Author Archives: admin


Stem cell transplant does not cure SHIV/AIDS after irradiation of infected rhesus macaques

PUBLIC RELEASE DATE:

25-Sep-2014

Contact: Guido Silvestri gsilves@emory.edu 404-727-9139 PLOS

A study published on September 25th in PLOS Pathogens reports a new primate model to test treatments that might cure HIV/AIDS and suggests answers to questions raised by the "Berlin patient", the only human thought to have been cured so far.

Being HIV-positive and having developed leukemia, the Berlin patient underwent irradiation followed by a bone-marrow transplant from a donor with a mutation that abolishes the function of the CCR5 gene. The gene codes for a protein that facilitates HIV entry into human cells, and the mutationin homozygous carriers who, like the donor, have two defective copiesprotects against HIV infection.

Several factors could have contributed to the cure of HIV/AIDS in the patient: (1) the ablation of blood and immune cells following irradiation killed all or many of the viral reservoir cells that are not eliminated by antiretroviral treatment (ART); (2) the CCR5 deletion mutation in the donor cells protected them and their progeny from HIV infection; (3) a "graft versus host" reaction occurred, where the transplanted cells and their progeny recognize the host cells as foreign and attacked and eliminated HIV-positive reservoir cells that survived the irradiation.

Guido Silvestri, from Emory University in Atlanta, USA, and colleagues investigated the relative contribution of the irradiation to eliminate the reservoir of HIV-infected cells. The scientists worked with the animal model of Simian Immunodeficiency Virus (SIV, a close relative of HIV that infects primates and causes a disease similar to AIDS) infection in rhesus macaques. Using a total of six monkeys (three of which served as controls and did not receive transplants) they performed, for the first time, hematopoietic stem cell transplantation in rhesus macaques infected with a chimeric simian/human immunodeficiency virus (SHIV) and treated with ART.

The researchers harvested hematopoetic stem cells from three macaques prior to infection (of all six animals) with SHIV. They also treated the macaques with ART to reduce viral load and mimic the situation in human HIV-infected patients on ART. They then exposed the three monkeys from which they had collected hematopietic stem cells to a high dose of radiation. This killed most of their existing blood and immune cells, including between 94 and 99% of their CD4-T cellsthe main target of HIV infectionin the blood. The irradiation was followed by transplantation of each monkey's own virus-free hematopoietic stem cells. The latter can regenerate the blood and immune cells, and did so in all three monkeys within 3 to 6 weeks. Because the transplanted cells are not from a different donor, no graft versus host disease would be expected, and none was observed.

After that time, the scientists stopped ART in all six monkeys. As expected, the virus rebounded rapidly in the control animals. Of the three transplanted animals, two also showed a rapid rebound. The third monkey developed kidney failure two weeks after ART was stopped and was euthanized. It still had undetectable levels of virus in the blood at that time, but post-mortem analysis showed low levels of viral DNA in a number of tissues, arguing that none of the three transplanted monkeys was cured.

The researchers acknowledge a number of limitations of the study, including the small number of monkeys, and the relatively short period of ART prior to irradiation and transplantation. Nonetheless, they say their study "supports the hypothesis that myeloablative total body irradiation can cause a significant decrease in the viral reservoir in blood cells, even though it was not sufficient to eliminate all reservoirs". Their results, they say, suggest that in the cure of the Berlin patient, "the use of the CCR5 mutant donor and/or the presence of graft versus host disease played a significant role".

View post:
Stem cell transplant does not cure SHIV/AIDS after irradiation of infected rhesus macaques

Def Leppard's Vivian Campbell Having Stem-Cell Surgery

09/24/2014 . Def Leppard frontman Joe Elliot revealed in a new radio interview this week that guitarist Vivian Campbell will be "out of action" until Christmas as he will be undergoing stem-cell surgery in his cancer fight.

Campbell is officially in remission for the second time and will be receiving the treatment in hopes that it will prevent the cancer from returning. Elliot told Las Vegas radio station KOMP 92.3's '92 Minutes of Hair With Mel' show (via Loudwire), "Vivian, for the second time, is now in remission.

