Author Archives: admin


Even fictional characters have to move to keep up with medical advances as the Tooth Fairy gets replaced by the uber …

(PRWEB UK) 26 September 2014

By day Eden is a stem cell scientist, but can transform herself into the Super Tooth Fairy, or so says BioEden creators of this character.

The Super Tooth Fairy is just one of many delightful characters in an educational tool designed for primary school pupils and teachers.

In this children's story book The Super Tooth Fairy takes the baby teeth away to the laboratory of specialist stem cell bank, BioEden, where they harvest the stem cells for the child. Although the BioKidz concept features fictional characters, the story is based on reality and takes children on a tour of a stem cell laboratory and explains about the work of scientists and doctors.

Whatever the 'old' tooth fairy did in children's stories of yesteryear, the new Super Tooth Fairy has the child's health at the core of her super tooth fairy missions.

To find out more about BioKidz and the work carried out by specialist stem cell bank BioEden, visit http://www.bioeden.com

See original here:
Even fictional characters have to move to keep up with medical advances as the Tooth Fairy gets replaced by the uber ...

Turmeric compound boosts regeneration of brain stem cells

PUBLIC RELEASE DATE:

25-Sep-2014

Contact: Alanna Orpen alanna.orpen@biomedcentral.com 44-0-20-3192-2054 BioMed Central @biomedcentral

A bioactive compound found in turmeric promotes stem cell proliferation and differentiation in the brain, reveals new research published today in the open access journal Stem Cell Research & Therapy. The findings suggest aromatic turmerone could be a future drug candidate for treating neurological disorders, such as stroke and Alzheimer's disease.

The study looked at the effects of aromatic (ar-) turmerone on endogenous neutral stem cells (NSC), which are stem cells found within adult brains. NSC differentiate into neurons, and play an important role in self-repair and recovery of brain function in neurodegenerative diseases. Previous studies of ar-turmerone have shown that the compound can block activation of microglia cells. When activated, these cells cause neuroinflammation, which is associated with different neurological disorders. However, ar-turmerone's impact on the brain's capacity to self-repair was unknown.

Researchers from the Institute of Neuroscience and Medicine in Jlich, Germany, studied the effects of ar-turmerone on NSC proliferation and differentiation both in vitro and in vivo. Rat fetal NSC were cultured and grown in six different concentrations of ar-turmerone over a 72 hour period. At certain concentrations, ar-turmerone was shown to increase NSC proliferation by up to 80%, without having any impact on cell death. The cell differentiation process also accelerated in ar-turmerone-treated cells compared to untreated control cells.

To test the effects of ar-turmerone on NSC in vivo, the researchers injected adult rats with ar-turmerone. Using PET imaging and a tracer to detect proliferating cells, they found that the subventricular zone (SVZ) was wider, and the hippocampus expanded, in the brains of rats injected with ar-turmerone than in control animals. The SVZ and hippocampus are the two sites in adult mammalian brains where neurogenesis, the growth of neurons, is known to occur.

Lead author of the study, Adele Rueger, said: "While several substances have been described to promote stem cell proliferation in the brain, fewer drugs additionally promote the differentiation of stem cells into neurons, which constitutes a major goal in regenerative medicine. Our findings on aromatic turmerone take us one step closer to achieving this goal."

Ar-turmerone is the lesser-studied of two major bioactive compounds found in turmeric. The other compound is curcumin, which is well known for its anti-inflammatory and neuroprotective properties.

###

Original post:
Turmeric compound boosts regeneration of brain stem cells

Def Leppard's Vivian Campbell Addresses His Stem Cell Treatment

09/26/2014 . Def Leppard's Vivian Campbell has issued a statement about his upcoming stem cell transplant, which he hopes will keep Hodgkin's lymphoma from returning again.

Campbell was diagnosed with the cancer in 2013, which briefly went into remission only to return again. He received further treatment and cancer is once again in remission and he will be undergoing the stem cell transplant in an attempt to keep the cancer from returning once again.

He wrote on the band's official website, "As many of you know, I've been scheduled to start a stem cell transplant and as soon as I got home from tour I began the necessary tests and preparations. I'll be admitted to hospital soon for all the yucky bits, so in the meantime I'm headed to Target to stock up on cozy pajamas, fresh underwear, and a sackful of car-porn.

"Unfortunately, this means that I won't be able to perform with the band on the upcoming NFL broadcast on Sept. 28th, nor will I be able to do the shows scheduled for Oct/Nov.

"While I can't say that I'm looking forward to the process ahead, I'm very much looking forward to what I feel will be a most successful outcome. Next year will be very busy for Def Leppard with a new album and a world tour, and frankly, I don't think they would sound as loud without me, so I have no intention of letting the team down!

