Author Archives: admin


Cell Therapy & Regenerative Medicine – University of Utah …

About Us

Learn more about Cell Therapy & Regenerative Medicine.

What is a Neurosphere?

CTRM provides services to develop and manufacture novel cellular therapy.

The Cell Therapy and Regenerative Medicine Program (CTRM) at the University of Utah provides the safest, highest quality products for therapeutic use and research. Our goals are to facilitate the availability of cellular and tissue based therapies to patients by bridging efforts in basic research, bioengineering and the medical sciences. As well as assemble the expertise and infrastructure to address the complex regulatory, financial and manufacturing challenges associated with delivering cell and tissue based products to patients.

To support hematopoietic stem cell transplants and to deliver innovative cellular and tissue engineered products to patients by providing comprehensive bench to bedside services that coordinate the efforts of clinicians, researchers, and bioengineers.

Product quality, safety and efficacy; Optimization of resource utilization; Promotion of productive collaborations; Support of innovative products; and Adherence to scientific and ethical excellence.

The Center of Excellence for the state of Utah that translates cutting-edge cell therapy and engineered tissue based research into clinical products that extend and improve the quality of life of individuals suffering from debilitating diseases and injuries.

More here:
Cell Therapy & Regenerative Medicine - University of Utah ...

Stem Cell Transplantation for Cancer Treatment | CTCA

Stem cell transplantation

Our Hematology Oncology Department provides advanced medical therapies for patients with various types and stages of hematologic disease, including leukemia, multiple myeloma, non-Hodgkin lymphomaand Hodgkin lymphoma. Some hematologic cancer patients undergo a hematopoietic progenitor cell transplantation (commonly referred to as a stem cell transplant).

A stem cell transplant can be used to infuse healthy stem cells into the body to stimulate new bone marrow growth, suppress the disease, and reduce the possibility of a relapse.

Stem cells can be found in the bone marrow, circulating blood (peripheral blood stem cells), and umbilical cord blood.

Our doctors perform two main types of stem cell transplants:

Before a stem cell transplant, you'll undergo a conditioning regime, which involves intensive treatment to destroy as many cancer cells as possible. You may receive high doses of chemotherapy and, in some cases, radiation therapy. Once this preparative regime is complete, you're ready to undergo the transplant.

Much like a blood transfusion, youll receive the stem cells intravenously. The procedure takes about an hour. After entering the bloodstream, the stem cells travel to the bone marrow and start to make new blood cells in a process known as engraftment.

In the months following the transplant, your care team will monitor your blood counts. You may need transfusions of red blood cells and platelets. Sometimes, the intensive treatments you receive before the stem cell transplantation can cause side effects, like infection. In this case, your doctor may administer IV antibiotics.

If you had an allogeneic stem cell transplant, your doctor may prescribe certain drugs to reduce the risk of graft-versus-host-disease (GVHD), a condition where the donated cells attack the patient's tissues.

Recovery from a stem cell transplant can take several months. Youll need support from multiple areas to help reduce side effects, keep you strong and improve your quality of life.

Our hematology oncology team will collaborate with the rest of your care team to support you throughout the entire treatment process. The following are examples of how the other members of your care team will work together to meet your individual needs:

Throughout your treatment, your care manager will also be available to make sure your questions are answered, and ensure you and your family have the information and resources you need to make informed decisions.

Stem cells are parent cells which can develop into any of the three main types of blood cells: red blood cells, white blood cells and platelets.

A peripheral blood stem cell transplant (PBSCT) uses stem cells extracted from the peripheral (circulating) blood supply.

A bone marrow transplant (BMT) uses stem cells collected from the bone marrow.

Continue reading here:
Stem Cell Transplantation for Cancer Treatment | CTCA

CAPMM Team | Center for Applied Proteomics and Molecular …

Co-Directors

Lance A. Liotta, MD, PhD Co-Director

Emanuel Petricoin III, PhD Co-Director

Peggy Hackett Assistant to Center Directors Email: phackett@gmu.edu Phone: (703) 993-9526

Carly Stell Senior Grants Administrator, Office of Sponsored Programs Email: cstell@gmu.edu

Valerie Calvert, BS Research Assistant Professor Email: vcalvert@gmu.edu

Jianghong Deng, MS Biostatistician Email: jdeng@gmu.edu

Jianghong specializes in medical diagnostic tests, sample size calculation, survival analysis, predictive model development and high-dimensional data analysis technology. A user of SAS, R, and JMP, Jianghong is a member of the American Statistical Association and the American Association for Cancer Research.

Virginia Espina, PhD, MT(ASCP) Research Assistant Professor Email: vespina@gmu.edu

Dr. Virginia Espina is the former Manager of the Laser Capture Microdissection Core facility at the National Institutes of Health/National Cancer Institute, within the Laboratory of Pathology and the NCI-FDA Clinical Proteomics Program. Dr. Espina's career began as a Medical Technologist in clinical laboratories. She has extensive clinical laboratory experience, including clinical chemistry and Blood Bank. Her thorough knowledge of clinical quality control and quality assurance issues and regulations compliment her clinical research initiatives, which include phosphoprotein stability, effects of therapy on protein cell signaling pathways, and live cell/tissue microdissection. She currently has multiple roles in the Center for Applied Proteomics and Molecular Medicine, including CAP/CLIA laboratory director, research laboratory manager, instructor, and researcher. In varying degrees, she has been involved in a number of functional proteomics-based research projects and clinical trials at George Mason University and the National Institutes of Health/National Cancer Institute. The studies performed by Dr. Espina have involved a wide spectrum of proteomic approaches, including classical western blotting, laser capture microdissection and reverse phase protein microarrays, that yielded elucidation of phosphorylation specific kinase events in the tumor-host microenvironment of multiple myeloma, breast, lung and ovarian cancer. Dr. Espinas responsibilities include lab management for the CAP/CLIA compliant clinical trial laboratory, co-PI on a Breast DCIS chemoprevention clinical trial, as well as translational research involving nanoparticle applications for harvesting biomarkers, identification of breast cancer progenitor cells in pre-invasive lesions, and elucidation of cell signaling cascades in cancer and infectious disease. Dr. Espina is the lead scientist developing phosphoprotein preservatives as an alternative to formalin fixation.

Isela Gallagher, MS Research Specialist Email:rgallag3@gmu.edu

Iselas research incorporates laser capture microdissection, reverse phase protein microarrays, western blotting, and immunohistochemistry to investigate unique signaling pathway profiles in cancer tissue that can be utilized for diagnosis, prognosis, targeted therapeutics and individualized therapy.

Alessandra Luchini, PhD Assistant Professor Email: aluchini@gmu.edu

Claudius Mueller, PhD Research Assistant Professor Email: cmuelle1@gmu.edu Claudius' research focuses on protein pathway activation mapping in brain cancer (glioblastoma) as well as the development and optimization of new tissue stabilizing chemistries and fixatives that preserve the phosphorylation state of signaling proteins, while maintaining full diagnostic immunohistochemical and histomorphologic detail of cells and tissues.

Mariaelena Pierobon, MD Research Assistant Professor Email:mpierobo@gmu.edu

Alex Reeder, BS , MT(ASCP) Medical Technologist Email:kreeder@gmu.edu Alex is involved in research that focuses on translational breast cancer clinical trials. She uses laser capture microdissection, reverse phase protein microarrays and cell culture as primary technologies in her work. Alex analyzes protein signaling pathways in tissue to provide physicians with data to rationally select FDA-approved pharmaceutical treatments for breast cancer patients.