"The first time we were told he was in remission and he was, but it didn't take. It didn't stay; it came back. But this time, through clever management with his doctors, they were able to monitor him through the whole tour, so he could do the tour with KISS this summer."

Elliot went on to say, "As we speak, he's getting ready to go in to have stem-cell surgery, which will hopefully get rid of this thing once and for all. So, up until Christmas, he's gonna be kind of out of action, because once they start on this, they have to keep him so locked down and away from germs and stuff.

"I think anybody visiting him has to put on one of those nuclear suits. He'll be locked away and he'll be the boy in the bubble, but he's very confident that he can do this and his spirits are great."

There is no word is Vivian will be joining the band this Sunday when they perform the pregame show at the NFL game between The Oakland Raiders and the Miami Dolphins in London.

Elliott had this to say about the show, "Having most recently visited Wembley in May to watch Sheffield United in the FA Cup semi-final, I know what the atmosphere in the ground is like for 'our' football so I'm really looking forward to performing there before the NFL game and of course soaking up the excitement of the actual match. I can't wait!"

Listen to the full interview at Loudwire here.

...end

Continue reading here:
Def Leppard's Vivian Campbell Having Stem-Cell Surgery

Cell Isolation/Cell Separation Market Worth $5.1 Billion by 2019

DALLAS, September 24, 2014 /PRNewswire/ --

According to the new market research report "Cell Isolation/Cell Separation Marketby Product (Reagent, Media, Bead, centrifuge), Cell Type (human, stem cell, animal), Technique (Filtration, Surface Marker),by Application (Research, IVD) &by End user (Hospital, Biotechnology) - Forecast to 2019", published by MarketsandMarkets, provides a detailed overview of the major drivers, restraints, challenges, opportunities, current market trends, and strategies impacting the Cell Isolation Market along with the estimates and forecasts of the revenue and share analysis.

Browse 194 market data tables and 53 figures spread through 211 pages and in-depth TOC on"Cell Isolation/Cell Separation"

http://www.marketsandmarkets.com/Market-Reports/cell-isolation-market-103931479.html Early buyers will receive 10% customization on this report.

The global Cell Isolation Market is expected to reach $5.1 Billion by 2019 from $2.5 Billion in 2014, growing at a CAGR of 15.8% from 2014 to 2019.

The report segments this market on the basis of product, cell type, technique, application, and end user. Among various techniques, the centrifugation-based cell isolation technique is expected to account for the largest share in 2014, while surface marker-based cell isolation technique is expected to account for the fastest-growing segment in the cell isolation market, owing to technological advancement due to which new products are being launched in the market. Furthermore, rising usage of surface market-based cell isolation techniques in stem cell and cancer research is another major reason for the growth of this market.

Based on geography, the global Cell Isolation Market is segmented into North America, Europe, Asia, and Rest of the World (RoW). North America is expected to account for the largest share of the market by the end of 2014. The large share of this region can be attributed to various factors including increasing government support for cancer and stem cell research and expanding biotechnology and biopharmaceutical industries in this region.

Further Inquiry:http://www.marketsandmarkets.com/Enquiry_Before_Buying.asp?id=103931479

Prominent players in the Cell Isolation Market are BD Biosciences (U.S.), Danaher Corporation (U.S.), GE Healthcare (U.K.), Merck Millipore (U.S.), Miltenyi Biotec (Germany), pluriSelect (U.S.), STEMCELL Technologies (Canada), Sigma-Aldrich Corporation (U.S.), Terumo BCT (U.S.), and Thermo Fisher Scientific, Inc. (U.S.).

Browse related reports

Go here to see the original:
Cell Isolation/Cell Separation Market Worth $5.1 Billion by 2019

Image sensor for analysis of blood samples for early diagnosis of diabetes and Alzheimer's disease

17 hours ago Fig. 1: Semiconductor image sensor

Professor Kazuaki Sawada and Dr. Takigawa of the National Center for Geriatrics and Gerontology and colleagues at Toyohashi University of Technology have established an easy to use, low-cost, rapid, and high sensitivity semiconductor-imaging based medical diagnostic biosensing system for analyzing blood and urine for early diagnosis of ailments including diabetes and Alzheimer's disease.

