Author Archives: admin


The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Orlando, Florida

Orlando, Florida (PRWEB) March 12, 2015

The Miami Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief and Dr. Nia Smyrniotis, Medical Director and Surgeon.

The seminars will be held on Tuesday, March 17, 2015, at 12:30 pm, 2:30 pm and 4:30 pm at Seasons 52, 7700 Sand Lake Road, Orlando, FL 32819. Please RSVP at (561) 331-2999.

The Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; The Villages, FL), along with sister affiliates, the Irvine Stem Cell Treatment Center (Irvine; Westlake Villages, CA) and the Manhattan Regenerative Medicine Medical Group (Manhattan, NY), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the body's natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Miami Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used; and No bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and degenerative orthopedic joint conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Miami Stem Cell Treatment Center, they may contact Dr. Gionis or Dr. Smyrniotis directly at (561) 331-2999, or see a complete list of the Centers study areas at: http://www.MiamiStemCellsUSA.com.

About the Miami Stem Cell Treatment Center: The Miami Stem Cell Treatment Center, along with sister affiliates, the Irvine Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Boca Raton, Orlando, Miami and The Villages, Florida. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.MiamiStemCellsUSA.com, http://www.IrvineStemCellsUSA.com , or http://www.NYStemCellsUSA.com.

Go here to read the rest:
The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Orlando, Florida

Stem cells in the brain: Limited self-renewal

The generation of neurons (neurogenesis) in humans is predominantly limited to development; in the adult stage it takes place in only a few regions of the brain. These regions contain neural stem cells that generate neurons in a process with various intermediary stages.

Stem cell renewal is limited - total number drops

Until now it was thought that maintaining the stem cell pool was based on the self-renewal of individual stem cells. The team of scientists headed by Dr. Jovica Ninkovic and Professor Dr. Magdalena Gtz were able to refute this: Both the self-renewal rate and the diversity of neurons formed from the stem cells are limited, and the number of stem cells decreases with age.

"Our findings explain why neurogenesis declines in later years, as there are fewer and fewer neural stem cells. At the same time, we gained new knowledge on basic mechanisms of neurogenesis that until now were not understood," says first author Dr. Filippo Calzolari.

Therapeutic approaches must focus on stem cells themselves

Approaches to new therapies for brain diseases, such as stroke or dementia, for example, particularly concentrate on replacing lost neurons by stimulating the generation of new cells from stem cells. "In light of the fact that the stem cell supply is limited, we must now also look for ways to promote the self-renewal rate of the stem cells themselves and maintain the supply for a longer time," emphasizes Gtz, Director of the Institute for Stem Cell Research at the Helmholtz Zentrum Mnchen and Chair of the Institute of Physiological Genomics at LMU.

###

Original publication:

Calzolari, F. et al. (2015). Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nature Neuroscience, doi: 10.1038/nn.3963

Link to publication: http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.3963.html

See original here:
Stem cells in the brain: Limited self-renewal

Stem Cell Clones Could Yield New Drug Treatment for Deadly Blood Disease

Durham, NC (PRWEB) March 11, 2015

Scientists report in the current issue of STEM CELLS Translational Medicine that they have been able to clone a line of defective stem cells behind a rare, but devastating disease called Fanconi Anemia (FA). Their achievement opens the door to drug screening and the potential for a new, safe treatment for this often fatal disease.

FA is a hereditary blood disorder that leads to bone marrow failure (FA-BMF) and cancer. Patients who suffer from FA have a life expectancy of 33 years. Currently, a bone marrow transplant offers the only possibility for a cure. However, this treatment has many risks associated with it, especially for FA patients due to their extreme sensitivity to radiation and chemotherapy.

Although various consequences in hematopoietic stem cells (the cells that give rise to all the other blood cells) have been attributed to FA-BMF, its cause is still unknown, said Megumu K. Saito, M.D., Ph.D., of Kyoto Universitys Center for iPS Cell and Application, and a lead investigator on the study. His laboratory specializes in studying the kinds of pediatric diseases in which a thorough analysis using mouse models or cultured cell lines is not feasible, so they apply disease-specific induced pluripotent stem cells (iPSCs) instead.

To address the FA issue, he explained, our team (including colleagues from Tokai University School of Medicine) established iPSCs from two FA patients who have the FANCA gene mutation that is typical in FA. We were then able to obtain fetal type immature blood cells from these iPSCs.