Sally Rucker, BS, MT(ASCP) Medical Technologist Email: srucker@gmu.edu Sally is involved in research that uses hydrogel microparticles to sequester and concentrate low abundance proteins, such as biomarkers or antigens, in complex biofluid samples. Her current focus is on early Lyme disease detection using these microparticles to concentrate Lyme antigens in urine, which can then be detected using an ELISA procedure. Sally also ensures the laboratory is CAP/CLIA compliant for upcoming clinical trials. This involves meeting all CAP/CLIA regulations and participating in proficiency testing surveys to monitor the labs performance on established tests.

Paul Russo, PhD Research Assistant Professor Email: prusso@gmu.edu Pauls research focuses on using multiple reaction monitoring mass spectrometry (MRM-MS) to quantitate and validate potential biomarkers for diseases including cancer, heart disease, and schizophrenia. After potential biomarkers are discovered by other mass spectrometry methods, Paul uses MRM-MS to validate and quantify data using larger sample sets. Paul is also developing a method using MRM-MS to quantitate human growth hormone (hGH) in human blood and urine to identify athletes who have doped.

Amy VanMeter Adams, MS Research Specialist Email:avanmete@gmu.edu Amys research focuses on using laser capture microdissection, western blotting and reverse phase protein microarray technology to investigate the phosphorylation events in signaling pathways for the discovery of new rational drug targets and mapping protein pathways which can be applied to disease diagnosis and prognosis Amy also directs The Aspiring Scientists Summer Internship Program that engages high school and undergraduate students in cutting edge scientific research related to Proteomics, Genomics, Neuroscience, Biochemistry, Chemistry, Biodefense, Nanotechnology, Bioinformatics, Computer Science, Physics and Environmental Science.

Julia Wulfkuhle, PhD Research Professor Email: jwulfkuh@gmu.edu Dr. Wulfkuhle has more than 10 years of experience in human tissue processing and preparation for Laser Capture Microdissection and in the field of functional signal pathway profiling of human cells and tissues using Reverse Phase Protein Microarray (RPMA) technology. She has contributed to methods development for sample preparation, printing, staining, image capture and analysis and has also been involved in the establishment of a set of reference standards and calibrators for RPMAs that will be used in the transition of this technology into a calibrated assay that can be used for standardization and quantification of staining intensities across arrays and between experiments. Dr. Wulfkuhles research interests include proteomic profiling of solid tumor tissues, including breast, prostate, lung and brain, for designing personalized therapeutic strategies, and identification of signaling mechanisms underlying resistance to targeted therapeutics.

Weidong Zhou, PhD Research Assistant Professor Email: wzhou@gmu.edu Weidong analyzes serum, tissue and cell lines using liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) for biomarker discovery relevant to cancer, Alzheimers disease, infectious disease, schizophrenia, and atrial fibrillation.

Follow this link:
CAPMM Team | Center for Applied Proteomics and Molecular ...

NOD.Cg-Prkdc Il2rg Tg(HLA-A2.1)1Enge/SzJ …

JAX Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCT(S)" means biological materials supplied by JACKSON, and their derivatives. "SERVICES" means projects conducted by JACKSON for other parties that may include but are not limited to the use of MICE or PRODUCTS. "RECIPIENT" means each recipient of MICE, PRODUCTS, or SERVICES provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE, PRODUCTS or SERVICES from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSONs prior written authorization.

MICE, PRODUCTS AND SERVICES ARE PROVIDED "AS IS". JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of, PRODUCTS or SERVICES, JACKSON will, at its option, provide credit or replacement for the PRODUCT received or the SERVICES provided; JACKSON makes no other representations and this shall be the exclusive remedy of the purchaser. Please note specific policy for live mice.

Consistent with the requirement for a written understanding regarding animal care and use, the JACKSON Animal Care and Use Committee will review the animal care and use protocol(s) associated with any SERVICES to be performed at JACKSON, and JACKSON shall have ultimate responsibility and authority for the care of animals while on site or in JACKSON custody.

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS, or SERVICES, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS, or SERVICES from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE, PRODUCTS or SERVICES are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSONs MICE, PRODUCTS or SERVICES. In addition, special terms and conditions of sale of certain MICE, PRODUCTS, or SERVICES may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and SERVICES by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or SERVICES shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or SERVICES by JACKSON.

Read this article:
NOD.Cg-Prkdc Il2rg Tg(HLA-A2.1)1Enge/SzJ ...

Hair Restoration Treatment Uses Novel Stem Cell Therapy …

DALLAS UPTOWN and PLANO, Texas, Oct. 10, 2015 /PRNewswire/ -- For men and women who are just beginning to deal with thinning hair, there is a new way to possibly reverse thinning which does not involve tedious follicle-by-follicle transplantation: platelet-rich plasma (P.R.P.), drawn from one's own blood, optimized, and then re-injected into the scalp. P.R.P. contains a large number of adult stem cells, which are known to stimulate cell growth.

A patients' own platelet-rich blood plasma has been utilized in various cosmetic procedures developed over the past several years to encourage the formation of fresh collagen in the face and hands; now, platelet-rich plasma is being micro-injected into the scalp to stimulate renewed, thicker hair growth.

Medical Director Dr. Jeffrey Adelglass and Director of Dermatology Dr. Elizabeth Houshmand of SKINTASTIC Cosmetic Surgery and Laser Skin Care Centers recently added Platelet Rich Plasma Hair Restoration to their already expansive list of face, body, skincare, and wellness services. While P.R.P. hair growth stimulation can be considered somewhat novel, the cellular science behind it has already expanded into a wide range of medical modalities.

Dr. Adelglass explains, "Working with platelet rich plasma, the overall success is very 'donor-dependent.' We carefully screen our prospective PRP patients for medications and other substances known to inhibit the PRP growth factor's ability to 'take,' such as tobacco. Also, P.R.P. therapy is not effective for treating hair roots that are no longer living."

Consultations at SKINTASTIC for P.R.P. Hair Restoration are recommended with Dr. Houshmand, a double board certified dermatologist, to assess whether or not one is a qualified candidate for this procedure. Dr. Houshmand is also an instructor who teaches the technique to other physicians. She briefly explains the procedure: "P.R.P. Hair Growth is an outpatient procedure at SKINTASTIC. Our technician draws a single vial of blood, and we spin it up in the centrifuge to separate the plasma, which is then prepared and immediately micro-injected into the treatment areas. Patients may see their first noticeable hair growth several weeks after their treatment."

Those interested in learning more about P.R.P. Hair Growth Therapy should make an appointment at SKINTASTIC Cosmetic Surgery and Laser Skin Centers in Dallas Uptown or Plano, Texas by calling (972) 620-3223, or at skintastic.com.

Media: Contact Jeffrey Adelglass, M.D., F.A.C.S. at (214) 392-8830, or jeffadel@gmail.comand Elizabeth Houshmand MD FAAD, FABIM at (484) 838-0487 or elizabeth2713@hotmail.com.

Doctors Adelglass or Houshmand may be available for interview on advances in cosmetic surgery and new beauty technologies, or to speak to groups regarding this or other related topics.

SOURCE SKINTASTIC Cosmetic Surgery and Laser Skin Care Centers

RELATED LINKS http://skintastic.com

More:
Hair Restoration Treatment Uses Novel Stem Cell Therapy ...

Stem Cell Therapy In India|Stem Cell Treatment In India

Stem Cell Consults the group of highly specialized stem cell therapy researchers, doctors and consultants who always provides proper counseling of patients first and then only confirm about the possibilities of stem cell therapy. As we know stem cell therapy is getting successive to treat many degenerative diseases and many clinical trial and case study proved that stem cell therapy is safest treatment and providing opportunity for hopeless patients such as Blood Cancer, Brain stroke/coma, Spinal cord injury, Retinitis pigmentosa, COPD, Autism, Cerebral palsy, Muscular dystrophy and so more degenerative diseases.

