Author Archives: admin


Copy of PhytoScience Philippines Celeb Share good effect of Stem Cell Therapy – Video


Copy of PhytoScience Philippines Celeb Share good effect of Stem Cell Therapy
PHYTOSCIENCE DOUBLE STEM CELL removes the apperance of age lines and restore smoth, radiant, youthful looking skin! LOOK YOUNGER REDUCE THE LOOK OF WRINKLES LINES ...

By: Emmanuel Villamor Jr

Read more from the original source:
Copy of PhytoScience Philippines Celeb Share good effect of Stem Cell Therapy - Video

The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in North County San Diego, California

San Marcos and Carlsbad, California (PRWEB) October 29, 2014

The Irvine Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various chronic, degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief.

The seminars will be held on Wednesday, November 5, 2014, at 11:30am and 1:30pm at the Hampton Inn San Marcos, 123 E. Carmel St., San Marcos, CA 92078 and Thursday, November 6, 2014, at 11:30am, 1:30pm and 3:30pm at the Hampton Inn Carlsbad, 2229 Palomar Airport Rd., Carlsbad, CA 92011. Please RSVP at (949) 679-3889.

The Irvine Stem Cell Treatment Center abides by investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the body's natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Irvine Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Parkinsons Disease, Stroke, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, and degenerative orthopedic joint conditions. For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Irvine Stem Cell Treatment Center, they may contact Dr. Gionis directly at (949) 679-3889, or see a complete list of the Centers study areas at: http://www.IrvineStemCellsUSA.com.

About the Irvine Stem Cell Treatment Center: The Irvine Stem Cell Treatment Center is an affiliate of the Cell Surgical Network (CSN); they are located in Irvine, California and Westlake, California. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Irvine Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection; and the study is registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information visit our website: http://www.IrvineStemCellsUSA.com.

View original post here:
The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in North County San Diego, California

The Miracle of Stem Cell Therapy at Adler Footcare Regenerates Cells, Heals Foot Pain

New York, New York (PRWEB) October 29, 2014

Stem cell therapy is the future of foot pain treatment. New York podiatrists at Adler Footcare are using ethical stem cell treatments for foot problems to help speed healing, minimize pain, and reduce swelling.

Stem cells are cells that havent quite yet determined their role in the body. This gives them the ability to turn into anything. The treatment is being used for problems causing foot pain, such as Achilles tendonitis, plantar fasciitis, and arthritis of the first toe joint. Stem cells help regenerate new cartilage and helps tissue heal much quicker.

"Stem cells turn into everything," said Dr. Jeffrey Adler, Medical/Surgical Director & Owner of Adler Footcare. "So basically, if the damage is due to cartilage, they turn into cartilage. If the damage is due to soft tissue, they turn into soft tissue. Its the Swiss army knife of treatments."

The stem cells are not live embryos, but instead are generated from the placenta and ethically obtained during the C-sections of live births. The women who the cells are taken from are screened and tested for any communicable diseases beforehand.

Stem cell therapy uses a minimally invasive technique to inject the cells directly into the area where the patient is feeling the foot pain. Fluoroscopy is used to determine the exact position for injection. When stem cell therapy is used healing occurs twice as fast. As the tissues are regenerated and the swelling is minimized, the patient is able to experience more range of motion, less post-operative pain, and less inflammation.

The New York podiatrists at Adler Footcare have been using stem cell therapy for 2 years. They continue to stay up-to-date on the process and have seen only positive results.

To learn more about stem cell treatment for foot pain, contact a New York podiatrist at Adler Footcare.

About Dr. Jeffrey L. Adler

Dr. Jeffrey L. Adler, Medical/Surgical Director and Owner of Adler Footcare of Greater New York has been practicing podiatric medicine since 1979 and has performed thousands of foot and ankle surgeries. Dr. Adler is board certified in Podiatric Surgery and Primary Podiatric Medicine by the American Board of Multiple Specialties in Podiatry. Dr. Adler is also a Professor of Minimally Invasive Foot Surgery for the Academy of Ambulatory Foot and Ankle Surgeons. As one of only several in the country who perform minimally invasive podiatric surgery, Dr. Adlers patients enjoy significantly reduced recovery times.