When observing the iPSCs, the researchers found that the characteristics of immature blood cells from FA-iPSCs were different from control cells. The FA-iPSCs showed an increased DNA double-strand break rate, as well as a sharp reduction of hematopoietic stem cells compared to the control group of non-FA iPSCs.

These data indicate that the hematopoietic consequences in FA patients originate from the earliest hematopoietic stage and highlight the potential usefulness of iPSC technology for explaining how FA-BMF occurs, said Dr. Saito. Since conducting a comprehensive analysis of patient-derived affected stem cells is not feasible without iPSC technology, the technology provides an unprecedented opportunity to gain further insight into this disease.

This work shows promise for identifying the initial pathological event that causes the disease, which would be a first step in working toward a cure, said Anthony Atala, M.D., Editor-in-Chief of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.

###

The full article, Pluripotent cell models of Fanconi anemia identify the early pathological defect in human hemoangiogenic progenitors, can be accessed at http://www.stemcellstm.com.

Link:
Stem Cell Clones Could Yield New Drug Treatment for Deadly Blood Disease

Media portray unrealistic timelines for stem cell therapies

A new study by University of Alberta law researchers reveals sometimes overly optimistic news coverage of clinical translation of stem cell therapies--and as spokespeople, scientists need to be mindful of harnessing public expectations.

"As the dominant voice in respect to timelines for stem cell therapies, the scientists quoted in these stories need to be more aware of the importance of communicating realistic timelines to the press," said researcher Kalina Kamenova, who co-authored the study with professor Timothy Caulfield in the University of Alberta's Health Law Institute, based in the Faculty of Law.

Their analysis of media coverage showed that most news reports were highly optimistic about the future of stem cell therapies and forecasted unrealistic timelines for clinical use. The study, published in the latest issue of Science Translational Medicine, examined 307 news reports covering translational stem cell research in major daily newspapers in Canada, the United States and the United Kingdom between 2010 and 2013.

While the field of stem cell research holds tremendous promise, "it has also been surrounded by tremendous hype, and we wanted to quantify that in some degree," Caulfield said. "Pop culture representations have an impact on how the public perceives the readiness of stem cell research, and that in turn feeds into stem cell tourism, marketing of unproven therapies and even the public's trust in research. We wanted to provide findings that would help inform the issue."

Their study found that 69 per cent of all news stories citing timelines predicted that therapies would be available within five to 10 years or even sooner. At the same time, the press overlooked challenges and failures in therapy translation, such as the discontinuation of the first FDA-approved clinical trial of an embryonic stem cell-derived therapy for spinal cord injuries in 2011. The biotech company conducting the trial was a leader in embryonic stem cell therapies and its decision to stop its work on stem cells was considered a significant setback for the field.

As well, ethical concerns about the use of human embryonic stem cells were displaced from the forefront of news coverage, while the clinical translation of stem cell therapies and new discoveries, such as hockey star Gordie Howe's recent treatment, grabbed the headlines instead.

"Our findings showed that many scientists have often provided either by implication or direct quotes, authoritative statements regarding unrealistic timelines for stem cell therapies and media hype can foster unrealistic public expectations about clinical translation and increased patient demand for unproven stem cell therapies," Caulfield noted.

While stem cell therapy research is progressing and has seen a dramatic increase in the past decade of clinical trials for treatments, the vast majority of these studies are still in the safety-testing stage and involve a limited number of participants, Kamenova noted.

"The approval process for new treatments is long and complicated, and only a few of all drugs that enter pre-clinical testing are approved for human clinical trials. It takes on average 12 years to get a new drug from the lab to the market, and additional 11 to 14 years of post-market surveillance," she added.

The science world is under pressure to come up with cures for what ails us, but "care needs to be taken by the media and the research community so that advances in research and therapy are portrayed in a realistic manner," Caulfield said.

Go here to read the rest:
Media portray unrealistic timelines for stem cell therapies

Building custom blood cells to battle sickle cell disease

March 10, 2015

These are human blood cells grown in the lab from genetically edited stem cells. (Credit: Ying Wang/Johns Hopkins Medicine)

Provided by Shawna Williams, Johns Hopkins Medicine

Researchers at Johns Hopkins have successfully corrected a genetic error in stem cells from patients with sickle cell disease, and then used those cells to grow mature red blood cells, they report. The study represents an important step toward more effectively treating certain patients with sickle cell disease who need frequent blood transfusions and currently have few options.