We are dedicatedly working in this field last 4-5 years and treated so many domestic and international patients through stem cell therapy. We have every specialized doctors means cardiac surgeon, internal medicine, neurosurgeon, ophthalmologist, orthopedic, Haemato Oncologist in our team.

We are the first one in India who is leading in stem cell services and providing stem cell treatment at very lowest cost than all other stem cell therapy centre and companies in world. Because our priority is to avail stem cell treatment for all needed patients in world at lowest cost.

Read more:
Stem Cell Therapy In India|Stem Cell Treatment In India

Scientific Experts Agree Embryonic Stem Cells Are …

2009

"A UK and Canadian team have manipulated human skin cells to act like embryonic stem cells without using viruses making them safer for use in humans.

"Study leader Dr. Keisuke Kaji, from the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh, said nobody, including himself, had thought it was really possible. 'It is a step towards the practical use of reprogrammed cells in medicine, perhaps even eliminating the need for human embryos as a source of stem cells,' he said."

--

"'Ethical' stem cell creation hope," BBC News, March 1, 2009, http://news.bbc.co.uk/2/hi/health/7914976.stm

***

"A groundbreaking medical treatment that could dramatically enhance the body's ability to repair itself has been developed by a team of British researchers. The therapy, which makes the body release a flood of stem cells into the bloodstream, is designed to heal serious tissue damage caused by heart attacks and even repair broken bones.

"A possible danger with some other stem cell therapies in the pipeline is their use of embryonic stem cells. Because these can turn into any type of tissue, there is a risk they could grow into cancer cells when injected into patients. [This] treatment uses stem cells that can only grow into blood vessels, bone and cartilage, so the risk of causing cancer is removed."

--

I. Sample, "Revolutionary stem cell therapy boosts body's ability to heal itself," The Guardian (United Kingdom) , January 8, 2009, http://www.guardian.co.uk/science/2009/jan/08/stem-cells-bone-marrow-heart-attack

***

"Controversial research into the use of 'hybrid' human-animal embryos to make stem cells is in danger of stalling because of a lack of funding, British scientists claim.

"Since the furore broke scientists have developed a cheap and powerful new technique in which adult skin cells are reprogrammed to create cells that are almost identical to stem cells. Researchers have already used the technique to make so-called induced pluripotent stem (iPS) cells for patients with diabetes, muscular dystrophy and Down's syndrome.

[Quoting Harry Moore, head of reproductive biology at Sheffield University] 'What has happened is the field has moved on. You could argue that iPS cells are a more important area than hybrids now.' "

--

I. Sample, "Rival stem cell technique takes the heat out of hybrid embryo debate," The Guardian. January 13, 2009, http://www.guardian.co.uk/science/2009/jan/13/hybrid-embryos-stem-cells

***

"A dose of their own stem cells 'reset' the malfunctioning immune system of patients with early-stage multiple sclerosis and, for the first time, reversed their disability.

'This is the first study to actually show reversal of disability,' said Richard Burt, an associate professor in the division of immunotherapy at Northwestern, and the lead author of the study published yesterday in the British journal, the Lancet Neurology. 'Some people had complete disappearance of all symptoms.' "

--

R. Waters, "Dose of Own Stem Cells Reverses Patients' Multiple Sclerosis," Bloomberg News, January 30, 2009, http://www.bloomberg.com/apps/news?pid=20601124&sid=akHXxf3bS3TY&refer=home

***

"A new study suggests that adult bone marrow stem cells can be used in the construction of artificial skin. The findings mark an advancement in wound healing and may be used to pioneer a method of organ reconstruction."

--

"Study Uses Bone Marrow Stem Cells to Regenerate Skin," Physorg, January 14, 2009, http://www.physorg.com/news151166956.html

***

2008

"The reality is that the bulk of today's stem-cell research relies on adult stem cells taken from bone marrow, blood, skeletal muscles, body fat and umbilical cord blood. Scientists have even managed to coax adult skin cells to mimic the versatility of embryonic stem cells, which can grow virtually any cell or tissue in the human body. Unlike embryonic stem cells, though, these adult stem cells are being tested in humans right now, with very real possibilities to change the way various diseases are treated in the next five to 10 years."

--

T. Wheeler, "Stem cells mature," Beacon Journal (Akron, Ohio), April 6, 2008.

***

"For the first time, scientists at Children's Hospital of Pittsburgh of UPMC have discovered a unique population of adult stem cells derived from human muscle that could be used to treat muscle injuries and diseases such as heart attack and muscular dystrophy.

"Because this is an autologous transplant, meaning from the patient to himself, there is not the risk of rejection you would have if you took the stem cells from another source

"Myoendothelial cells also showed no propensity to form tumors, a concern with other stem cell therapies."

--

"Pittsburgh scientists identify human source of stem cells with potential to repair muscle damaged by disease or injury," Children's Hospital of Pittsburgh, September 4, 2007, http://www.pslgroup.com/dg/28732E.htm.

***

2007

"An Ecuadorian stem cellexpert said on September 24 that transplants of autologous adult bone marrow stem cells restored some function in spinal cord injury (SCI) patients who have been paralyzed for an average of four years, some up to 22 years.

"Of the 25 patients who provided more than three months and up to 14 months follow up: 15 gained the ability to stand up, 10 could walk on the parallels with braces, seven could walk without braces and five could walk with crutches. Three patients recovered full bladder control, and 10 patients regained some form of sexual function. No adverse events or abnormal reactions to implantation were observed.

'By implanting an adult's own bone marrow stem cells, we've seen significant improvements in the quality of life for those who suffer from spinal cord injuries,' said Francisco Silva, executive vice president of research and development for PrimeCell Therapeutics."

--

"Marrow Stem Cell Transplants Restore Spinal Cord Functions," Stem Cell Business News, Sept. 24, 2007, http://www.stemcellresearchnews.com/absolutenm/anmviewer.asp?a=867&z=15

***

"In recent years, scientists have discovered that red bone marrow is the body's Swiss Army repair kit. It contains a traveling laboratory of cells that can heal the liver, heart, kidneys, leg arteries, pancreas, and even ovaries and the brain. Up to 40 percent of the liver can be regrown from stem cells found in bone marrow, researchers at New York University School of Medicine, Yale University School of Medicine and Sloan-Kettering Cancer Center found."

--

B. J. Fikes, "Body parts Bone marrow: The body's repair kit," North County Times (San Diego, CA), May 20, 2006, http://www.nctimes.com/lifestyles/health-med-fit/article_0bcace84-44ac-51bc-99a0-b1bf6ddb6d21.html

***

2006

"The results of a study published in the April issue of Stem Cells and Development suggest that human stem cells derived from bone marrow are predisposed to develop into a variety of nerve cell types, supporting the promise of developing stem cell-based therapies to treat neurodegenerative disorders such as Parkinson's disease and multiple sclerosis.

"When transplanted into the central nervous system, [these cells] will develop into a variety of functional neural cell types, making them a potent resource for cell-based therapy."

--

"New Findings Support Promise of Using Stem Cells to Treat Neurodegenerative Diseases," Business Wire, May 1, 2006, http://findarticles.com/p/articles/mi_m0EIN/is_2006_May_1/ai_n16135565/

2005

"A team of Texas and British researchers says it has produced large amounts of embryoniclike stem cells from umbilical cord blood, potentially ending the ethical debate affecting stem-cell research -- the need to kill human embryos. The international researchers said the cells -- called cord-blood-derived-embryoniclike stem cells, or CBEs -- have the ability to turn into any kind of body tissue, like embryonic stem cells do, and can be mass-produced using technology derived from NASA.... "Scientists believe the ability to replicate tissue could lead to the development of ways to replace organs as well as treat life-threatening diseases such as diabetes, Alzheimer's and Parkinson's, which have been the focus of stem-cell research." -- J. Price, "Advance made in stem-cell debate," The Washington Times, August 20, 2005, http://www.washingtontimes.com/national/20050820-122747-2417r.htm

* * *

"Various studies that have been conducted around the world, including a limited number performed in the United States, have suggested that when patients with heart failure receive stem cells taken from their bone marrow, their hearts show signs of improved function and recovery." -- "Stem Cells With Heart Bypass Surgery Trial To Begin At University Of Pittsburgh," ScienceDaily, August 25, 2005, http://www.sciencedaily.com/releases/2005/08/050825070117.htm

* * * "Researchers in Boston have isolated a kind of cell from human bone marrow that they say has all the medical potential of human embryonic stem cells.... "Tufts University researchers used specialized cell-sorting machines to pluck the peculiar cells from samples of bone marrow obtained from different donors. Tests suggested the cells are capable of morphing into many, and perhaps all, of the various kinds of cells that make up the human body. ...

