Author Archives: admin


Billionaire Paul Allen Pledges Millions for Cell Science

Software billionaire Paul Allen says he's committing $100 million to create a new institute in Seattle focusing on the mechanics of human cell biology.

The Allen Institute for Cell Science's first project, the Allen Cell Observatory, will focus on creating computational models for the kinds of induced pluripotent stem cells, or IPS cells, that have the ability to turn into heart muscle cells or the epithelial cells that form the inner linings of organs as well as skin.

Such cells hold promise for facilitating research into how cells become diseased, and potentially for growing replacement tissues.

"Cells are the fundamental units of life, with every disease we know of affecting particular types of cells," Allen said in a news release. "Scientists have learned a great deal about many of the 50 trillion cells in our bodies over the last decades, but creating a comprehensive, predictive model of the cell will require a different approach."

The Allen Cell Observatory's goal is to produce a dynamic, visual database and animated models of cell parts in action. Such models could shed light on the processes by which genetic information is translated into cellular functions, and reveal what goes wrong in a diseased cell. That, in turn, could help researchers predict which therapies will work best to counter diseases, or perhaps head off the disease in the first place.

Allen's latest philanthropic venture was unveiled Monday at the American Society for Cell Biology's annual meeting in Philadelphia. It follows up on plans that the co-founder of Microsoft has had in mind for years.

"It's the right time to start a big initiative in cell biology: understanding how cells work, understanding the detailed things that happen inside cells, which is behind cancer and Alzheimer's and all those things," Allen told NBC News last year.

Software billionaire Paul Allen's latest philanthropic project is a $100 million commitment to create the Allen Institute for Cell Science.

Paul Allen's net worth is estimated at more than $17 billion. Over the past 15 years, he has contributed hundreds of millions of dollars to scientific projects including the Allen Telescope Array, the Allen Institute for Brain Science and the Allen Institute for Artificial Intelligence. Last month, he said he would contribute $100 million to the global fight against the Ebola virus. (Allen also owns somewhat less-scientific ventures, such as the Seattle Seahawks and the Portland Trail Blazers.)

The cell science institute will be housed in the seven-story Allen Institute headquarters building that is currently under construction in Seattle's South Lake Union neighborhood. The building is scheduled for completion in the fall of 2015, and will also house the Allen Brain Institute.

See original here:
Billionaire Paul Allen Pledges Millions for Cell Science

Stem cell transplant without radiation or chemotherapy pre-treatment shows promise

PUBLIC RELEASE DATE:

7-Dec-2014

Contact: Irene Sege irene.sege@childrens.harvard.edu 617-919-3110 Dana-Farber Cancer Institute @DanaFarber

SAN FRANCISCO (DECEMBER 7, 2014) - Researchers at Dana-Farber/Boston Children's Cancer and Blood Disorders Center report promising outcomes from a clinical trial with patients with a rare form of bone marrow failure who received a hematopoietic stem cell transplant (HSCT) after pre-treatment with immunosuppressive drugs only. This is the first trial reporting successful transplant in dyskeratosis congenita (DC) patients without the use of any radiation or conventional cytotoxic chemotherapy beforehand.

The trial's data were presented by study authors Leslie Lehmann, MD, and Suneet Agarwal, MD, PhD, of Dana-Farber/Boston Children's, at the 56th annual meeting of the American Society of Hematology (abstract #2941). The data suggest that this immunosuppression-only approach could benefit patients with DC--and, perhaps, other bone marrow failure syndromes--who are at high risk of poor transplant outcomes because they cannot tolerate the toxicity of conventional or even reduced-intensity conditioning.

All four participants in the study are alive and well between 10 and 27 months after transplant. None remain dependent on transfusions to maintain blood counts, nor did any experience significant unexpected toxicities or infections during or after transplantation. Were it not for this new regimen, one patient would have been ineligible for transplant due to severe DC-related lung disease.

Conventional transplant conditioning employs radiation and/or high-dose cytotoxic drugs (also known as alkylators) to destroy the bone marrow and blood and immune cells; it also causes widespread cellular damage throughout the body. The process prepares the patient's body to accept the donated stem cells, reducing the risk of rejection and providing a hospitable environment for the new cells to engraft, thrive and produce new blood and immune cells.

In DC and other bone marrow failure syndromes, however, the disease itself already weakens or destroys the patient's bone marrow, raising the question of whether a less toxic approach could effectively condition patients for transplant.

"These data show that it is possible to achieve engraftment within the context of DC using immunosuppression-only conditioning. This experience begs the question of whether we can think more broadly about this approach's applicability for other conditions, something I think is worth considering," Agarwal said.

