Author Archives: admin


ViaCyte starts diabetes trial

ViaCyte is developing a drug delivery system that enables implanted pancreatic progenitor cells to survive and differentiate into functioning insulin-producing islet cells.

Correction: The number to call for more information on the diabetes clinical trial is 858-657-7039. An incorrect number was originally provided.)

ViaCyte has started a clinical trial of its diabetes treatment derived from stem cells, the first such treatment ever tested in people.

UC San Diego said Tuesday it is hosting the Phase 1 trial in partnership with San Diego-based ViaCyte. The biotech company grows islet cells from human embryonic stem cells. The cells are placed into a semi-permeable envelope and implanted into the patient. In animals, the stem cells mature into islet cells, successfully controlling blood sugar.

The treatment could provide what the company calls a virtual cure for Type 1 diabetes, which is caused by a lack of insulin-producing "islet" cells in the pancreas. About 40 people are being sought for the trial. Those interested should call Todd May at 858-657-7039.

Success would not only provide a tremendous boost for the privately held biotech company, but also California's stem cell agency, which has provided nearly $40 million in funding.

The agency, the California Institute for Regenerative Medicine, is scheduled to vote Wednesday on approving a recommended $16.6 million for ViaCyte to help with clinical trials. CIRM will eventually have to get more money as the $3 billion approved by California voters under Prop. 71 in 2004 is used up.

Paul Laikind, CEO of ViaCyte, which is making a treatment for diabetes from human embryonic stem cells.

The ViaCyte trial's goals are to assess safety and whether the cells are actually making insulin, said Paul Laikind, ViaCyte's chief executive. A longer-term goal is to determine if the cells made other hormones that regulate blood sugar levels. These are glucagon, which in contrast to insulin raises blood sugar levels, and somatostatin, which regulates both insulin and glucagon.

If the full array of hormones are produced, it's hoped that ViaCyte's product will perform like a natural pancreas, Laikind said. While the trial is starting at UCSD, Laikind said the company intends to expand it to other centers.

Original post:
ViaCyte starts diabetes trial

Combining antibodies, iron nanoparticles and magnets steers stem cells to injured organs

PUBLIC RELEASE DATE:

10-Sep-2014

Contact: Sally Stewart sally.stewart@cshs.org 310-248-6566 Cedars-Sinai Medical Center

LOS ANGELES Researchers at the Cedars-Sinai Heart Institute infused antibody-studded iron nanoparticles into the bloodstream to treat heart attack damage. The combined nanoparticle enabled precise localization of the body's own stem cells to the injured heart muscle.

The study, which focused on laboratory rats, was published today in the online peer reviewed journal Nature Communications. The study addresses a central challenge in stem cell therapeutics: how to achieve targeted interactions between stem cells and injured cells.

Although stem cells can be a potent weapon in the fight against certain diseases, simply infusing a patient with stem cells is no guarantee the stem cells will be able to travel to the injured area and work collaboratively with the cells already there.

"Infusing stem cells into arteries in order to regenerate injured heart muscle can be inefficient," said Eduardo Marbn, MD, PhD, director of the Cedars-Sinai Heart Institute, who led the research team. "Because the heart is continuously pumping, the stem cells can be pushed out of the heart chamber before they even get a chance to begin to heal the injury."

In an attempt to target healing stem cells to the site of the injury, researchers coated iron nanoparticles with two kinds of antibodies, proteins that recognize and bind specifically to stem cells and to injured cells in the body. After the nanoparticles were infused into the bloodstream, they successfully tracked to the injured area and initiated healing.

"The result is a kind of molecular matchmaking," Marbn said. "Through magnetic resonance imaging, we were able to see the iron-tagged cells traveling to the site of injury where the healing could begin. Furthermore, targeting was enhanced even further by placing a magnet above the injured heart."