"When a batch of the newly identified marrow cells were injected into the hearts of rats that had experienced heart attacks, some of the cells turned into new heart muscle while others became new blood vessels to support the ailing hearts. ...

"'I think embryonic stem cells are going to fade in the rearview mirror of adult stem cells,' said Douglas W. Losordo, the Tufts cardiologist who left the effort.... Bone marrow, he said, 'is like a repair kit. Nature provided us with these tools to repair organ damage.'"

-Rick Weiss, "Marrow Has Cells Like Stem Cells, Tests Show," Washington Post, Feburary 2, 2005, p. A3, at http://www.washingtonpost.com/wp-dyn/articles/A55369-2005Feb1.html .

* * * "[Erica] Nader, 26, of Farmington Hills, Mich., was the first American to travel to Portugal, in March 2003, for experimental sugery for spinal cord injury. She was injured in July 2001 in an auto accident... She was paralyzed from the top of her arms down. "In the procedure...a team of doctors opened Nader's spinal cord to clear out any scar tissue.... Then, using a long tube, they took a sample of olfactory mucosal cells from the ridge of her nose.... These cells are among the body's richest supply of adult stem cells and are capable of becoming any type of cell, depending on where they are implanted. In this case, these adult stem cells were to take on the job of neurons, or nerve cells, once implanted in the spinal cord at the site of an injury. ... "And after three years, magnetic imaging resonance tests show that the cells indeed promote the development of new blood cells and synapses, or connections between nerve cells, says Dr. Carlos Lima, chief of the Lisbon team. ... "Dr. Pratas Vital, one of two neurosurgeons on the team, calls the transplanted cells spinal cord autografts, a term that indicates the cells come from a person's own body, not fetal or embryonic stem cells. ...

"[Erica] is much stronger and much more capable of lifting her arms, bending her knees on a slanted exercise board and standing erect. ... Once, she was paralyzed from her biceps down. Now, she can push herself off an exercise ball, do arm lifts and help raise herself off a floor mat. ... In the past six weeks, she's started to walk in leg braces with a walker or on a treadmill." -Patricia Anstett, "Paraplegic improving after stem-cell implant," The Indianapolis Star, January 16, 2005, at http://www.indystar.com/articles/5/209449-5235-047.html.

* * * 2004

"[E]vidence from three different labs the University of Minnesota, the Robert Wood Johnson Medical School in New Jersey, and Argonne National Laboratory outside Chicago have found three different ASCs [adult stem cells] that may be completely plastic. ... As the team leader at the Robert Wood Johnson School, Ira Black, told me, 'In aggregate, our study and various others do support the idea that one [adult stem cell] can give rise to all types of tissue.' ...

-Michael Fumento, "The Adult Answer," National Review Online, December 20, 2004, at http://www.nationalreview.com/comment/fumento200412200902.asp.

* * * "Scientists have transplanted adult stem cells from the bone marrow of rats into the brains of rat embryos and found that thousands of the cells survive into adulthood, raising the possibility that someday developmental abnormalities could be prevented or treated in the womb. "Dr. Ira Black, chairman of the department of neuroscience at the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, said the cells took on the properties of brain cells, migrating to specific regions and taking up characteristics of neighboring cells. ... "Black and his colleagues used a specific type of bone marrow cell called a stromal cell, taken from the leg bones of adult rats. 'We see this potentially as an appropriate treatment for prenatal disease, mental retardation and congenital conditions,' Black said. The hope is that a patient's own bone barrow might someday be the source for replacing brain cells lost to illness and brain trauma, experts say, eliminating the need to use human embryonic stem cells. "In a separate study, Dr. Alexander Storch of the University of Ulm, Germany, recently took bone marrow and stromal cells from six healthy people and converted the cells into immature neural stem cells. ... 'A single cell culture could grow all major brain cell types,' said Storch, who used specific growth factors to help them differentiate. ...Storch is now transplanting the cells into mice with multiple sclerosis, Parkinson's disease and stroke symptoms. In the stroke study, the labeled adult stromal cells migrated to the area surrounding the stroke damage, he said. They had all of the chemical, electrical and functional properties of brain cells." -Jamie Talan, "Stem cell transplant a success," Newsday, May 12, 2004, at http://www.mult-sclerosis.org/news/May2004/SuccessfulRatStemCellTransplant.html.

* * * "'Cord blood stem cells have the same capacity to cure disease as do embryonic stem cells, as they can become any cell in the body...,' said Dr. William Schmidt, Jr., an oncologist with the Charleston Cancer Center in N. Charleston, SC. "'The use of umbilical cord blood stem cells in the treatment of disease is one of the most prominent advancements in medicine today. Developments in this field will revolutionize medicine and disease treatment,' said Dr. [Roger] Markwald [Professor and Chair of the Department of Cell Biology and Anatomy at the Medical University of South Carolina]."

-Press Release, "CureSource Issues Statement on Umbilical Cord Blood Stem Cells vs. Embryonic Stem Cells," May 12, 2004, at http://home.businesswire.com/portal/site/altavista/index.jsp?ndmViewId=news_view&newsId=20040512005909&newsLang=en.

* * * "California scientists have found that neural stem cells can target and track deadly brain tumor cells. ...The discovery by researchers at Cedars-Sinai's Maxine Dunitz Neurosurgical Institute in Los Angeles means that neural stem cells may someday be effective 'delivery systems' to transport cancer-killing gene and immune products. ... "'We have previously demonstrated the uncanny ability of neural stem cells to seek out and destroy satellites of tumor cells in the brain,' said John S. Yu, senior author of the study and co-director of the Comprehensive Brain Tumor Program a Cedars-Sinai. '...With this knowledge, we hope to expedite the translation of this powerful and novel strategy for the clinical benefit of patients with brain tumors.'" -Press release, "Neural stem cells may help fight cancer," May 5, 2004, at http://www.nlm.nih.gov/medlineplus/news/fullstory_17570.html. * * * "'We're not trying to change the [adult stem] cells in any way before we put them in the body. These are very early precursor cells. They have the potential to become almost anything, and they adapt quickly once they're inside,' said [Tulane University Center for Gene Therapy research professor Dr. Brian] Butcher. Tests on rats with damaged spines have shown that cell growth occurs in the spine [after adult stem cell injection] and allows the animals to walk again. ... "Using adult stem cells sidesteps some of the legal and ethical issues involved in using fetal...or embryonic stem cells.... And there may be other benefits as well. 'We're not against stem-cell research of any kind,' said Butcher. 'But we think there are advantages to using adult stem cells. For example, with embryonic stem cells, a significant number become cancer cells, so the cure could be worse than the disease. And they can be very difficult to grow, while adult stem cells are very easy to grow.' "But perhaps the biggest advantage to adult stem cells is that they sidestep immunological concerns because the cells used to treat a patient come from his or her own body."

-Heather Heilman, "Great Transformations," The Tulanian, Spring 2004, at http://www2.tulane.edu/article_news_details.cfm?ArticleID=5155.