"Bone marrow failure syndromes are problems of blood and immune cell production," he added. "In theory, then, in some of these conditions it should be possible for healthy donated stem cells to outcompete native cells, without exposing patients to the toxic effects of radiation or alkylating agents."

See the original post here:
Stem cell transplant without radiation or chemotherapy pre-treatment shows promise

Nivolumab Shows Significant Benefit for Hodgkin's Lymphoma in Mayo Clinic Co-Led Phase I Study

Released: 5-Dec-2014 11:00 AM EST Embargo expired: 6-Dec-2014 1:00 PM EST Source Newsroom: Mayo Clinic Contact Information

Available for logged-in reporters only

Nivolumab shows significant benefit for Hodgkin’s lymphoma in Mayo Clinic co-led phase I study

Newswise A phase I clinical trial of nivolumab found that the immune-boosting drug is a highly effective therapy for Hodgkins lymphoma. The multi-institution study, led by Mayo Clinic, indicated that the drug was safe and led to an 87 percent response rate in patients who had failed on other treatments. Results of the study appear in the New England Journal of Medicine.

The findings support further development of nivolumab, which enhances the immune systems ability to detect and kill cancer cells. The drug has already demonstrated benefit in the treatment of other cancers, particularly melanoma, renal cell cancer, lung cancer and bladder cancer.

Nivolumab is a very promising agent that is reasonably well-tolerated and can easily be combined with other agents in the future, says Stephen Ansell, M.D., Ph.D., a hematologist and co-lead author of the study. There is evidence now that you can fight cancer by optimizing your immune function, either by enhancing signals that stimulate the immune response or blocking signals that dampen it.

The immune systems T cells are specifically trained to fight infectious diseases and cancer. When these cells are called to active duty, their extracellular armor is marked with an immune checkpoint protein, a type of off switch called PD1 that can be used to shut down the immune response. Other immune cells carry molecular keys or ligands named PD-L1 or PD-L2, which can flip that switch to protect normal tissues from collateral damage.

Cancer cells can co-opt this PD-1 pathway by making their own copy of the keys and using them to turn off T cells before they attack. The malignant cell in Hodgkins lymphoma, the Reed-Sternberg cell, has very high levels of PD-L1 and PD-L2 on its cell surface. Therefore, Dr. Ansell and his colleagues hypothesized that using the known immune checkpoint inhibitor nivolumab to block PD1 could prevent these malignant cells from evading immune detection.

In the phase I study, the researchers gave nivolumab every two weeks to 23 patients with relapsed or refractory Hodgkin's lymphoma who were heavily pretreated. The drug appeared to be safe at its highest doses of 3 mg/kg, with rash and decreased platelet counts being the most common drug-related adverse events.

The researchers observed substantial therapeutic activity, with an objective response rate of 87 percent. Seventeen percent of patients had complete responses and 70 percent had partial responses. Progression-free survival at 24 weeks was 86 percent; 11 patients are still in the study. Six patients discontinued participation because of stem-cell transplantation, four because of disease progression, and two because of drug toxicity.

Read the original here:
Nivolumab Shows Significant Benefit for Hodgkin's Lymphoma in Mayo Clinic Co-Led Phase I Study

Vast Majority of Life-Saving Cord Blood Sits Unused

High costs keep patients from using stem cells harvested from umbilical cords

Scientists are studying ways to treat HIV, cerebral palsy and other diseases using umbilical cord blood, although little of the collected blood will actually be used. Credit:Banc de Sang via flickr

Youd think doctors and patients would be clamoring for cells so versatile they could help reboot a body suffering from everything from leukemia to diabetes. But a new report shows that an important source of these stem cellsdiscarded umbilical cordsis rarely used because of high costs and the risk of failure.

Stem cells drawn from newborns umbilical cord blood are sometimes used to treat medical conditions, especially bone and blood cancers like multiple myeloma or lymphoma by replacing dysfunctional blood-producing cells in bone marrow. Generally the diseased cells are destroyed with chemotherapy and irradiation. Then new stem cells are transplanted into the patient to restore function. Cord blood stem cells are an alternative to bone marrow transplants and peripheral blood transplants, in which stem cells are gathered from the blood stream. Cord blood tends to integrate better with the body and it is easier to find a suitable donor than the alternatives.

