Author Archives: admin


Margot Martini's family launch awareness day

The family of little Margot Martini has announced the launch of a day to promote the need for potential stem cell donors to join UK and worldwide registries.

A year ago today the brave youngster was diagnosed with both acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML). She was just 14 months old at the time.

A worldwide hunt was launched to find a perfect stem cell match, leading to more than 50,000 people coming forward to be tested under the Swab4Margot campaign.

Finally in February a suitable donor was found and she underwent a bone marrow transplant. The following month doctors declared she was 99 per cent certain to be disease free, but tests in June revealed a small amount of ALL had returned.

Margot's parents Yaser and Vicki made the difficult decision in July to stop her treatment after medical experts told them her chances of being able to live a normal life after further treatment were slim.

Now two-year-old, Margot is living out the rest of her days at home with her loving family, but throughout her brave fight Team Margot - the group formed to support her battle - has remained committed to promoting awareness around the need for more potential stem cell donors to come forward. As a result of the group's efforts in the UK, more than 500 people will now receive potentially life saving bone marrow transplants.

Booked to take place on October 7, 2015, the inaugural Team Margot Stem Cell and Bone Marrow Awareness Day will give particular encouragement to those of mixed race to register, as this is an under-represented stem bank.

There are 37,000 people worldwide who are desperately seeking a stem cell match and only 60 per cent of transplant recipients currently find a perfect donor.

Of those from a black, Asian or ethnic minority background, a little more than 20 per cent of transplant recipients ever find their perfect match.

Yaser Martini said: "Team Margot is committed to raising global awareness around the need for more stem cell donor recruits, hence the launch of this annual international awareness day to help promote greater understanding and to encourage more people to register as potential stem cell /bone marrow donors.

Read more here:
Margot Martini's family launch awareness day

My stem cells could help save the life of man Ive never met

A HEALTHCARE worker at Royal Bournemouth Hospital has donated stem cells in a bid to save the life of an unknown man.

Claire Waugh, pictured, who has always been a regular blood donor, decided to join the Anthony Nolan stem cell register after her father was diagnosed with prostate cancer three years ago.

The healthcare assistant co-ordinator was later identified as a possible match for a man needing life-saving treatment.

Following rigorous testing Claire was visited by nurses from the blood cancer charity, who gave her three injections every day for three days to stimulate her bone marrow to produce stem cells.

On the fourth day she travelled to Kings College Hospital in London to receive a final set of injections and undergo a stem cell collection in a simple five-hour outpatient procedure, which is similar to giving blood.

Claire said: I couldnt move or bend my arm due to the fairly heavy duty needle, but I was looked after really well so in the end the time went very quickly.

After donating, Claires stem cells were rushed to the recipient within the required 72 hours. A volunteer from Anthony Nolan told me that if he doesnt survive, there is nothing else on this earth that would have cured him, so this was this persons last chance, added Claire.

When my dad was poorly it made me think that if he needed this kind of help, I would be praying every night that someone would help him.

By doing this, it meant that I could give that chance to someone else and their family.

Royal Bournemouth Hospital granted special leave to Claire for the donation with the charity covering all of her and her husbands travel expenses.

Originally posted here:
My stem cells could help save the life of man Ive never met

Retinal stem cell study shows promise for therapy

SAN DIEGO (KUSI) - Macular degeneration is the leading cause of vision loss for people over the age of 50. Scientists have discovered a new therapy that may actually restore sight in those affected.

Scientists are excited not only because it worked, and helped some people see clearly again, but also because this study puts a focus on an new kind of stem cell therapy, using skin cells.

Macular degeneration causes a blurry or black area in the middle of your field of vision that grows over time, causing more sight loss.

There is no cure, but a new study published this week in the journal The Lancet, is giving patients hope.

Embryonic stem cells were turned into retinal cells and implanted into the eyes of 18 patients.

Vision improved for about half of them.

Dr. Andreas said, "This study was primarily to see if these cells would be safe, and the bonus was that some people started to see better."

Dr. Andreas Bratyy-Layal and Dr. Suzanne Peterson are stem cell scientists with the Scripps Research Institute.

They see this as a major breakthrough.

Although this sight study did do that, Dr. Peterson says labs around the country, including here in San Diego, are moving away from the practice.