* * * "Had a major heart attack? In the not-too-distant future, doctors may be able to use stem cells to regenerate damaged heart muscle. And here's the exciting part: They can do it using stem cells that aren't extracted from human embryos. "[G]iven the controversy over harvesting cells from embryos, doctors have been exploring other possibilities. The payoff: A team from the University of Texas M.D. Anderson Cancer Center in Houston recently repaired heart muscles in animals by injecting them with stem cells extracted from human blood. It's the stem-cell equivalent of Columbus reaching America: Not only would cells harvested from one's own body eliminate the risk that they would be rejected, but obtaining them would be a simple, painless proposition. "'This work gives us a way to get the cells that's as easy as giving a blood sample,' says Edward Yeh, M.D., lead author of the study. The real mind boggler is what the stem cells might mean to the 1.2 million Americans who suffer heart attacks each year." -Special Report, "Good news about bad things that happen to your parents," USA Weekend magazine, March 5-7, 2004, p. 6, at http://www.usaweekend.com/04_issues/040307/040307aging.html#heart. * * * 2003

"Scientists in Canada have turned adult skin cells into the building blocks of brain cells --opening the way for their use in new therapies for such incurable diseases. The discovery, by a team at the University of Toronto, is particularly exciting as it promises to provide a readily accessible and ethically neutral source of neural stem cells -- the precursors of nerve and brain tissue. "While other groups have managed to create these cells before, they have generally required the use of adult stem cells from bone marrow, which are difficult and painful to extract, or embryonic stem cells, which require the destruction of a human embryo. "If the Toronto technique is perfected for clinical use it would allow neural stem cells to be made from a patient's skin, ensuring a perfect genetic match that would not be rejected by the body. The cells would then be transplanted into the brains of people with neurological disorders, to replace, for example, the specialized dopamine neurons that are lost in Parkinson's disease." -Oliver Wright, "Patients' Own Skin Cells Turned into Potential Alzheimer's Treatment," The Times (London), December 10, 2003, Home News, p. 8.

* * * "Massachusetts General Hospital researchers have harnessed newly discovered cells from an unexpected source, the spleen, to cure juvenile diabetes in mice, a surprising breakthrough that could soon be tested in local patients and open a new chapter in diabetes research... "'This shows there might be a whole new type of therapy that we haven't tapped into,' said Dr. Denise Faustman, MGH immunology lab director and lead author of the new study, which appears today in the journal Science. 'We've figured out how to regrow an adult organ'." -R. Mishra, "Juvenile diabetes cured in lab mice," The Boston Globe, November 14, 2003, p. A2. * * * "There is now an emerging recognition that the adult mammalian brain, including that of primates and humans, harbours stem cell populations suggesting the existence of a previously unrecognised neural plasticity to the mature CNS [central nervous system], and thereby raising the possibility of promoting endogenous neural reconstruction... Since large numbers of stem cells can be generated efficiently in culture, they may obviate some of the technical and ethical limitations associated with the use of fresh (primary) embryonic neural tissue in current transplantation strategies." -T. Ostenfeld and C. Svendsen, "Recent advances in stem cell neurobiology," Advances and Technical Standards in Neurosurgery, vol. 28 (2003), p. 3. * * * "Stem cells in our bone marrow usually develop into blood cells, replenishing our blood system. However, in states of emergency, the destiny of some of these stem cells may change: They can become virtually any type of cell liver cells, muscle cells, nerve cells responding to the body's needs. Prof. Tsvee Lapidot and Dr. Orit Kollet of the Weizmann Institute's Immunology Department have found how the liver, when damaged, sends a cry for help to these stem cells. 'When the liver becomes damaged, it signals to stem cells in the bone marrow, which rush to it and help in its repair as liver cells,' says Lapidot...

"The findings could lead to new insights into organ repair and transplants, especially liver-related ones. They may also uncover a whole new stock of stem cells that can under certain conditions become liver cells. Until a few years ago only embryonic stem cells were thought to possess such capabilities. Understanding how stem cells in the bone marrow turn into liver cells could one day be a great boon to liver repair as well as an alternative to the use of embryonic stem cells." -"Weizmann Institute scientists find that stem cells in the bone marrow become liver cells," EurakAlert, August 11, 2003, at http://www.eurekalert.org/pub_releases/2003-08/wi-wis_1081103.php.

* * * I.S. Abuljadayel, Chief Scientific Officer of Tri-Stem Inc., on his study published in the July 2003 Current Medical Research and Opinion on producing pluripotent stem cells from adult blood cells:

"This new technology offers a viable option for the generation of large numbers of pluripotent stem cells. These are likely to have many clinical and research applications. The source material is blood, the most accessible tissue in our body which can be extracted by simple venipuncture or aphaeresis. The procedure raises no ethical concerns and removes the need to resort to embryos or aborted fetuses. The technology is also cost-effective, donor-friendly producing relatively large quantities of stem cells within a short time, which could eventually save patient lives and shorten patient waiting lists." -"Stem cell-like plasticity induced in mature mononuclear cells," Reuters Health, July 7, 2003.

* * * "This is an example of promising experimental therapies involving stem cells from bone marrow. Until just a few years ago, conventional wisdom held that only embryonic stem cells could turn into any cell in the body. But that thinking began to change as studies showed that stem cells from bone marrow could become heart, muscle, nerve, or liver cells. Now, the results of clinical trials conducted in Britain, Germany and Brazil show that heart patients injected with their own bone marrow cells benefit from the treatment."

-N. Touchette,"Bone Marrow Stem Cells Heal the Heart," Genome News Network, May 2, 2003, at http://www.genomenewsnetwork.org/articles/05_03/sc_heart.shtml * * * "Stem cells from bone marrow can transform into insulin-producing cells, scientists have shown, suggesting a future cure for diabetes... "Transplants of pancreatic cells have been tried between people, but the supplies are restricted and recipients have to take strong anti-rejection medication. Embryonic stem cells have also been converted into insulin-producing cells, but also produce immune-rejection, in addition to ethical concerns. But taking bone marrow cells from a patient, developing them into beta cells and then reimplanting them would have none of these difficulties. Also, much of the technology for bone marrow transplantation is already well developed, says study leader Mehboob Hussain, at the New York University School of Medicine. "'I am absolutely excited by the potential applications of our findings,' he said. 'In our body, there is an additional, easily available source of cells that are capable of becoming insulin-producing cells.'" -S. Bhattacharya, "Bone marrow experiments suggest diabetes cure," NewScientist.com News Service, March 17, 2003, at http://www.newscientist.com/news/news.jsp?id=ns99993508. * * * 2002

"The use of human embryonic stem cells has been confronted with major obstacles because of bio-ethical and political issues involved obtaining them, as well as the suggestion that embryonic stem cells may lack appropriate developmental instructions, making them potentially less feasible for engrafting into adult tissue... "As compared to embryonic stem cells, adult derived stem cells are endowed with additional developmental instructions and may be better suited for therapeutic purposes. According to [Dr. Shahin Rafii of Cornell University Medical College], 'We are approaching a day when a patient's own stem cells can be induced to divide and develop into tissue that can replace that which is diseased or destroyed, making overcrowded organ transplant lists and rejection of foreign tissues a thing of the past'." -"Mechanism For Regulation Of Adult Stem Cells Found," UniSci - Daily University Science News, May 31, 2002, at http://unisci.com/stories/20022/0531021.htm * * * On the versatility of adult hematopoietic (blood-producing) stem cells, HSCs: "[R]ecent studies have suggested that a subpopulation of HSCs may have the ability to contribute to diverse cell types such as hepatocytes, myocytes, and neuronal cells, especially following induced tissue damage... These surprising findings contradict the dogma that adult stem cells are developmentally restricted." -K. Bunting and R. Hawley, "The tao of hematopoietic stem cells: toward a unified theory of tissue regeneration," Scientific World Journal, April 10, 2002, p. 983.