The results appear in an upcoming issue of the journalStem Cells.

In sickle cell disease, a genetic variant causes patients blood cells to take on a crescent, or sickle, shape, rather than the typical round shape. The crescent-shaped cells are sticky and can block blood flow through vessels, often causing great pain and fatigue. Getting a transplant of blood-making bone marrow can potentially cure the disease. But for patients who either cannot tolerate the transplant procedure, or whose transplants fail, the best option may be to receive regular blood transfusions from healthy donors with matched blood types.

[STORY: New injection helps stem traumatic blood loss]

The problem, says Linzhao Cheng, Ph.D. , the Edythe Harris Lucas and Clara Lucas Lynn Professor of Hematology and a member of the Institute for Cell Engineering, is that over time, patients bodies often begin to mount an immune response against the foreign blood. Their bodies quickly kill off the blood cells, so they have to get transfusions more and more frequently, he says.

A solution, Cheng and his colleagues thought, could be to grow blood cells in the lab that were matched to each patients own genetic material and thus could evade the immune system. His research group had already devised a way to use stem cells to make human blood cells. The problem for patients with sickle cell disease is that lab-grown stem cells with their genetic material would have the sickle cell defect.

To solve that problem, the researchers started with patients blood cells and reprogrammed them into so-called induced pluripotent stem cells, which can make any other cell in the body and grow indefinitely in the laboratory. They then used a relatively new genetic editing technique called CRISPR to snip out the sickle cell gene variant and replace it with the healthy version of the gene. The final step was to coax the stem cells to grow into mature blood cells. The edited stem cells generated blood cells just as efficiently as stem cells that hadnt been subjected to CRISPR, the researchers found.

Continue reading here:
Building custom blood cells to battle sickle cell disease

Mother wins competition to have baby's stem cells frozen as an 'insurance policy'

Hannah Green's daughter Lola was born with congenital heart disease Mum from Gosport had blood from Lola's cord harvested at birth Her stem cells have been cryogenically frozen for 30 years

By Natalie Brown For Mailonline

Published: 02:42 EST, 2 March 2015 | Updated: 04:28 EST, 2 March 2015

795 shares

3

View comments

Hannah Green's 30th birthday is a day she will never forget but not for the reasons you might expect.

At 20 weeks pregnant, it was also the day Hannah, now 31, discovered her unborn daughter Lola had a congenital heart disease and would need open heart surgery as soon as she was born.

With no history of the condition in the family the unexpected news left Hannah and her partner Gerard Bradley, 30, from Gosport, Hampshire, devastated, and Hannah vowed to do everything she could to ensure her daughter had the best start in life.

Scroll down for video

Continued here:
Mother wins competition to have baby's stem cells frozen as an 'insurance policy'

Johns Hopkins researchers engineer custom blood cells

IMAGE:These are human blood cells grown in the lab from genetically edited stem cells. view more

Credit: Ying Wang/Johns Hopkins Medicine

Researchers at Johns Hopkins have successfully corrected a genetic error in stem cells from patients with sickle cell disease, and then used those cells to grow mature red blood cells, they report. The study represents an important step toward more effectively treating certain patients with sickle cell disease who need frequent blood transfusions and currently have few options.

The results appear in an upcoming issue of the journal Stem Cells.

In sickle cell disease, a genetic variant causes patients' blood cells to take on a crescent, or sickle, shape, rather than the typical round shape. The crescent-shaped cells are sticky and can block blood flow through vessels, often causing great pain and fatigue. Getting a transplant of blood-making bone marrow can potentially cure the disease. But for patients who either cannot tolerate the transplant procedure, or whose transplants fail, the best option may be to receive regular blood transfusions from healthy donors with matched blood types.

The problem, says Linzhao Cheng, Ph.D. , the Edythe Harris Lucas and Clara Lucas Lynn Professor of Hematology and a member of the Institute for Cell Engineering, is that over time, patients' bodies often begin to mount an immune response against the foreign blood. "Their bodies quickly kill off the blood cells, so they have to get transfusions more and more frequently," he says.