The Cedars-Sinai Heart Institute has been at the forefront of developing investigational stem cell treatments for heart attack patients. In 2009, Marbn and his team completed the world's first procedure in which a patient's own heart tissue was used to grow specialized heart stem cells. The specialized cells were then injected back into the patient's heart in an effort to repair and regrow healthy muscle in a heart that had been injured by a heart attack. Results, published in The Lancet in 2012, showed that one year after receiving the stem cell treatment, heart attack patients demonstrated a significant reduction in the size of the scar left on the heart muscle.

View post:
Combining antibodies, iron nanoparticles and magnets steers stem cells to injured organs

Clinical Trial to Test Safety of Stem Cell-Derived Therapy for Type 1 Diabetes

Contact Information

Available for logged-in reporters only

Newswise Researchers at the University of California, San Diego School of Medicine, in partnership with ViaCyte, Inc., a San Diego-based biotechnology firm specializing in regenerative medicine, have launched the first-ever human Phase I/II clinical trial of a stem cell-derived therapy for patients with Type 1 diabetes.

The trial will assess the safety and efficacy of a new investigational drug called VC-01, which was recently approved for testing by the U.S. Food and Drug Administration. The 2-year trial will involve four to six testing sites, the first being at UC San Diego, and will recruit approximately 40 study participants.

The goal, first and foremost, of this unprecedented human trial is to evaluate the safety, tolerability and efficacy of various doses of VC-01 among patients with type 1 diabetes mellitus, said principal investigator Robert R. Henry, MD, professor of medicine in the Division of Endocrinology and Metabolism at UC San Diego and chief of the Section of Endocrinology, Metabolism & Diabetes at the Veterans Affairs San Diego Healthcare System. We will be implanting specially encapsulated stem cell-derived cells under the skin of patients where its believed they will mature into pancreatic beta cells able to produce a continuous supply of needed insulin. Previous tests in animals showed promising results. We now need to determine that this approach is safe in people.

Development and testing of VC-01 is funded, in part, by the California Institute for Regenerative Medicine, the states stem cell agency, the UC San Diego Sanford Stem Cell Clinical Center and JDRF, the leading research and advocacy organization funding type 1 diabetes research.

Type 1 diabetes mellitus is a life-threatening chronic condition in which the pancreas produces little or no insulin, a hormone needed to allow glucose to enter cells to produce energy. It is typically diagnosed during childhood or adolescence, though it can also begin in adults. Though far less common than Type 2 diabetes, which occurs when the body becomes resistant to insulin, Type 1 may affect up to 3 million Americans, according to the JDRF. Among Americans age 20 and younger, prevalence rose 23 percent between 2000 and 2009 and continues to rise. Currently, there is no cure. Standard treatment involves daily injections of insulin and rigorous management of diet and lifestyle.

Phase I/II clinical trials are designed to assess basic safety and efficacy of therapies never before tested in humans, uncovering unforeseen risks or complications. Unpredictable outcomes are possible. Such testing is essential to ensure that the new therapy is developed responsibly with appropriate management of risks that all medical treatments may present.

This is not yet a cure for diabetes, said Henry. The hope, nonetheless, is that this approach will ultimately transform the way individuals with Type 1 diabetes manage their disease by providing an alternative source of insulin-producing cells, potentially freeing them from daily insulin injections or external pumps.

This clinical trial at UC San Diego Health System was launched and supported by the UC San Diego Sanford Stem Cell Clinical Center. The Center was recently created to advance leading-edge stem cell medicine and science, protect and counsel patients, and accelerate innovative stem cell research into patient diagnostics and therapy.

Continued here:
Clinical Trial to Test Safety of Stem Cell-Derived Therapy for Type 1 Diabetes

In directing stem cells, study shows context matters

20 hours ago by Terry Devitt When blank slate stem cells are exposed to a soft as opposed to a hard surface on which to grow, they begin to transform themselves into neurons, the large, complex cells of the central nervous system. Absent any soluble factors to direct cell differentiation, surface matters, according to new research from the lab of University of Wisconsin-Madison chemist and biochemist Laura Kiessling. Credit: Kiessling Lab/UW-Madison

Figuring out how blank slate stem cells decide which kind of cell they want to be when they grow upa muscle cell, a bone cell, a neuronhas been no small task for science.