The new biosensing technology consists of a semiconductor image sensor ( 'charge coupled device' developed by Toyohashi University of Technology) that is sensitive to extremely small changes in electric potential, and microbeads on which antigen-antibody reactions take place. This technology will enable monitoring and diagnosis of diseases for which specific markers are known using very small volumes of blood or urine. Specifically, this technology has detected amiloid beta-peptide, an agent responsible for Alzheimer's disease.

Contracting a disease leads to expression of proteins specific to the diseases in the blood. This new technology is used for early diagnosis of diseases by using this specific protein as the antigen and a marker that captures the protein as the antibody and checking their antigen-antibody reaction. Conventional protocols used to monitor antibody-antigen reactions employ fluorescent probes and detection of fluorescence with microscopic cameras. This process is time consuming because of the necessity to measure fluorescence from the probes and cannot be used to detect low concentrations of antigens when the fluorescence intensity is too low to detect optically.

With this technology, an antigen-antibody reaction is used as in conventional methods, but fluorescence is not measured. Instead, this method employs a semiconductor image sensor to detect minute changes in electric potential generated during an antigen-antibody reaction.

The semiconductor image sensor [Fig. 1] consists of 128 128 pixels that independently sense minute changes in electric potential. The detection sensitivity of antigen-antibody reactions was significantly increased by using microbeads [Fig. 2]. The figures of merit of this technology are given in Table 1. Multiple diseases can also be simultaneously diagnosed by placing different antibodies on different sensing pixels out of a total of 16,384 pixels (128128).

Implementation of the technology will be tested for daily control of lifestyle diseases such as diabetes and in future the technology will be expanded for the early diagnosis of Alzheimer's and Parkinson' diseases.

Explore further: New technique could benefit Alzheimer's diagnosis

More information: Akiteru Kono et al, "Label free bio image sensor for real time monitoring of potassium ion released from hippocampal slices," Sensors and Actuators B 201, 439443, (2014). dx.doi.org/10.1016/j.snb.2014.04.019

A new recombinant antibody can detect and isolate mesenchymal stem cells (MSCs), a nonembryonic source of stem cells with promising applications in tissue engineering, blood stem cell transplantation, and ...

Here is the original post:
Image sensor for analysis of blood samples for early diagnosis of diabetes and Alzheimer's disease

Stemedix Stem Cell Therapy for ALS – Patient Experience: Dr. Robert K., MD – Video


Stemedix Stem Cell Therapy for ALS - Patient Experience: Dr. Robert K., MD
Stemedix treats Dr. Robert K., MD. for ALS (Amyotrophic Lateral Sclerosis). Dr. Robert speaks about his patient experience with Stemedix after receiving Stemedix adipose stem cell treatment....

By: Stemedix

Visit link:
Stemedix Stem Cell Therapy for ALS - Patient Experience: Dr. Robert K., MD - Video

Stem cell centre proposed for resort

Xia Jie.

Medical entrepreneur Xia Jie, whose company Health 100 owns the largest chain of health clinics in China, plans to open overseas facilities to cater for wealthy clients.

That could result in an investment of about $20 million in a regenerative treatment centre in the resort, making it a Mecca for health tourism and athlete injury rehabilitation.

''We're now negotiating with the local medical teams,'' Mr Xia said yesterday through an interpreter while on a four-day fact-finding mission to Queenstown.

''Health 100 really wants to find beautiful cities around the world to take Chinese patients to and Queenstown is one of them.

''The vision is to bring the very high-end customers to have special treatment which is not carried out elsewhere in the world,'' he said.

Health 100 would invest with existing firms Queenstown Regenerative Medicine (QRM), run by Marcelle Noble, and the Queenstown Skin Institute.

Both have small premises at Remarkables Park in Frankton.

Queenstown Skin Institute director Dr Hans Raetz said Mr Xia had indicated plans for a much larger centre, with sites in Remarkables Park, Jacks Point or the Five Mile development off Frankton Ladies Mile already earmarked.

''The size depends on Mr Xia, but we've been talking between $10 million and $20 million.

Go here to see the original:
Stem cell centre proposed for resort