"See you all (with hair!) in 2015. - Viv"

...end

More:
Def Leppard's Vivian Campbell Addresses His Stem Cell Treatment

Scientists Identify Key Factor That Maintains Stem Cell Identity

Contact Information

Available for logged-in reporters only

Newswise A protein implicated in several cancers appears to play a pivotal role in keeping stem cells in an immature pluripotent state, according to a new study by NYU Langone Medical Center scientists. The study is published online today in Cell Reports.

Stem cells are the perpetual adolescents of the cellular world, uncommitted to any cell fate. In principle, they can be programmed to differentiate into any mature cell type, holding the promise of regenerating tissues and organs. A fuller understanding of their biology, however, is needed.

Our finding provides a better understanding of the complexity of how the stem cell state is regulated, says Eva M. Hernando-Monge, PhD, associate professor of pathology and a member of the Helen L. and Martin S. Kimmel Center for Stem Cell Biology at NYU Langone Medical Center.

The newly identified stem cell factor is BRD4, a protein associated with several cancers and the target of prospective therapies currently in clinical trials. In 2013, Dr. Hernando-Monge and colleagues found that BRD4 is overexpressed in melanoma cells and helps sustain their proliferation, whereas inhibiting BRD4 greatly slows their growth. The protein appeared to drive cancer in part by keeping cancer cells in a relatively immature, stem cell-like state. Intrigued, Dr. Hernand-Monge wanted to find out what role the protein played in actual stem cells.

In the new study, Dr. Hernando-Monges team inhibited BRD4s activity in mouse and human embryonic stem cells using BRD4-blocking compounds developed by collaborator Ming-Ming Zhou and colleagues at the Icahn School of Medicine at Mount Sinai. They also used special RNA molecules that block BRD4 gene transcripts, and observed the cells shift out of the stem cell state. As they divided, the cells began to show characteristics of young neurons. Stem cells are thought to maintain a state of quiescence until some signal forces them to divide, producing a differentiated, highly specialized cell.

BRD4 has been known to regulate gene activity by binding to the support structure of DNA, called chromatin, at special switch sites called super-enhancers distributed throughout the genome. These sites are believed to be top-level controllers, orchestrating the distinctive expression patterns of several genes that together determine specific cell types such as nerve or muscle.

We found that BRD4 occupies the super-enhancer sites of genes that are important for maintaining stem cell identity, says Raffaella Di Micco, PhD, a postdoctoral fellow who conceived the research project with Dr. Hernando-Monge and performed most of the experiments. These genes, including OCT4 and PRDM14, showed steep drops in expression when Dr. Di Micco applied BRD4 inhibitors to stem cells.

OCT4 also represses neuronal differentiation, so we think that the loss of that repression with BRD4 inhibition is the most likely reason for the induction of neuronal characteristics in the stem cells, says Dr. Di Micco.

View post:
Scientists Identify Key Factor That Maintains Stem Cell Identity

Biomarkers, Stem Cells Offer New Ways to Treat Deadly Gut Disease in Premature Babies

Contact Information

Available for logged-in reporters only

Newswise Columbus, OH. Premature babies face a host of medical challenges at birth, but none as deadly and mysterious as a disease called necrotizing enterocolitis (NEC). The condition creates an inexplicable combination of inflammation and infection that causes parts of the intestine to die. NEC progresses at a ruthless speed, leaving physicians with few options typically supportive care, emergency surgery or antibiotics. Only half of newborns who undergo surgery survive, and they often face serious life-long complications.

In the fifty years since necrotizing enterocolitis was first identified, weve accomplished relatively little to change its devastating course. Even worse, we dont know which babies will get it. One minute, a child can appear healthy, but then be dead from NEC hours later, said Gail Besner, MD, chief of pediatric surgery at Nationwide Childrens Hospital.

That may be about to change thanks to two major breakthroughs driven by Besner and Surgeon-in-Chief at Nationwide Childrens R. Lawrence Moss, MD.

After nearly two decades of work, their separate efforts have yielded both the discovery of a biomarker that can help predict which babies will get the disease, as well as treatments that can restore the intestines natural ability to protect itself against NEC.

These researchers advances offer innovative approaches to necrotizing enterocolitis that may someday make it a more predictable and better managed complication of prematurity, said John Barnard, MD, President of the Nationwide Childrens Research Institute and Pediatric Director of The Ohio State University Center for Clinical and Translational Science (CCTS).

Growth factors, stem cells offer gut protection For Besner, the key has always been to prevent NEC before it can start. In the 1990s, she began looking closely at what was happening at the molecular level to an immature bowel in the throes NEC. Besner made a major discovery, observing that a protein called heparin-binding EGF-like growth factor (HB-EGF) which she initially discovered played a life and death role in protecting premature infants from NEC.