A solution, Cheng and his colleagues thought, could be to grow blood cells in the lab that were matched to each patient's own genetic material and thus could evade the immune system. His research group had already devised a way to use stem cells to make human blood cells. The problem for patients with sickle cell disease is that lab-grown stem cells with their genetic material would have the sickle cell defect.

To solve that problem, the researchers started with patients' blood cells and reprogrammed them into so-called induced pluripotent stem cells, which can make any other cell in the body and grow indefinitely in the laboratory. They then used a relatively new genetic editing technique called CRISPR to snip out the sickle cell gene variant and replace it with the healthy version of the gene. The final step was to coax the stem cells to grow into mature blood cells. The edited stem cells generated blood cells just as efficiently as stem cells that hadn't been subjected to CRISPR, the researchers found.

Cheng notes that to become medically useful, the technique of growing blood cells from stem cells will have to be made even more efficient and scaled up significantly. The lab-grown stem cells would also need to be tested for safety. But, he says, "This study shows it may be possible in the not-too-distant future to provide patients with sickle cell disease with an exciting new treatment option."

This method of generating custom blood cells may also be applicable for other blood disorders, but its potential does not end there, Cheng says. One possibility, which his group hopes to begin studying soon, is that the blood cells of healthy people could be edited to resist malaria and other infectious agents.

Read more from the original source:
Johns Hopkins researchers engineer custom blood cells

Targazyme Inc. Receives Orphan Drug Designation to TZ101 for Use With Regulatory T Cells to Prevent & Reduce the …

Orphan Designation Provides 7-Year Post Approval Marketing Exclusivity, Tax Credits and Elimination of FDA Prescription Drug User Fees

SAN DIEGO, CA--(Marketwired - February 10, 2015) - Targazyme Inc., a clinical-stage biopharmaceutical company developing enzyme technologies and products to improve efficacy outcomes for stem cell transplantation, immunotherapy, gene therapy and regenerative medicine, announced today that the U.S. Food and Drug Administration (FDA) has granted Orphan Drug designation to TZ101 to prevent and reduce the severity and incidence of graft vs. host disease (GVHD) in patients eligible for hematologic stem cell transplant.

GVHD is a serious, life-threating complication of stem cell transplantation.Orphan drug status confirms the importance of Targazyme's novel treatment approach to prevent and reduce the incidence and severity of GVHD in patients with blood cancers where stem cell transplant is prescribed.TZ101 could potentially transform hematopoietic stem cell transplantation by reducing patient morbidity and mortality from GVHD, which occurs in a large percentage of these patients and is very difficult to manage clinically.

"Our work with TZ101 demonstrates impressive increases in the persistence and activity of regulatory T cells in preclinical models of GVHD," said Dr. Elizabeth J. Shpall, Deputy Chair of the Department of Stem Cell Transplantation and Cellular Therapy at The University of Texas MD Anderson Cancer Center."We are looking forward to beginning clinical trials on this promising modality for preventing GVHD in our patients undergoing stem cell transplantation."

Orphan Drug Designation by FDA confers financial benefits and incentives, such as potential Orphan Drug grant funding to defray the cost of clinical testing, tax credits for the cost of clinical research, a 7 year period of exclusive marketing after Approval and a Waiver of Prescription Drug User Fee Act (PDUFA) filing fees which are now greater than $2 million.

"The granting of Orphan Drug status for TZ101 for prevention of GVHD in stem cell transplant patients, as well as our previous Orphan Drug designation of TZ101 for cord blood transplantation, provides additional validation of our innovative platform technologies," said Lynnet Koh, Chairman & Chief Executive Officer of Targazyme."TZ101 and our second product, TZ102 are enabling technologies for improving efficacy outcomes for multiple cell-based therapeutic approaches used to prevent and treat a variety of different diseases for which there is a high unmet medical need.In addition to initiating our registration trial with TZ101 in hematopoietic stem cell transplantation, we plan to embark on our cancer immunotherapy trial later this year."

About Targazyme, Inc.

Targazyme Inc. is a San Diego-based, clinical-stage biopharmaceutical company developing novel enzyme-based platform technologies and products to improve clinical efficacy outcomes for stem cell medicine, auto-immunotherapy, gene therapy and regenerative medicine.