Human pluripotent stem cells, the undifferentiated cells that have the potential to become any of the 220 types of cells in the body, are influenced in the lab dish by the cocktail of chemical factors and proteins upon which they are grown and nurtured. Depending on the combination of factors used in a culture, the cells can be coaxed to become specific types of cells.

Now, in a new study published today, Sept. 8, in the Proceedings of the National Academy of Sciences, a team of researchers from the University of Wisconsin-Madison has added a new wrinkle to the cell differentiation equation, showing that the stiffness of the surfaces on which stem cells are grown can exert a profound influence on cell fate.

"To derive lineages, people use soluble growth factors to get the cells to differentiate," explains Laura Kiessling, a UW-Madison professor of chemistry and biochemistry and stem cell expert.

Past work, she notes, hinted that the qualities of the surface on which a cell lands could exert an influence on cell fate, but the idea was never fully explored in the context of human pluripotent stem cell differentiation.

In the lab, stem cells are grown in plastic dishes coated with a gel that contains as many as 1,800 different proteins. Different factors can be introduced to obtain certain types of cells. But even in the absence of introduced chemical or protein cues, the cells are always working to differentiatebut in seemingly random, undirected ways.

The Wisconsin group, directed by Kiessling and led by chemistry graduate student Samira Musah, decided to test the idea that the hardness of a surface can make a difference. After all, in a living body, cells seek different niches with different qualities and transform themselves accordingly.

"Many cell types grow on a surface. If a cell is near bone, the environment has certain features," says Kiessling, whose groupcollaborating with UW-Madison colleagues Sean Palecek, Qiang Chang and William Murphyhas been working to produce precise, chemically defined surfaces on which to grow stem cells. "A cell will react differently if it lands near soft tissue like the brain."

To fully explore the idea that surface matters to a stem cell, Kiessling's group created gels of different hardness to mimic muscle, liver and brain tissues. The study sought to test whether the surface alone, absent any added soluble factors to influence cell fate decisions, can have an effect on differentiation.

The rest is here:
In directing stem cells, study shows context matters

Okyanos Cardiac Cell Therapy Clinic Scheduled to Open

Freeport, Grand Bahama (PRWEB) September 08, 2014

Adult stem cell therapy for heart disease has emerged as a new treatment alternative for those living with a poor quality of life as a result of severe coronary artery disease. Okyanos is slated to begin delivering this innovative new treatment in the next several weeks, and is now screening qualified heart disease candidates. The procedure will be performed in their newly constructed state-of-the-art Phillips catheterization lab, as announced last month.

Just 50 miles from US shore, Okyanos cardiac cell therapy is available to qualified patients with advanced stages of coronary artery disease (CAD) and congestive heart failure (CHF). The screening process consists of a thorough review of your medical history by the Okyanos Chief Medical Officer and Cardiologist, Dr. Howard Walpole, as well as consultation done in conjunction with your cardiologist. You must be able to travel as the protocol is delivered in Freeport on Grand Bahama Island.

"As a leader in cardiac cell therapy, Okyanos is very excited to bring this innovative treatment and new standard of care to patients in a near-shore, regulated jurisdiction, said Matt Feshbach, CEO and co-founder of Okyanos. Our innovative treatment will restore blood flow to the heart helping it begin the process of healing itself, thereby improving the quality of life for heart disease patients who have exhausted all other options.

Over 12 million Americans suffer from some form of heart disease costing $108.9 billion dollars annually in the US alone. Several million patients have now exhausted the currently available methods of treatment but continue to suffer daily from chronic heart disease symptoms such as shortness of breath, fatigue and chest discomfort that can make simple activities challenging. Cardiac cell therapy stimulates the growth of new blood vessels which can lead to reduced angina and reduced re-hospitalizations resulting in an improvement in quality of life.

The Okyanos procedure is performed by prestigious US-licensed chief cardiologist, Dr. Howard Walpole. It is the first cardiac cell therapy procedure for heart failure and disease available outside of clinical trials in which the bodys own adult stem cells, derived from fat tissue, are injected directly into the damaged part of the heart via a catheter to restore blood flow and repair tissue damaged by a heart attack or disease.