* * * 2001

Commenting on a study by researchers at New York University, Yale and Johns Hopkins: "'There is a cell in the bone marrow that can serve as the stem cell for most, if not all, of the organs in the body,' says Neil Theise, M.D., Associate Professor of Pathology at NYU School of Medicine... '(t)his study provides the strongest evidence yet that the adult body harbors stem cells that are as flexible as embryonic stem cells'." -"Researchers Discover the Ultimate Adult Stem Cell," ScienceDaily Magazine, May 4, 2001, at http://www.sciencedaily.com/releases/2001/05/010504082859.htm * * * "Umbilical cords discarded after birth may offer a vast new source of repair material for fixing brains damaged by strokes and other ills, free of the ethical concerns surrounding the use of fetal tissue, researchers said Sunday."

View post:
Scientific Experts Agree Embryonic Stem Cells Are ...

Roles of Amacrine Cells by Helga Kolb Webvision

Helga Kolb

1. General characteristics.

Amacrine cells of the vertebrate retina are interneurons that interact at the second synaptic level of the vertically direct pathways consisting of the photoreceptor-bipolar-ganglion cell chain. They are synaptically active in the inner plexiform layer (IPL) and serve to integrate, modulate and interpose a temporal domain to the visual message presented to the ganglion cell. Amacrine cells are so named because they are nerve cells thought to lack an axon (Cajal, 1892). Today we know that certain large field amacrine cells of the vertebrate retina can have long axon-like processes which probably function as true axons in the sense that they are output fibers of the cell (see later section on dopaminergic amacrine cells). However these amacrine axons remain within the retina and do not leave the retina in the optic nerve as do the ganglion cell axons. Figure 1 shows one of the earliest depictions of the retinal cell types including amacrine cells drawn by Ramon y Cajal (circa 1890). These retinal cell types were visualized using the anatomical silver impregnation method devised by the Italian anatomist Camillo Golgi in the nineteenth century (Fig. 2).

Fig. 1. Drawing of the retina made by Cajal

Since the time of Cajal we have known that amacrine cells come in all shapes, sizes and stratification patterns. Since those days many more morphological subtypes have and continue to be described from further Golgi studies, intracellular recordings and immunocytochemical staining. Thus, we presently have a classification of amacrine cells consisting of about 40 different morphological subtypes.

Fig. 2. Picture of Camillo Golgi

It is useful and most easily understandable to group the amacrine cell types into the general descriptors of narrow-field (30-150 um), small-field (150-300 um), medium-field (300-500 um) and wide-field (>500 um) based on a measurement of their dendritic field diameters (Kolb et al., 1981). Then the next most important criterion of classification involves knowing the cells stratification. It is generally agreed now that the IPL can be subdivided into five equi-thickness strata or sublayers (Cajal, 1892) into which amacrine, bipolar and ganglion cell processes can be assigned. All of these cell types are now classified primarily on the stratum or strata of the IPL in which their dendrites or axons are located. This is because, as mentioned in previous chapters, the IPL of vertebrate retinas can be divided up into areas of neuropil where specific cells are put into synaptic contacts and form circuits only with cells earmarked for a particular functional role.

Many varieties of amacrine cell are monostratified, restricted to a single stratum, while others are bi- or tri-stratified. When amacrine or ganglion cell processes pass through all the strata of the IPL from distal to proximal or vice versa, they are called diffuse cells. Superimposed upon Cajals five strata subdivision of the IPL, is a sublaminar division of the IPL. The first two strata, 1-2, are known as sublamina a of the IPL while strata 3-5 are known as sublamina b by this scheme (Famiglietti and Kolb, 1976). It will be remembered from previous chapters that sublamina a contains bipolar axons and ganglion cell connections that lead to OFF-center ganglion cell physiology, while sublamina b contains bipolar to ganglion cell connections resulting in ON-center ganglion cell physiology (Nelson et al., 1978).

Figure 3 shows drawings of some small field amacrine cells of the monkey retina as seen in vertical sections (Polyak, 1941). Small-field cells like these can be well visualized in section because their dendritic trees are contained within the depth of the section. However, large field cells are not so well described in section where their dendrites get cut off.

Fig. 3. Amacrine cells of the monkey retina. Adapted from Polyak, 1941.

It was only when wholemount preparations, from Golgi staining (Stell and Witkovsky, 1972; Boycott and Kolb, 1973) or immunocytochemical staining (Karten and Brecha, 1980) were attempted that we could classify such cells. Then the full extent of their dendritic trees which can be up to one millimeter in spread could be visualized (Fig. 4) and a whole new understanding of amacrine cells became available.

Fig.4. Amacrine cells as seen in wholemountcat retina

A new technique of intracellular staining by a photochemical method has been developed in Richard Maslands group, as an alternative to the unreliable Golgi technique (MacNeil and Masland, 1998). Amacrine cells of the rabbit retina are labelled with the nuclear stain DAPI and then selected single nuclei are irradiated by a narrow beam of light to drive DAPI to the oxidation of non-fluorescent dihydrorhodamine 123 to the fluorescent rhodamine 123. The complete cell body and the dendritic tree is thus revealed under viewing in the fluorescence or confocal microscopes. By this method, 30 or so different varieties of amacrine cell can be photographed and drawn in full detail in the rabbit retina. 22 varieties of amacrine cell have been seen in Golgi preparations in cat and primate retinas so either some have been missed that were seen in rabbit, or else they are not as well deveoped in these less complex mammalian retinas. In any event the narrow field and medium field types revealed by MacNeil and Maslands work (1998) are shown in Figures 4a and b below. A further 5 different wide field monostratified types were also encountered in rabbit retina by this method (not illustrated). They correspond closely to the wide field types seen in monkey, cat and human (Fig. 4, above) (Mariani, 1990; Kolb et al., 1981, Kolb et al. 1992).

2. Amacrine cell circuitry as revealed by electron microscopy.

Kidd (1962) and later Dowling and Boycott (1966) were the first to identify the three types of profile that contribute to the IPL by electron microscopy. The electron micrograph (Fig. 5) below shows the cytological criteria on which we now recognize bipolar, amacrine and ganglion cell profiles in the neuropil. Thus bipolar cell axonal endings are recognized by being filled with synaptic vesicles and having a ribbon-shaped density (Fig. 5, red spots) pointing to two postsynaptic profiles (amacrine and ganglion). Amacrine profiles are also filled with synaptic vesicles but make synapses characterized by membrane densities at which the vesicles are particularly clustered (Fig. 5, yellow spots). Ganglion cell profiles are recognized as being only postsynaptic to either bipolar axons or amacrine processes, containing no vesicles but instead a content of neurotubules, ribosomes and glycogen granules.

Fig. 5. Electron micrograph of several profiles in the IPL

Amacrine cell synapses are frequently seen to be reciprocal to bipolar ribbon input, i.e. the amacrine returns a synapse in the vicinity of the ribbon input synapse (arrowheads). Most amacrine cells are inhibitory neurons in the vertebrate retina, containing the common inhibitory neurotransmitters GABA or glycine. GABAergic amacrine cells, in particular, typically make reciprocal synapses with bipolar cells. A17 is the most well studied of the GABAergic reciprocal amacrine cells in the retina and we shall return to this cell later.