In numerous studies, Besner showed that without HB-EGF, the structures within the intestines that maintain barrier function and integrity, including a massive network of nerves and blood vessels, became easily injured and beyond repair. The addition of HB-EGF had the opposite effect, helping protect intestines from injury in animal models of NEC.

From that molecular level understanding of NEC, Besner developed a bigger picture hypothesis about how the nerve damage within an immature gut impacted the diseases development and progression and where a solution might be found.

See the original post here:
Biomarkers, Stem Cells Offer New Ways to Treat Deadly Gut Disease in Premature Babies

The Adult Stem Cell Technology Center, LLC Presents Its New Company Initiatives At The 2014 BioPharm America …

Boston, Massachusetts (PRWEB) September 25, 2014

The ASCTCs (website) Director James L. Sherleys first BioPharm America (conference website) experience got off to a remarkable beginning on Day 1 of the conference. After an impromptu decision to participate in the events Perfect Pitch competition, which involved about 40 company contestants, ASCTC tied for second place. As one of a few companies in the stem cell and regenerative medicine space at the conference, this success led to some attendees referring to Sherley as that stem cell guy. Sherley smiled, I take it as a fun compliment. I do think it was the unique presence of ASCTC as one of a few stem cell companies present in a sea of drug development companies that contributed to our success.

However, the ASCTCs pitch to a panel of Pharma investors was in fact more about drugs than stem cells. Sherley pitched the companys partnership venture with AlphaSTAR Corporation (ASC; website) located in Long Beach, California. ASC develops computer simulation analyses to predict the integrity failure of complex composite materials used to build aircraft, racing cars, and other high stress vehicles like the space shuttle. The two companies have integrated their respective expertise to produce a first-of-its-kind computer simulation-based technology for identifying, at the beginning of the drug development pipeline, drug candidates that are toxic to tissue stem cells. Such toxicity causes drugs to fail in expensive preclinical studies and clinical trials, and even after marketing.

At the conference, Sherley commented, I think we are starting to get their [drug companies] attention now. In his pitch of the new AlphaStem tissue stem cell toxicity technology, he emphasized that the ASCTC projects that this technology could save the U.S. Pharma industry about $4 billion of the estimated $40 billion that it spends on failed drug candidates each year. Besides reducing cost and accelerating the development of needed new drugs, the AlphaStem technology would reduce that exposure of patients to particularly harmful drug candidates.

The ASCTC was not the only company at the conference active within the regenerative medicine space. On the first evening of the conference, ASCTC was one of several guest companies and academic institutions in the regenerative medicine space that were invited to a VIP dinner co-hosted by BioPharm Americas producer, EBD Group, and the Alliance for Regenerative Medicine. The guest party dined at the Top of the Hub Restaurant on the top floor of Bostons Prudential Tower.

BioPharm America conferences are designed to arrange many one-to-one meetings among participants of diverse expertise in the international pharmaceutical industry. Over the three-day conference, ASCTC Director Sherley met with Pharma executives, contract research organization directors, Pharma business development consultants, and Pharma investment group partners towards establishing new strategic relationships for the company.

On the final morning of the conference, the ASCTC was one of eleven companies selected to present in the Next Generation Company session. Director Sherley focused his presentation on how the ASCTCs unique expertise in tissue stem cell asymmetric self-renewal gives the company its exclusive position in commercialization of technologies for counting, manufacturing, and monitoring human tissue stem cells. Asymmetric self-renewal is the defining property of tissue stem cells that allows them to maintain the genomic blueprint of human tissues while continuously producing the building block cells of body tissues at the same time. Sherley expressed that asymmetrically self-renewing stem cells in organs and tissues of children and adults will eventually be understood as the fulcrum at the center, between the mature industry of pharmaceutical therapeutics and the emerging industry of cell-based therapeutics. Thats the ASCTC vision.

************************************************************************************************************* The Adult Stem Cell Technology Center, LLC is a Massachusetts life sciences company established in September 2013 (ASCTC; join mailing list). ASCTC Director and founder, James L. Sherley, M.D., Ph.D. is the foremost authority on the unique properties of adult tissue stem cells. The companys patent portfolio contains biotechnologies that solve the three main technical problems production, quantification, and monitoring that have stood in the way of successful commercialization of human adult tissue stem cells for regenerative medicine and drug development. In addition, the portfolio includes novel technologies for isolating cancer stem cells and producing induced pluripotent stem cells. Currently, ASCTC is employing its technological advantages to pursue commercialization of mass-produced therapeutic human liver cells and facile assays that are early warning systems for drug candidates with catastrophic toxicity due to adverse effects against adult tissue stem cells.

View post:
The Adult Stem Cell Technology Center, LLC Presents Its New Company Initiatives At The 2014 BioPharm America ...