The procedure begins with the extraction of a small amount of your body fat, a process done using advanced water-assisted liposuction technology. After separating the fat tissue using a European Union-approved cell processing device the Okyanos cardiologist immediately injects these cells into and around the low blood flow regions of the heart via a cathetera protocol which allows for better targeting of the cells to repair damaged heart tissue. Because the treatment is minimally invasive it requires that patients be under only moderate sedation. Post-procedural recovery consists of rest in a private suite for several hours that comfortably accommodates up to 3 family members.

Okyanos Heart Institute is scheduled to begin delivery in the next several weeks. Patients can contact Okyanos at http://www.Okyanos.com or by calling toll free at 1-855-659-2667.

About Okyanos Heart Institute: (Oh key AH nos) Based in Freeport, Grand Bahama, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by CEO Matt Feshbach and Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.A.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive catheterization, stimulate the growth of new blood vessels, a process known as angiogenesis. Angiogenesis facilitates blood flow in the heart and supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos, the Greek god of the river Okeanos, symbolizes restoration of blood flow.

See the article here:
Okyanos Cardiac Cell Therapy Clinic Scheduled to Open

Coming Together For A Cures 6th Annual Benefit for Duchennes Muscular Dystrophy in Wichita, Kansas On Saturday …

Wichita, KS (PRWEB) September 09, 2014

Twenty-eight year-old Ryan Benton has lived with Duchenne Muscular Dystrophy his entire life. In 2009, he was fortunate enough to begin receiving adult stem cell treatments at the Stem Cell Institute in Panama City, Panama. These treatments have had a dramatic impact on Ryan by increasing his muscle strength, enhancing his sense of well being and improving his overall outlook on life.

After receiving his first stem cell treatments, Ryan, along with his siblings Lauren and Blake, recognized that very few people knew much about adult stem cell therapy. So together, they founded Coming Together for a Cure (CTFAC) as a means to raise awareness and funds. Their ultimate goal is to afford others the same opportunity that Ryan has been fortunate enough to receive.

Our family has been extremely blessed by having the opportunity for Ryan to receive adult stem cell treatments. The treatments have given him more strength, balance, endurance and an overall better physical wellbeing. By having this opportunity we hope to share awareness of adult stem cell therapy so that other families can benefit from this advancement in medicine as we have, said Sandra Renard, Ryans mother.

The annual Coming Together for a Cure benefit has grown tremendously over the years. At this years 6th annual event on Saturday September 13th, CTFAC is anticipating its largest crowd ever, of up to 1,000 attendees.

The venue, known as The Farm, is located at 5820 N. Ridge Rd. Wichita, KS 67205. Doors open to the general public at 6:00pm. Starting at 6:30, guests will be treated to live music and entertainment from classic rock, bluegrass and country music bands. Music from Kansas native and current Nashville recording artists, Jared Daniels Band starts at 8:30. Refreshments, concessions, adult beverages and food trucks will also be on hand.

Over the past five years the annual Coming Together for a Cure benefit has raised nearly $60,000. Money raised at each CTFAC event is donated to the Aidan Foundation, a 501(c)(3) non-profit organization founded by renowned stem cell scientist, Neil Riordan, PhD. The Aidan Foundation has funded Ryans treatments since 2009 and continues to provide ongoing funding.

Ryans father George Benton said, Ryan's stem cell treatment has truly become a dream come true. This dream was made possible by our wonderful friends and family who have generously given their talents, their love, and their financial support to Ryan in his quest for a cure. This effort proves that together, we can do anything.

CTFAC Contact Information:

Email: comingtogetherforacure(at)gmail(dot)com Website: comingtogetherforacure.org Facebook: http://www.facebook.com/comingtogetherforacure Twitter: @CTFACbenefit

Read the original here:
Coming Together For A Cures 6th Annual Benefit for Duchennes Muscular Dystrophy in Wichita, Kansas On Saturday ...