Yet less than 3 percent of cord blood collected in the U.S. is ever used whereas the rest sits uselessly in blood banks, according to a recent report in Genetic Engineering & Biotechnology News. Immunologist Enal Razvi is author of the report and managing director of Select Biosciences, a biotechnology consulting agency. Razvi found that public cord blood banks, which store donated frozen units for transplants as needed, have only a 1 to 3 percent turnover annually. Most of their inventory sits unused year after year. For example, at Community Blood Services in New Jersey, patients have only used 278 of its 13,000 cords since it opened in 1996, according to business development director Misty Marchioni. Usage is even lower at private cord blood banks, which charge clients thousands of dollars to store a cord in the event a family member one day needs it.

Unlike bone marrow, the main alternative stem cell source, cells transplanted from cord blood carry little risk of graft-versus-host disease, a deadly condition in which the body rejects a transplant. Scientists believe this is because a babys immune system is closer to a blank slate, so their stem cells can integrate with the patients body more easily. But cord blood transplants also take longer to start working, requiring longer hospital stays and upping the bill. Due to storage and testing costs, the cords themselves also get pricy. The cost of the cord is prohibitively high, Razvi explains. Each unit of cord blood costs between $35,000 and $40,000 and most adults require two units for a successful transplant. Insurance companies will generally pay a set amount for a stem cell transplant regardless of where the cells come from. The price tag on a cord blood transplant can run up to $300,000, which may not be fully covered.

Cord blood stem cell transplants also have a higher failure rate than other transplant methods. If the transplant fails, it leaves patients with a compromised immune system in addition to their original disease and medical bills. Because the preparation for transplant includes wiping out the patients original bone marrow, the entire body has to be repopulated with stem cells able to replace it. There are not many stem cells in each cord. Compared with bone marrow or peripheral blood there is a greater chance that there will not be enough stem cells that actually implant and begin producing blood and bone marrow. Its like spreading a small amount of seeds in a big garden, says Mitchell Horwitz, who teaches cell therapy at Duke University Medical Center. Sometimes it just doesnt take.

Martin Smithmyer, chief executive of the private bank Americord, claims that more clients will eventually use their cords, especially as more applications are found for cord blood stem cells. But some scientists disagree. Steven Joffe, a professor of medical ethics at the University of Pennsylvania Perelman School of Medicine, says that many treatments cannot be done with a patients own stem cells because genetic diseases would already be present in the cord blood and that bone marrow might be a better option for relatives. The likelihood they are ever going to use that product is vanishingly small, he says.

Despite the low usage, advocates say cord blood programs have been crucial in improving transplant options for racial minorities, because it can be hard to find a bone marrow match for some groups. Cord blood does not need to match the patient as perfectly as bone marrow. This has transformed the treatment of minority patients, says Andromachi Scaradavou, medical director of the National Cord Blood Program, a public bank based in New York City. In the past we didnt have good donors to offer them. Community Blood Servicess Marchioni also maintains that cord blood is a good emergency option, because finding a compatible bone marrow or peripheral blood donor can take months or years. If you need a transplant quickly, she says, its easy to get cord blood off of a shelf.

Still, experts are working on more efficient ways of ensuring widespread availability of cord blood without having so much of it sit forever unused. Researchers are also continuing to look for ways to improve transplant success and to increase the number of stem cells obtained from each cord, potentially bringing down costs and making cord blood transplants feasible for more patients. If the cost could be lowered, Scaradavou says, it would help a lot of patients get the treatment they need.

Read more from the original source:
Vast Majority of Life-Saving Cord Blood Sits Unused

Stem Cells from Adult Nose Tissue Used to Cure Parkinsons Disease in Rats

Durham, NC (PRWEB) December 05, 2014

Scientists have for the first time used adult human stem cells to cure rats with Parkinsons disease, a neurodegenerative illness that currently has no cure. The study, published in the current issue of STEM CELLS Translational Medicine, details how a team of researchers working in Germany at the University of Bielefeld (UB) and Dresden University of Technology were able to produce mature neurons using inferior turbinate stem cells (ITSCs).

ITSCs are stem cells taken from tissue that would generally be discarded after an adult patient undergoes sinus surgery.

The team then tested how the ITSCs would behave when transplanted into a group of rats with Parkinsons disease. Prior to transplantation, the animals showed severe motor and behavioral deficiencies. However, 12 weeks after receiving the ITSCs, the cells had migrated into the animals brains and functional ability was not only fully restored, but significant behavioral recovery was witnessed, too. In another positive sign, no tumors were found in any of the animals after the transplantations, something that also has been a concern in stem cell therapy.

Due to their easy accessibility and the resulting possibility of an autologous transplantation approach, ITSCs represent a promising cell source for regenerative medicine, said UBs Barbara Kaltschmidt, Ph.D., who led the study along with Alexander Storch, M.D., and Christiana Ossig, M.D., both of Dresden University. The lack of ethical concerns associated with human embryonic stem cells is a plus, too.