Originally posted here:
The Miracle of Stem Cell Therapy at Adler Footcare Regenerates Cells, Heals Foot Pain

Gene therapy, stem cell therapy trials underway

Stem cells and gene hold promising treatment options for Parkinson's, mandate doctors across the globe, including from Mumbai. Eleven trials to test stem cell and gene therapy for treating Parkinson's are underway currently of which the one in Mumbai had to be put on hold due to regulatory hurdles.

Currently, neuro-augmentative therapies such as usage of drugs or deep brain stimulation (DBS) are being used to treat Parkinson's disorder. "The future holds hope for neuro-restorative therapies like that of stem cells or gene infusion in the Parkinson's disorder treatment. It involves restoration of brain function to normal. In the next five to seven years, this may pave the way for future," said Dr Paresh Doshi, neurologist at Jaslok Hospital, Peddar Road in Mumbai.

Regulatory hurdles and resource constraints though have led to these trials being held up in Mumbai. Dr Doshi said that trials of Duodopa therapy which involves infusion of an active ingredient gel called Levodopa in the intestines has been kept on hold at the moment at privately-run Jaslok Hospital due to regulatory hurdles. The hospital was the only centre in entire South East Asia to have been running the trial.

"Levodopa gets converted into dopamine in the body. Normal levels of dopamine control Parkinsons disorder," said Dr Doshi.

Trials to infuse stem cells from the patient's body in the patient itself had been underway in small group of patients in India, but due to inability to recruit more patients, the trial was stopped. "We could only recruit four patients for two years. However, a similar trial is underway in China and another trial which explores adipose tissue stem cells in treating Parkinson's disease is underway in South Africa," said Dr Doshi.

In January this year, medical journal The Lancet reported that after sixteen years of trials, gene therapy is showing promising results in humans. "Three genes that promote the formation of dopamine generating cells in the brain were injected in the brain bound with a viral vector in fifteen patients. The genes are intended to boost the production of dopamine, a chemical that becomes deficient in patients withParkinson's," said The Lancet report.

Read more from the original source:
Gene therapy, stem cell therapy trials underway

The ethical, legal and political minefield of stem cell research

5 hours ago Mines. Credit: The District

Human stem cell research holds promise for combating some of the most recalcitrant of diseases and for regenerating damaged bodies. It is also an ethical, legal and political minefield.

Human stem cell research is a thriving field of science worldwide holding promise for treating diseases such as diabetes, multiple sclerosis and Parkinson's disease, as well as for furthering our understanding of how we develop from the very earliest stages of life.

But using human embryonic stem (ES) cells to improve the health of other humans has also been the subject of comment, criticism and even court cases. Time magazine dubbed the "complexity and drama" surrounding these cells as the "Great Debate".

Most notably, the field witnessed the 2001 restriction on funding for ES cell research in the USA by President Bush and the lifting of the ban in 2009 by President Obama. Then in 2011, the Court of Justice of the European Union (CJEU) banned the patenting of inventions derived from human eggs or their equivalent on the basis that they were human embryos, the commercial exploitation of which "would be contrary to morality."

While religious bodies and green lobbyists use patent law to elevate the status of the embryo, scientists argue that doing so threatens research that might benefit the health of millions.

International law permits states to refuse patents where necessary to protect morality in their territory. "Yet, how does a patent examiner or a court assess whether an invention is immoral to the point that, unlike other inventions, it can't be patented? That is a particularly difficult question," said Dr Kathy Liddell from the Faculty of Law. "It is a conundrum that runs headlong into the complex intersection of law and morality, intellectual property and philosophy."

It is precisely this intersection that a new research centre in the Faculty will investigate. The new centre funded by the Hatton Trust and the WYNG Foundation will focus on medical law, ethics and policy relating to controversial issues such as patenting inventions involving DNA and body parts, the regulation of medical research and technologies, assisted reproduction and surrogacy, and the governance of 'big data' in the medical field, as well as the regulatory and legislative issues that stem cell research is likely to meet en route from the lab to the clinic.

"These areas need to be considered not as a post hoc rationalisation of events that have already happened, but alongside and ahead of technological advances," said Liddell, who is centrally involved in the new centre, as well as being Deputy Director of the Faculty's Centre for Intellectual Property and Law. "To complement the extraordinary science that is happening, we need to consider the ramifications of biomedical advances in a thorough and timely way."

Liddell's own research interests relate to the pathway that leads from the research bench to clinically effective treatments. She sees the law's role as facilitating and supporting this pathway in morally responsible ways.