We have learned much concerning the synaptic relationships of certain narrow-field amacrine cells as well as bipolar and small ganglion cell types such as midget ganglion cells of the primate retina, from reconstructions of serial-section electron micrographs. The circuitry of the AII amacrine cell in the cat retina was first appreciated by this means (Kolb and Famiglietti, 1974; Famiglietti and Kolb, 1975; Kolb, 1979). However, with the advent of intracellular dye injection of electron-dense materials (horseradish peroxidase, HRP, or the photoreduction of Lucifer yellow) after physiological recordings or the development of electron dense immunostains for electron microscopy, neurocircuitry was made easier for us. We could look at amacrine cells and their synaptic inputs by study of fewer sections and it was not as critical to photograph every single section in a series. The amacrine cell of interest would always be clearly marked black, and easily found in the synaptic neuropil. It is from this technique that we have learned most about amacrine cells and their circuitry in the mammalian retina. The remainder of this chapter will describe the morphology, circuitry and intracellular responses of the amacrine cells that are most completely understood at present.

3. A2: narrow-field, cone pathway amacrine cell.

A2 is a narrow-field amacrine with a 20-60 um wide dendritic tree composed of multibranched, beaded and appendage-bearing dendrites mostly confined to stratum 2 of the IPL (Fig.6).

Fig. 6. Golgi drawings of A2 amacrine cellsin cat and human retinas

Intracellular recordings from A2 cells (formerly called A4) indicate that these cells give true slow potential hyperpolarizing response to light (OFF-center) at all positions of the slit in their receptive fields and they have no sign of an inhibitory surround (Fig. 7) (Kolb and Nelson, 1984).

A2 cells receive bipolar input from OFF-center types of cone bipolar cell of sublamina a and make reciprocal synapses to these bipolar axons (Fig. 7). A2 amacrine cells then synapse upon OFF-center ganglion cell dendrites of sublamina a. The A2 cell makes an inhibitory synapses upon these ganglion cells, because it is thought to be a glycinergic cell type (Wassle et al., 2009 ).

A possible role for A2 amacrines is in disinhibition of the ganglion cells center responses. Alternatively, A2 cells, despite being small-field types, might have a role in the generation of antagonistic surrounds of ganglion cells (Kolb and Nelson, 1993). A2 cells receive a great many amacrine inputs to their dendritic trees which could be from wider field cells than they are are themselves so giving them a much larger receptive field size than their actual dendritic tree size would indicate.

Fig. 7. Summary diagram of A2 amacrine cells wiring pattern and physiological responses to light

A3, knotty Type 2 amacrine cells.

A small-field amacrine cell that branches in S2 and S3 (i.e. across the sublamina a/b border) is seen in cat and human retina with Golgi staining (Kolb et al., 1981; Kolb et al., 1992) (Fig. 7a). The same amacrine has been called a knotty Type2 amacrine cell in Golgi studies (Mariani, 1990) and immunostaining in the macaque retina (Klump et al., 2009). The A3 cell is clearly immunostained with parvalbumin (Fig. 7b) and has the typical A3 morphology and small field multibranched dendrites with large varicosities (Fig. 7a, b) (Klump et al., 2009). The varicose dendrites branch broadly through strata S2 and S3, so they are in a position to interact with both flat midget cone bipolars or other narrow field cone bipolars of the OFF sublamina a, and with cone bipolar cells of stratum 3 in the ON sublamina b.

Fig. 7a. A3 or knotty type 2 amacrines are seen in whole mount Golgi staining (left) and their physiological response to light is an ON center response (right) (adapted from Klump et al., 2009).

Fig. 7b. Parvalbumin-mmunostained A3 or knotty type2 cells and their neurotransmitter and connectivity. a) An isolated PARV+ amacrine is a small field amacrine cell that branches primarily in S2 and S3 of the IPL (arrow heads show the IPL borders to the inner nuclear layer (INL) and to the ganglion cell layer, GCL). b-d) Shows that the A3 cell colocalizes PARV+ (b) (green) and the glycine transporter Glyt-1 (c) (red) (d) colocalization in yellow). e) The A3 amacrine (green) makes synaptic contact (f) with recoverin-IR flat midget bipolar cells (red) in S2 of the IPL.

A3 or the PARV+ amacrine can be seen to be glycinergic when double immunostained for either glycine (Wassle et al., 2009) or the glycine transporter Glyt-1 (Fig. 7b, the PARV+, A3 colocalizes parvalbumin and Glyt-1, a-d). This small field A3 amacrine has been intracellulaly recorded from by Klump and co-authors (2009) and proves to give an ON response to light stimulation (Fig. 7a, right traces). The PARV+ amacrine is situated amongst the axon terminals of flat (OFF) midget bipolar cells in S2 of the IPL and appears to be either pre or postsynaptic where apposing immunostained profiles occur (Fig. 7b, e and f). The A3 PARV+ cell is also know to be presynaptic to OFF parasol ganglion cells in sublamina a and interact with AII amacrine lobular appendages and starburst amacrine cells of sublamina a (Bordt et al., 2006). A3 cells are also extensively coupled into a network of the same cell type by gap junctions (Klump et al., 2009). The latter authors suggest that A3, knotty Type2 amacrines are driven by ON pathway cone bipolars and inhibit OFF pathways and through synapses upon AII amacrine cells inhibit the transmission of rod signals to these same OFF pathways.

4. AII: a bistratified rod amacrine cell.

Fig. 8. AII amacrine cells intracellularly stained after physiological recording by different methods

Above are shown four examples of the best studied amacrine of all in the vertebrate retina: the AII rod amacrine of the mammalian retina. These cells have been recorded from by microelectrodes and dyes have been iontophoresed into the cell after the intracellular recordings (Nelson, 1982). The AII cell, was first described from Golgi staining and electron microscopic examination (Famiglietti and Kolb, 1975; Kolb and Famiglietti, 1974).

AII is a narrow field amacrine (dendritic tree diameter typically 30-70 um) with a bistratified morphology: the mitral shaped cell body gives off a single, stout apical dendrite and a cluster of lobular appendages (round blobs just below the cell body, Fig. 9) arise from the main dendrite in sublamina a of the IPL (Fig 9). The finer arboreal dendrites (Vaney et al., 1991) penetrate down into sublamina b to end close to the ganglion cell layer (Fig. 9). AII amacrine cells are glycine-immunoreactive (Pourcho and Goebel, 1985; Crooks and Kolb, 1992) and contain the calcium binding proteins parvalbumin, calbindin and calretinin (Wssle et al., 1995). Figure 10 shows a Golgi stained AII amacrine cell in cat and human retinas as seen in a surface view of a wholemount.

Fig. 9. Parvalbumin staining of AII amacrine cells in hamster retina.

Fig. 10 Golgi stained AII amacrine cells seen in wholemount.

In cat and rabbit retinas where AIIs have been recorded from, the AII cell is a rod-dominated depolarizing (ON-center) cell (Bloomfield, 1992; Dacheux and Raviola, 1986; Nelson, 1982). Thus, in the center of its receptive field the cell gives a transient depolarizing response with a pronounced sustained plateau (ON-center) and a long drawn out hyperpolarization after light off (Fig. 11). By 140 um to either side of the center, the response to a light flash is now an inverted response indicating a hyperpolarizing surround (OFF-surround) (Fig. 11) (Nelson, 1982).

Fig. 11. Schematic diagram of the morphology, physiology and wiring pattern of the AII amacrine cell

Electron microscopy has shown that the AII, is primarily postsynaptic to rod bipolar axon terminals in lower sublamina b of the IPL (30% of its input, Strettoi et al., 1992) (Fig. 12, left). Some OFF cone bipolar input is directed at the AIIs lobular appendages in sublamina a (Fig. 13). AIIs major output is upon ganglion cells that have dendrites only in sublamina a. AII cell lobular appendages synapse upon OFF-center ganglion cells (Fig. 12, right) and to OFF-center cone bipolar cell axons (possibly cb1 and cb2 types) in sublamina a (Fig. 13) (Kolb, 1979).

