin and were capable of secreting the hormone.[18] These insulin producing cells could be used for replacement therapy in diabetics, demonstrating real SCNT stem cell therapeutic potential.

The impetus for SCNT-based stem cell research has been decreased by the development and improvement of alternative methods of generating stem cells. Methods to reprogram normal body cells into pluripotent stem cells were developed in humans in 2007. The following year, this method achieved a key goal of SCNT-based stem cell research: the derivation of pluripotent stem cell lines that have all genes linked to various diseases.[19] Some scientists working on SCNT-based stem cell research have recently moved to the new methods of induced pluripotent stem cells. Though recent studies have put in question how similar iPS cells are to embryonic stem cells. Epigenetic memory in iPS affects the cell lineage it can differentiate into. For instance, an iPS cell derived from a blood cell will be more efficient at differentiating into blood cells, while it will be less efficient at creating a neuron.[20] This raises the question of how well iPS cells can mimic the gold standard ESC in experiments, as stem cells are defined as having the ability to differentiate into any cell type. SCNT stem cells do not pose such a problem and continue to remain relevant in stem cell studies.

This technique is currently the basis for cloning animals (such as the famous Dolly the sheep),[21] and has been theoretically proposed as a possible way to clone humans. Using SCNT in reproductive cloning has proven difficult with limited success. High fetal and neonatal death make the process very inefficient. Resulting cloned offspring are also plagued with development and imprinting disorders in non-human species. For these reasons, along with moral and ethical objections, reproductive cloning in humans is proscribed.[22] Most researchers believe that in the foreseeable future it will not be possible to use the current cloning technique to produce a human clone that will develop to term. It remains a possibility, though critical adjustments will be required to overcome current limitations during early embryonic development in human SCNT.[23][24]

There is also the potential for treating diseases associated with mutations in mitochondrial DNA. Recent studies show SCNT of the nucleus of a body cell afflicted with one of these diseases into a healthy oocyte prevents the inheritance of the mitochondrial disease. This treatment does not involve cloning but would produce a child with three genetic parents. A father providing a sperm cell, one mother providing the egg nucleus and another mother providing the enucleated egg cell.[6]

Interspecies nuclear transfer (iSCNT) is a means of somatic cell nuclear transfer used to facilitate the rescue of endangered species, or even to restore species after their extinction. The technique is similar to SCNT cloning which typically is between domestic animals and rodents, or where there is a ready supply of oocytes and surrogate animals. However, the cloning of highly endangered or extinct species requires the use of an alternative method of cloning. Interspecies nuclear transfer utilizes a host and a donor of two different organisms that are closely related species and within the same genus. In 2000, Robert Lanza was able to produce a cloned fetus of a gaur, Bos gaurus, combining it successfully with a domestic cow, Bos taurus.[25]

Interspecies nuclear transfer provides evidence of the universality of the triggering mechanism of the cell nucleus reprogramming. For example, Gupta et al.,[26] explored the possibility of producing transgenic cloned embryos by interspecies somatic cell nuclear transfer (iSCNT) of cattle, mice, and chicken donor cells into enucleated pig oocytes. Moreover, NCSU23 medium, which was designed for in vitro culture of pig embryos, was able to support the in vitro development of cattle, mice, and chicken iSCNT embryos up to the blastocyst stage. Furthermore, ovine oocyte cytoplast may be used for remodeling and reprogramming of human somatic cells back to the embryonic stage.[27]

SCNT can be inefficient. Stresses placed on both the egg cell and the introduced nucleus in early research were enormous, resulting in a low percentage of successfully reprogrammed cells. For example, in 1996 Dolly the sheep was born after 277 eggs were used for SCNT, which created 29 viable embryos. Only three of these embryos survived until birth, and only one survived to adulthood.[21] As the procedure was not automated, but had to be performed manually under a microscope, SCNT was very resource intensive. The biochemistry involved in reprogramming the differentiated somatic cell nucleus and activating the recipient egg was also far from understood. However, by 2014, researchers were reporting success rates of 70-80% with cloning pigs[28] and in 2016 a Korean company, Sooam Biotech, was reported to be producing 500 cloned embryos a day.[29]

In SCNT, not all of the donor cell's genetic information is transferred, as the donor cell's mitochondria that contain their own mitochondrial DNA are left behind. The resulting hybrid cells retain those mitochondrial structures which originally belonged to the egg. As a consequence, clones such as Dolly that are born from SCNT are not perfect copies of the donor of the nucleus. This fact may also hamper the potential benefits of SCNT derived tissues/organs for therapy, as there may be an immunoresponse to the non-self mtDNA after transplant.