Go here to read the rest:
The ethical, legal and political minefield of stem cell research

Beverly Hills Stem Cell Clinic with Dr. Raj Now Replacing Knee Cartilage Nonoperatively with Stem Cell Procedures

Beverly Hills, California (PRWEB) October 28, 2014

Dr. Raj of the Beverly Hills Orthopedic Institute is now offering stem cell procedures which can help replace knee cartilage. The procedures are outpatient, low risk and highly effective at providing pain relief. Call (310) 247-0466 for more information and scheduling.

Hundreds of thousands of knee replacement procedures are performed annually in the US. There are potential risks with the procedure that may be extremely serious, including blood clots or infection. Therefore, the joint replacement should always be considered as a last resort procedure.

With the advent of effective stem cell procedures, known as regenerative medicine, patients are often able to delay or even avoid the need for a knee replacement. Dr. Raj performs the procedures as an outpatient, and they involve either bone marrow derived procedures or amniotic derived therapy. The amniotic fluid provides an immense source of concentrated stem cells, and there is no fetal tissue involved. Therefore, ethical concerns are avoided.

Platelet rich plasma therapy is also offered for knee pain and arthritis. Recent studies at leading institutions such as Hospital for Special Surgery have shown the procedures are able to preserve knee cartilage and possibly even restore it. Pain relief is impressive in the vast majority of patients.

Appointments are readily available with Beverly Hills Orthopedic Institute to discuss options. Dr. Raj is one of the best orthopedic doctors in Beverly Hills and Los Angeles. He is Double Board Certified, and is an ABC News Medical Correspondent along with a WebMD expert. Call (310) 247-0466 for more information and scheduling. Visit http://drhipandknee.com/stemcell/ to find out more about the procedures.

The rest is here:
Beverly Hills Stem Cell Clinic with Dr. Raj Now Replacing Knee Cartilage Nonoperatively with Stem Cell Procedures

San Diego Stem Cell Clinic, Telehealth, Now Offering Knee Procedures for Cartilage Restoration

San Diego, California (PRWEB) October 28, 2014

The top stem cell clinic in San Diego, Telehealth, is now offering regenerative medicine procedures for the knee to help restore cartilage and avoid the need for joint replacement. The procedures are outpatient and performed by Board Certified doctors at Telehealth. Call (888) 828-4575 for more information and scheduling.

Hundreds of thousands of knee replacements are performed every year in the US, with most being extremely successful. However, it is a major surgery and there is a chance of complications such as infection or blood clot. Therefore, it is advisable to consider a stem cell procedure for the arthritic knee in an effort to delay or avoid the procedure.

Telehealth provides the procedures with several options, including platelet rich plasma therapy, bone marrow or fat derived stem cells, along with amniotic derived procedures. All of the procedures are outpatient and low risk.

In most cases, the procedures are covered in whole or partly by insurance. Telehealth will perform an insurance verification prior to one's procedure. The Board Certified doctors at the stem cell clinic in San Diego treat patients from a broad area in Southern California. There are several locations including La Jolla, Orange and Upland CA.

In addition to stem cell procedures for knee arthritis, TeleHealth also provides regenerative medicine options for tendon and ligament injuries, sports injuries along with hip, shoulder and ankle arthritis.

For those interested in avoiding knee replacement with a procedure that can potentially preserve or repair arthritic cartilage, call Telehealth at (888) 828-4575 and visit http://stemcelltherapyincalifornia.com/ for more information.

Continued here:
San Diego Stem Cell Clinic, Telehealth, Now Offering Knee Procedures for Cartilage Restoration

My Pet World: Stem cell treatments show promise for some feline health issues

Q: You recently wrote about stem cell research, and I understand that stem cell therapy is being used to treat inflammatory bowel disease in cats. Do you have more details?

A: The Winn Feline Foundation has funded the research of Dr. Craig Webb and Dr. Tracy Webb of Colorado State University College of Veterinary Medicine to study the use of stem cells to treat inflammatory bowel disease in cats. Early results are promising.

Stem cell research in cats doesn't stop there. Dr. Glenn Olah, president of the Winn Feline Foundation, notes that Winn also funded stem cell studies to treat feline asthma and kidney disease. Results are hopeful, but it's simply too early to offer definitive answers.

"In some ways, stem cell studies in pets are ahead of (those in) people."