Fig. 12. Electron micrographs of AII amacrine synapses

The AII also passes rod-driven information through the ON-center cone bipolar axons in sublamina b to ON-center ganglion cells by means of gap junctions (Fig. 12, center panel) (Kolb and Famiglietti, 1974; Famiglietti and Kolb, 1975; Kolb, 1979). Several, if not all, cone bipolar axons of sublamina b have gap junctions with AII cell dendrites. A new finding is that even the blue-cone bipolar receives rod signals through this gap junction pathway (Field et al., 2009). AII cells also join with other AII cells by gap junctions in sublamina b of the IPL (Fig. 13, lowest gj) (Famiglietti and Kolb, 1975; Nelson, 1982; Vaney, 1994a). Summary Figure 13 shows the major input and output circuitry of the AII amacrine cell.

Thus, AII cells are almost totally rod-driven by the rod bipolar input in sublamina b of the IPL. However some cone pathway bipolar cell input occurs to their ON-center responses. This could come from from excitatory input from ON-center cone bipolars at the gap junctions (gap junction transmitting both ways), from direct OFF center cone bipolar axon synapses in sublmina a, unlikely, or from other intermediary ON amacrine cells of the cone system (such as A8 and A13, knotty parvalbumin-IR amacrines; Klump et al., 2009).

Fig. 13. Schematic drawing of the wiring pattern of the AII amacrine cell

Click here to see an animation of the wiring pattern of the AII amacrine cells (Quicktime movie)

Several amacrine synapses are seen throughout the AII cells dendritic tree by electron microscopy (Kolb, 1979; Strettoi et al., 1992, Fig. 13, red as). Most of these are unidentified as yet. However, a dopaminergic amacrine cell provides a considerable number of synapses to the AII cell, either directly upon its cell body or upon its lobular appendages (Voigt and Wssle, 1987; Kolb et al, 1991) (see later section on dopamine amacrine cells, A18). Dopamine cells are thought to have a function in the inner retina to uncouple AII amacrine cells from both their contacts with the depolarizing cone bipolar and the AII amacrine coupled network (Daw et al., 1990; Vaney, 1994a). As much as 51% of the input to AII amacrine cells is from various other amacrine cells though, and most of these inputs occur in the central part of the cells dendritic tree in strata 3-4 (Strettoi et al., 1992).

Thus the AII amacrine cells are the major carriers of rod signals to the ganglion cells in the retina. As such they play a role in speeding up the slow potential rod messages for presentation to ganglion cells (Nelson, 1982; Smith, 1994). Their distribution in the retina suggests that they tile the complete retina (Vaney, 1990). AII amacrine cells peak in density at 1.5 mm from the foveal center in monkey and at the area centralis in cat (Vaney, 1984). In addition, because of their high density across all parts of the retina and their synaptic involvement with millions of rod bipolar cells, they may contribute in a major way to the pattern ERG (Zrenner, 1990).

5. A8: a bistratified cone amacrine cell.

A8 is a bistratified, narrow-field amacrine cell which is easy to confuse with AII in wholemount, stained retina (Fig. 14). It actually looks like an upside-down AII cell. A8 has short, wispy processes coming from the apical dendrite to ramify in sublamina a of the IPL whereas heavy beaded dendrites penetrate down to sublamina b, to run in strata 4 and 5. This cell type may correspond to the DAPI-3 of the rabbit retina, described by Vaney (1990) and Bloomfield (1992). It is a glycinergic amacrine cell (Pourcho and Goebel, 1985; Crooks and Kolb,1992; Wassle et al., 2009, Neumann and Haverkamp, 2012).Very recently the A8 amacrine cell population has been demonstrated to immunostain for the protein synaptotagmin-2 (Syt2) in macaque monkey retina (Neumann and Haverkamp, 2012). Syt2 cells peak at a density of 1400/mm2 at 1-2 mm and subside to 22/mm2 at 9-10 mm of eccentricity (Neumann and Haverkamp, 2012).

Fig. 14. Golgi and HRP appearance of A8 amacrine cells

The A8 cell has been intracellularly recorded and studied by electron microscopy after iontophoresis of horseradish peroxidase. In Fig. 15 we can see the synapses of this cell type.

Fig.15. Synapses in the IPL of a HR-peroxidase injected A8 cell

The A8 amacrine cell is involved in the cone pathways of the cat retina, rather than the rod pathways, that the AII is committed to. Thus, in sublamina a, excitatory cone driven signals come from cone bipolar cells like cb2 which we know are OFF center in physiology (Fig. 15a), and in sublamina b from cb6, another OFF-center bipolar cell (Fig. 15d) (Nelson and Kolb, 1983). Altogether cone bipolar synapses account for 42% of the input to A8 cells. Lesser rod bipolar input (20%) also occurs to the lower dendrites in sublamina b of the IPL. Like AII amacrine cells, A8 cells also engages in gap junctions with a cone bipolar type of sublamina b, but the bipolar is a different type, possibly cb6, and in addition to the gap junction makes the common ribbon synapse to A8 dendrites (Figs. 15c and d). A8s major output is to OFF-center beta ganglion cell dendrites in sublamina a of the IPL (Fig. 15b). We have not seen A8 synapses to OFF-center alpha cells in the cat retina (Kolb and Nelson, 1996). The input and output synapses for A8 amacrine cells are seen in the summary diagram of Figure 16 and the animation below.

View original post here:
Roles of Amacrine Cells by Helga Kolb Webvision

Why are Adult Stem Cells Important? | Boston Children’s …

Adult stem cells are the bodys toolbox, called into action by normal wear and tear on the body, and when serious damage or disease attack. Researchers believe that adult stem cells also have the potential, as yet untapped, to be tools in medicine. Scientists and physicians are working towards being able to treat patients with their own stem cells, or with banked donor stem cells that match them genetically.

Grown in large enough numbers in the lab, then transplanted into the patient, these cells could repair an injury or counter a diseaseproviding more insulin-producing cells for people with type 1 diabetes, for example, or cardiac muscle cells to help people recover from a heart attack. This approach is called regenerative medicine.

A number of challenges must be overcome before the full therapeutic potential of adult stem cells can be realized. Scientists are exploring practical ways of harvesting and maintaining most types of adult stem cells. Right now, scientists do not have the ability to grow the cells in the amounts needed for treatment. More work is also needed to find practical ways to direct the different kinds of cells to where theyre needed in the body, preferably without the need for surgery or other invasive methods.

Research in all aspects of adult stem cells and their potential is underway at Childrens Hospital Boston. Realizing that potential will require years of research, but promising strides are being made.

Here is the original post:
Why are Adult Stem Cells Important? | Boston Children's ...

Adult Stem Cells Effective Against MS | National Review Online

THIS CANT BE TRUE! Embryonic stem cells are the ONLY HOPE, the scientists and their media and celebrity camp followers repeatedly insistedas they urged priority funding for studies from embryonic.

Except, those who argued that adult stem cells offered great potential are the ones being proven rightas embryonic successes are almost nowhere to be seen.

Now, the early indications of a possibly efficacious treatment for MS are looking to be even more hopeful. From the Science Alert story:

A group of multiple sclerosis (MS) patients have had their immune systems destroyed and then rebuilt using their own blood stem cells. Three years later, 86 percent of them have had no relapses, and 91 percent are showing no signs of MS development.

Wunderbar.

Now, think of the people with MS who have had assisted suicide out of despair, cheered on by the death with dignity crowd. In Belgium, some MS patients have even coupled their killings with organ harvesting.

Youd think this ongoing success would make huge headlines. I mean, imagine if it was an embryonic stem cell success. But for the media, adult stem cells are still the wrong stem cells.

Heres a good formula going forward: Good ethics = good science = good medicine = true hope.

Excerpt from:
Adult Stem Cells Effective Against MS | National Review Online