Proposals to use nucleus transfer techniques in human stem cell research raise a set of concerns beyond the moral status of any created embryo. These have led to some individuals and organizations who are not opposed to human embryonic stem cell research to be concerned about, or opposed to, SCNT research.[30][31][32]

One concern is that blastula creation in SCNT-based human stem cell research will lead to the reproductive cloning of humans. Both processes use the same first step: the creation of a nuclear transferred embryo, most likely via SCNT. Those who hold this concern often advocate for strong regulation of SCNT to preclude implantation of any derived products for the intention of human reproduction,[33] or its prohibition.[30]

A second important concern is the appropriate source of the eggs that are needed. SCNT requires human eggs, which can only be obtained from women. The most common source of these eggs today are eggs that are produced and in excess of the clinical need during IVF treatment. This is a minimally invasive procedure, but it does carry some health risks, such as ovarian hyperstimulation syndrome.

One vision for successful stem cell therapies is to create custom stem cell lines for patients. Each custom stem cell line would consist of a collection of identical stem cells each carrying the patient's own DNA, thus reducing or eliminating any problems with rejection when the stem cells were transplanted for treatment. For example, to treat a man with Parkinson's disease, a cell nucleus from one of his cells would be transplanted by SCNT into an egg cell from an egg donor, creating a unique lineage of stem cells almost identical to the patient's own cells. (There would be differences. For example, the mitochondrial DNA would be the same as that of the egg donor. In comparison, his own cells would carry the mitochondrial DNA of his mother.)

Potentially millions of patients could benefit from stem cell therapy, and each patient would require a large number of donated eggs in order to successfully create a single custom therapeutic stem cell line. Such large numbers of donated eggs would exceed the number of eggs currently left over and available from couples trying to have children through assisted reproductive technology. Therefore, healthy young women would need to be induced to sell eggs to be used in the creation of custom stem cell lines that could then be purchased by the medical industry and sold to patients. It is so far unclear where all these eggs would come from.

Stem cell experts consider it unlikely that such large numbers of human egg donations would occur in a developed country because of the unknown long-term public health effects of treating large numbers of healthy young women with heavy doses of hormones in order to induce hyperovulation (ovulating several eggs at once). Although such treatments have been performed for several decades now, the long-term effects have not been studied or declared safe to use on a large scale on otherwise healthy women. Longer-term treatments with much lower doses of hormones are known to increase the rate of cancer decades later. Whether hormone treatments to induce hyperovulation could have similar effects is unknown. There are also ethical questions surrounding paying for eggs. In general, marketing body parts is considered unethical and is banned in most countries. Human eggs have been a notable exception to this rule for some time.

To address the problem of creating a human egg market, some stem cell researchers are investigating the possibility of creating artificial eggs. If successful, human egg donations would not be needed to create custom stem cell lines. However, this technology may be a long way off.

SCNT involving human cells is currently legal for research purposes in the United Kingdom, having been incorporated into the Human Fertilisation and Embryology Act 1990 in 2001.[34] Permission must be obtained from the Human Fertilisation and Embryology Authority in order to perform or attempt SCNT.

In the United States, the practice remains legal, as it has not been addressed by federal law.[35] However, in 2002, a moratorium on United States federal funding for SCNT prohibits funding the practice for the purposes of research. Thus, though legal, SCNT cannot be federally funded.[36] American scholars have recently argued that because the product of SCNT is a clone embryo, rather than a human embryo, these policies are morally wrong and should be revised.[37]

In 2003, the United Nations adopted a proposal submitted by Costa Rica, calling on member states to "prohibit all forms of human cloning in as much as they are incompatible with human dignity and the protection of human life."[38] This phrase may include SCNT, depending on interpretation.

The Council of Europe's Convention on Human Rights and Biomedicine and its Additional Protocol to the Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine, on the Prohibition of Cloning Human Being appear to ban SCNT of human beings. Of the Council's 45 member states, the Convention has been signed by 31 and ratified by 18. The Additional Protocol has been signed by 29 member nations and ratified by 14.[39]

Read the original here:
Somatic cell nuclear transfer - Wikipedia