In contrast to fighting the symptoms of Parkinsons disease with medications and devices, this research is focused on restoring the dopamine-producing brain cells that are lost during the disease, said Anthony Atala, M.D., Editor-in-Chief of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. "These cells are easy to access and isolate from nasal tissue, even in older patients, which adds to their attraction as a potential therapeutic tool.

###

The full article, Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in Parkinsonian rats can be accessed at http://www.StemCellsTM.com.

Continue reading here:
Stem Cells from Adult Nose Tissue Used to Cure Parkinsons Disease in Rats

Use of Unproven Stem Cell Therapy Questioned

Robert Vondracek has had multiple sclerosis for 20 years. His speech is starting to slur and he's been having more trouble getting around, and when he heard about a controversial stem cell therapy that might help, he got excited.

"I heard about the stem cell treatments being done right here in Phoenix," said Vondracek, 61. "It shocked me because it was not approved in this country, I didn't think."

The therapy was offered by an Arizona plastic surgeon who gives the stem cell treatments in the same clinic where he does cosmetic procedures.

But when Vondracek's neurologist heard about his interest in the therapy, which would cost $7,000 per treatment, "He went crazy," said Vondracek. He strongly advised Vondracek against it.

Plastic surgeons, other doctors and naturopaths at more than 100 clinics round the country are charging thousands of dollars for a controversial procedure called stem cell therapy to treat a range of disorders, including neurological diseases like MS and Parkinson's.

Robert Vondracek and his girlfriend, Terese Knapik.

The procedure has angered many neurologists and prominent researchers who say these doctors are preying on vulnerable people and capitalizing on the huge but still unrealized potential of stem cell research, which they say is years away from producing an approved treatment for neurological diseases.

"Peddling snake oil in the guise of stem cell therapies is really a threat to legitimate research," said Dr. George Daley, director of the Stem Cell Transplantation Program at Boston Children's Hospital, past president of the International Society for Stem Cell Research and a professor at Harvard Medical School.

"Finding cures is hard, it takes sometimes decades, it's extremely expensive and it's not something that we can just wish and hope for," he said. "It can only be achieved through very, very hard work."

Dr. George Daley is a nationally recognized expert on stem cells at Boston Childrens Hospital and Harvard Medical School.

Read more:
Use of Unproven Stem Cell Therapy Questioned

Cordlife launches newly upgraded stem cell facility

Cordlife Medical Philippines Inc. (Cordlife), a fully owned subsidiary of Cordlife Group Ltd., a Singapore Exchange mainboard-listed consumer healthcare company catering to the mother and child segment, recently opened its newly upgraded stem cell processing and cryopreservation facility at UP-Ayalaland Technohub in Quezon City.

This expansion came less than five years from the opening of its facility in the country and was mainly driven by the growing number of parents who recognize the value of banking here their babys stem cells.

The event launch held at Crowne Plaza in Ortigas was hosted by popular DJ Delamar Arias and graced by celebrity moms, actress and beauty queen Lara Quigaman and journalist Nia Corpuz. Delamar, Lara and Nia all shared their personal experiences of being Cordlife moms themselves.

Also in attendance to underscore Cordlifes commitment to Filipino parents and their children were Cordlife Group CEO Jeremy Yee, Cordlife Philippines medical director Dr. Arvin Faundo and Cordlife Philippines director Michael Arnonobal.

The event highlighted the five essentials of mother and child that Cordlife addresses through services. These essentials are security, expertise, investment, bond and value for life.

With the newly upgraded stem cell facility that can accommodate up to 30,000 cord blood and cord lining units, more parents can enjoy a sense of security when they bank their babys stem cells at Cordlifes state-of-the-art processing and cryopreservation laboratory.

Peace of mind

Those who banked with Cordlife can have peace of mind knowing that their babys stem cells are kept in a highly-secure laboratory that was built to withstand earthquakes of up to magnitude 8, and ward off fire with its fire-retardant walls. Furthermore, the vapor-phased liquid nitrogen cryogenic tanks used to preserve the cord blood and cord lining samples are not dependent on electricity, making them 100-percent safe and reliable in case of power outages.

Cordlifes expertise in the stem cell banking arena, is proven not only by being the largest network of cord blood banks in Asia, but also the number of cord blood releases for stem cell transplant and their adherence to the stringent global standards of AABB (formerly known as American Association of Blood Banks).

Cordlife Philippines is also the countrys first and only ISO 9001:2008 and Department of Health-registered cord blood and cord lining bank.

View post:
Cordlife launches newly upgraded stem cell facility