Could stem cells from your hip repair your heart after an attack?

Father-of-two James Cross, 55, suffered a heart attack in February Surgeons at the London Chest Hospital offered him a unique chance Experimental therapy involved injecting stem cells from Mr Cross's hip into his heart in the hope they would encourage the organ to repair itself It appears to have worked as Mr Cross's heart muscle function has increased from 21% after the attack to 37% and it is still improving Experts hope the new technique will increase survival rates by a quarter

By John Naish

Published: 20:38 EST, 8 September 2014 | Updated: 07:12 EST, 9 September 2014

James Cross, 55,was offered experimental treatment after suffering a heart attack in February

After James Cross had a heart attack in February, he was given a unique chance for a new life.

Surgeons at the London Chest Hospital offered the 55-year-old experimental therapy that involved injecting his own stem cells into the damaged organ.

This was done in the hope that it would encourage his heart to repair itself.

The injected stem cells should prevent the hearts muscle tissue from becoming increasingly damaged after suffering a lack of oxygen during the heart attack.

And it seems to have worked.

After the heart attack, I had 21 per cent of my heart muscle functioning, as opposed to the normal 61 per cent, says James.

Read more from the original source:
Could stem cells from your hip repair your heart after an attack?

Why age reduces our stem cells' ability to repair muscle

PUBLIC RELEASE DATE:

7-Sep-2014

Contact: Paddy Moore padmoore@ohri.ca 613-737-8899 x73687 Ottawa Hospital Research Institute

Ottawa, Canada (September 7, 2014) As we age, stem cells throughout our bodies gradually lose their capacity to repair damage, even from normal wear and tear. Researchers from the Ottawa Hospital Research Institute and University of Ottawa have discovered the reason why this decline occurs in our skeletal muscle. Their findings were published online today in the influential journal Nature Medicine.

A team led by Dr. Michael Rudnicki, senior scientist at the Ottawa Hospital Research Institute and professor of medicine at the University of Ottawa, found that as muscle stem cells age, their reduced function is a result of a progressive increase in the activation of a specific signalling pathway. Such pathways transmit information to a cell from the surrounding tissue. The particular culprit identified by Dr. Rudnicki and his team is called the JAK/STAT signalling pathway.

"What's really exciting to our team is that when we used specific drugs to inhibit the JAK/STAT pathway, the muscle stem cells in old animals behaved the same as those found in young animals," said Dr. Michael Rudnicki, a world leader in muscle stem cell research. "These inhibitors increased the older animals' ability to repair injured muscle and to build new tissue."

What's happening is that our skeletal muscle stem cells are not being instructed to maintain their population. As we get older, the activity of the JAK/STAT pathway shoots up and this changes how muscle stem cells divide. To maintain a population of these stem cells, which are called satellite cells, some have to stay as stem cells when they divide. With increased activity of the JAK/STAT pathway, fewer divide to produce two satellite cells (symmetric division) and more commit to cells that eventually become muscle fibre. This reduces the population of these regenerating satellite cells, which results in a reduced capacity to repair and rebuild muscle tissue.

While this discovery is still at early stages, Dr. Rudnicki's team is exploring the therapeutic possibilities of drugs to treat muscle-wasting diseases such as muscular dystrophy. The drugs used in this study are commonly used for chemotherapy, so Dr. Rudnicki is now looking for less toxic molecules that would have the same effect.

###

The full article titled "Inhibition of JAK/STAT signaling stimulates adult satellite cell function" was published online September 7, 2014, by Nature Medicine.

More here:
Why age reduces our stem cells' ability to repair muscle

Scientists regenerate rat muscle tissue, with an eye toward human applications

Muscle lost through traumatic injury, congenital defect, or tumor ablation may soon be regenerated from within. A team of researchers at Wake Forest Baptist Medical Center has shown how stem cells in the body of mice and rats can be mobilized to form new muscle in damaged regions.