Q: About a month ago, I adopted a beautiful Burmese after she romanced me at the shelter. Once we got home, she wanted nothing to do with me. It's not that she isn't friendly. She loves my son and even sleeps with him. When I get up early to feed her, she stays away until I've left the room. My son suggested that the cat harbors resentment toward me because I took her from her cat friends. What can do to improve the situation?

A: "The good news is that it's very unlikely the cat harbors any resentment," said Winn Feline board member and feline veterinarian Dr. Drew Weigner, of Atlanta. "The bad news for you -- but good news for the cat and your son -- is that they developed a fast friendship.

Here are tips that might help the cat warm up to you:

Sit on the floor in an empty room with her. Close the door, but provide an empty box or two for the cat to hop into. Then, simply watch TV, or read a children's story out loud. Cats sometimes like that soft sing-song voice we tend to use when reading children's stories.

Wait until the cat comes to you. It may take several days, but eventually curiosity will out.

Next, take over feeding the cat, even if she waits for you to leave the room to eat.

Read this article:
My Pet World: Stem cell treatments show promise for some feline health issues

Toxin-producing stem cells fight brain tumors where it matters most

When it comes to new tumor-fighting treatments, its often as much about location, location, location as it is the actual drug interaction. Cytoxin-producing stem cells produced by scientists at Harvard University lodge at the site of brain tumor removal to continually attack remaining tumor cells. As an alternative to drug treatments that can be invasive or ineffective, the researchers saw promising results against glioblastomas, which hold the dubious distinction of being the most common and most fatal brain cancer.

When surgery is performed to remove a brain tumor, tumor cells are left behind. The common course of treatment to eradicate those remaining cells involves inserting a catheter directly into the brain to dispenses drugs which would otherwise not make it through the blood-brain barrier. However, one particular toxin, Pseudomonas exotoxin (PE), while effective and tolerated by humans, has a very short half-life and when washed over the area where the tumor was removed, degrades before significant interaction occurs with the target cells.

The research team under the direction of Khalid Shah instead created stem cells that were capable of independently producing this cytotoxin. Prior to this research, PE and other toxins had been engineered to not enter (and thus subsequently destroy) any human cells they came into contact with. However, Shahs stem cells would need to have this resistance when the toxin was by design already inside the cell.

After genetically constructing a stem cell that produced a toxin that it also could resist, the next design trick involved encapsulating those cells inside a gel matrix that the lab had previously used to test other tumor-fighting techniques. Their previous research found that the matrix kept the cells and resulting toxins in close proximity to the tumor cells.

This cell-doped gel can then be placed within the cavity created when a tumor is removed and could potentially remove the need to insert catheters for recurring drug treatments. To test this technique, mice first were given different strains of glioblastomas, which is important because not all strains respond in the same way to treatments. Researchers then removed the tumors and inserted the stem cell matrix.

When mice treated in this fashion were compared with those who received the same drug via catheter, and those mice who only had surgery, median survival for those three groups fell out significantly in favor of the stem cell group at 79 days versus 48 for those receiving catheter treatment, and 26 for the control. Additionally, no tumors regrew in those mice with the stem cell matrix, a result not seen in the other groups.

The treatment could have some promising applications, such as engineering cells to dispense multiple toxins, or even based directly off the patients tumor. Shah predicts there could be clinical trials for this technique within five years.

The research was originally published in the journal Stem Cells.

Source: Harvard University

The rest is here:
Toxin-producing stem cells fight brain tumors where it matters most

Cellular Dynamics receives contract to make eye cells

Cellular Dynamics International(CDI) is getting a $1.2 million contract from the National Eye Institute, part of the National Institutes of Health, as part of an effort to fight macular degeneration, a condition that leads to loss of vision.

By reprogramming skin and blood samples from patients with age-related macular degeneration, CDI will create induced pluripotent stem cells and will turn them into human retina cells. The cells will be put back into the patient's eyes to treat the disorder.

Ten patients have been chosen for a pilot study of the process by the National Eye Institute, CDI said.

The Madison company said the process, called autologous cellular therapy, will be the first in the U.S. using a patient's own reprogrammed cells.

Publicly traded CDI was founded by UW-Madison stem cell pioneer James Thomson in 2004 and manufactures large quantities of human stem cells for drug discovery, safety screening and for stem cell banks.

See the rest here:
Cellular Dynamics receives contract to make eye cells