The company's clinical-grade fucosyltransferase enzymes and small molecule products (TZ101 and TZ102) are off-the-shelf products used at the point-of-care to treat therapeutic cells immediately before infusion into the patient using a simple procedure that is easily incorporated into existing medical practice.The company has received a number of world-wide patents, multiple FDA orphan drug designations and major medical/scientific awards and grants.

Targazyme has partnerships and collaborations with Kyowa Hakko Kirin and Florida Biologix, as well as various medical research institutions including The University of Texas MD Anderson Cancer Center, Oklahoma Medical Research Foundation, Texas Transplant Institute, Case Western/University Hospitals, Scripps Hospitals, Fred Hutchinson Cancer Research Center, UCLA Medical Center, Stanford University Medical Center, University of Minnesota Medical Center, University of California San Diego, Sanford-Burnham Medical Research Institute, Indiana University, Memorial Sloan Kettering Cancer Center, and New York Blood Center.For more information please go to http://www.targazyme.com.

Original post:
Targazyme Inc. Receives Orphan Drug Designation to TZ101 for Use With Regulatory T Cells to Prevent & Reduce the ...

Girl meets Austrian stem cell donor who helped her beat cancer

Sabrina Chahir was waiting to meet the man who helped send her cancer into remission.

The 8-year-old from Mount Prospect, who likes art and takes piano lessons, knew he had flown across an ocean to see her, nearly four years after he donated his stem cells to help rid her blood of cancer that could have taken her life.

Thursday evening, Sabrina and Maximilian Eule, 30, had their first face-to-face meeting at a celebration in Schaumburg with Sabrina's friends and family.

The two had emailed and video-chatted. But Sabrina's mother, Natalia Wehr, said it was important to her to meet Eule in person.

"It's your daughter, and this person we don't know did something so wonderful," Wehr said. "You need to know who that is."

Sabrina was diagnosed with acute lymphoblastic leukemia, one of the most common types of cancer in children, when she was 2 1/2. The cancer cells were in more than 80 percent of her blood.

The girl's cancer had gone into remission before, but she soon relapsed. After rounds of treatment and infections that caused Sabrina to go blind temporarily, doctors at Lurie Children's Hospital of Chicago told Sabrina's family she would need a stem cell transplant.

"It was the most painful thing you can imagine," Wehr said. "Not knowing if your child is going to live or not. It's the worst feeling in the world."

Ten to 15 percent of children diagnosed with this type of leukemia need a stem cell transplant, but the treatment is more common for other types of cancer, said Dr. Reggie Duerst, one of Sabrina's doctors and director of the stem cell transplant program at Lurie.

And while doctors said the best donor matches are often people of similar racial and ethnic backgrounds Sabrina is Hispanic and Arab her match, located through a computer database, turned out to be a German man who lives in Austria.

See the article here:
Girl meets Austrian stem cell donor who helped her beat cancer

Deadly shortage of black stem cell donors

Black South Africans make up about 47 percent of all cancer patients but only 5 percent of donors in the nations bone marrow registry. The gap between those who may need bone marrow or stem cell transplants, and those able to provide them has deadly consequences for cancer patients.

Black South Africans make up about 47 percent of all cancer patients but only 5 percent of donors in the nations bone marrow registry

Maphoko Nthane, 50, had experienced mysterious and severe backaches for months. Doctors ran test after test, but could find nothing wrong with Nthane.

I had a severe back ache for months, she told Health-e News. Whenever I would have that pain, I couldnt sit down I had to walk or stand up.

Doctors eventually diagnosed Nthane with Acute Lymphoblastic Leukaemia, a severe form of cancer affecting a patients blood and bone marrow.

After I was diagnosed I thought I was going to die I didnt know that people with leukaemia could live, Nthane said. My husband was just as traumatised and as a result he didnt know how to support me.

Nthanes cancer failed to respond to standard chemotherapy and ultimately a stem cell transplant saved her life.

As part of stem cell transplants, stem cells are removed from the tissue of donors or, where possible, patients. These cells are usually from human tissues including bone marrow or fat.

Once removed, the stem cells are given high doses of chemotherapy higher than what could be administered to patients before being transplanted into patients in the hope that they will kill other cancerous cells.

Nthane was lucky to find a stem cell donor.

See the rest here:
Deadly shortage of black stem cell donors