"Working to leverage the bodys own regenerative properties, we designed a muscle-specific scaffolding system that can actively participate in functional tissue regeneration," explains Sang Jin Lee, senior author on the study. This scaffold was implanted in the rats' tibialis anterior muscle (which is found below the knee), serving as a kind of home for the muscle progenitor cells to grow and develop.

After four weeks, a significant population of host stem cells and a mature network of blood vessels had formed within the scaffolds, with the most effective scaffold holding up to four times the number of cells of plain scaffolds thanks to its myogenic factor a protein, in this case insulin-like growth factor 1, that binds to specific DNA sequences to encourage or accelerate the formation of muscular tissue (in a process called myogenesis).

Current treatment for large-scale muscle repair involves surgically moving a segment of muscle from one part of the body to another, resulting in reduced functionality at the donor site (and usually also at the implant site, compared to pre-injury or pre-tumor).

A new technique already under development involves taking a smaller number of healthy muscle cells from the body, expanding them in the lab, and then combining with a natural and/or synthetic biomaterial scaffold for later implantation. But this requires a donor tissue biopsy and it often results in a heterogenous (diverse) sample of cells that's difficult to standardize ahead of the extensive cell expansion process.

"Our aim was to bypass the challenges of both of these techniques and to demonstrate the mobilization of muscle cells to a target-specific site for muscle regeneration," Lee says.

Having achieved that goal, the scientists will now evaluate whether the regenerated muscle can restore function. They will also test the clinical feasibility of using the approach in humans and other large animals.

A paper describing the research appeared in the journal Acta Biomaterialia.

Source: Wake Forest Baptist Medical Center

Here is the original post:
Scientists regenerate rat muscle tissue, with an eye toward human applications

Beverly Hills Orthopedic Institute Becomes R3 Stem Cell Center of Excellence

Beverly Hills, California (PRWEB) September 08, 2014

Beverly Hills Orthopedic Institute has become an R3 Stem Cell Center of Excellence. Patients are immediately able to benefit from the regenerative medicine procedures at the Center, including bone marrow or amniotic derived stem cells for arthritis, sports injuries, and all types of chronic pain issues. Call R3 Stem Cell for scheduling at (844) GET-STEM.

R3 Stem Cell works with the best Board Certified providers nationwide, bringing the latest cutting edge regenerative medicine procedures to those in need. The top Beverly Hills orthopedic surgeon, Dr. Raj, is the medical director of Beverly Hills Orthopedic Institute and has performed over 50 stem cell procedures to date. Patients have include elite athletes, celebrities, executives, students, manual laborers and senior citizens. In other words, every walk of life can benefit.

The procedures offered include stem cell therapy for arthritis, back pain, cartilage defects, tendonitis, migraines, fracture healing and ligament injuries. The procedures are often able to help patients avoid the need for surgery and provide excellent pain relief with increased function.

Said R3 CEO Bob Maguire, MBA, Dr. Raj is a highly respected, skilled and compassionate provider who is committed to providing cutting edge options to his patients. It can help them heal faster while achieving pain relief. Thats what R3 Centers of Excellence strive for and have been very successful with to date.

Several different types of regenerative medicine procedures are offered at the R3 Center of Excellence. Amniotic stem cell procedures have shown amazing benefits in small studies to date. The fluid is obtained from consenting donors after a scheduled c-section, with the material being processed at an FDA regulated lab. No fetal tissue is involved or embryonic stem cells.

Bone marrow aspirate stem cell therapy is also offered, with the same day procedure injecting the processed bone marrow into the problem area. A high concentration of stem cells and growth factors sparks an impressive healing process, which can often regenerate damaged tissue.

Platelet rich plasma therapy is also offered, which involves a simple blood draw from patients. Studies are beginning to show that the regenerative medicine procedures work well for helping patients avoid the need for joint replacement surgery and also assisting athletes to get back on the field faster than otherwise.

Financing is available for the procedures at all R3 Stem Cell Centers of Excellence. Call (844) GET-STEM for more information and scheduling with stem cell treatment Los Angeles trusts.

Read the original:
Beverly Hills Orthopedic Institute Becomes R3 Stem Cell Center of Excellence