Follow this link:
Retinal stem cell study shows promise for therapy

Researchers in Berlin and Bath Identify Nave-Like Human Stem Cells

16.10.2014 - (idw) Max-Delbrck-Centrum fr Molekulare Medizin (MDC) Berlin-Buch

In their search for the earliest possible stage of development of human embryonic stem cells (hESCs) that still have the potential to develop into any types of body cells and tissue, researchers from the Max Delbrck Center for Molecular Medicine (MDC) Berlin-Buch, Germany, and the University of Bath, United Kingdom, have apparently been successful. Jichang Wang, Gangcai Xie, and Dr. Zsuzsanna Izsvk (MDC), together with Professor Laurence D. Hurst (University of Bath), report the discovery of a subtype of cells in culture dishes with hESCs and human induced pluripotent stem cells (hiPSCs) that resemble this very early, pluripotent or nave state (Nature, doi:10.1038/nature13804)*. They also discovered the mechanism that turns human ES cells into nave-like human stem cells. While this has potential implications for medicine and for understanding early human development, an evolutionary enigma still remains unsolved.

Human embryonic stem cells (hESCs) differ considerably from those of mice. Mouse nave cultures resemble the inner cell mass which gives rise to the embryo, while none of the cultured hESC lines do. Nave ESCs of mice are easy to maintain, but not human ESCs isolated from pre-implantation embryos. The hESC lines, researchers work with in their laboratories are considered to be less nave, and have limited differentiation potential. Researchers hypothesize that they have partially lost their pluripotency. Why this is so remains unclear.

What properties characterize human nave stem cells? Can they be identified and proliferated in the laboratory and retained in culture? Researchers in Europe, Asia and the USA are trying to find the answers to these questions in order to be able to use these cells for therapy in the future.

Evolution pointed the way It was evolution that showed the researchers in Bath and Berlin the way to the successful approach. They pinpointed one particular class of ancient viruses called HERVH (human endogenous retrovirus H). HERVH integrated into our DNA millions of years ago, and although it does not function as a virus any longer, it is not silent.

HERVH-derived sequences appear at a very early stage in human embryos, that is, HERVH is highly expressed at just the right time and place in human embryos where one would expect to see nave stem cells. This was also observed by Professor Kazutoshi Takahashi (Kyoto University, Kyoto, Japan), almost at the same time when Dr. Izsvk and Professor Hurst made their discovery.**

Dr. Izsvk and Professor Hurst succeeded in going one step further. They were able to identify the switch that regulates HERVH. In hESC cultures they identified a transcription factor called LBP9 as being central to the activity of HERVH in early embryos. Using a reporter system that made cells expressing HERVH via LBP9 glow green, the Berlin and Bath team found that they had purified human ESCs that showed all the hallmarks of nave mouse stem cells.

This transcription factor was not previously known to be important to human stem cells. However, unknown to them at the time, the same transcription factor was shown by Austin Smiths group (University of Cambridge, UK) to have a role in mouse nave cells***.

Our human nave-like cells look remarkably like the mouse ones, and are close to human inner cell mass (ICM), said Jichang Wang (PhD student, MDC), first author of the Nature publication. With our HERVH-based reporter system we can easily isolate nave-like human ESCs from any human ESC culture. These cells grow like the mouse nave stem cells and express many of the same genes such as NANOG, KLF4 and OCT4 that are associated with murine navet. When we knockdown LBP9 or HERVH, these cells no longer resemble nave-like human stem cells, he added.

To explore a potential role in stem cell-based therapeutics, the next task will be to keep these isolated human nave-like stem cells in culture and proliferate them. HERVH would also be particularly useful in identifying optimal conditions for long-term culturing. As HERVH inhibits differentiation, its expression should be transient, otherwise it might be detrimental to normal embryo development. What factors keep this delicate process in balance is yet to be determined.

Continued here:
Researchers in Berlin and Bath Identify Nave-Like Human Stem Cells

Scientists identify "nave-like" human stem cell

21 hours ago by Vicky Just Naive-like stem cells could potentially be used to treat dementia or reduce organ transplants

Scientists from our university and Berlin have identified a type of human stem cell that appears to be "nave-like" able to develop into any type of cell. The discovery of this cell type could potentially have a large impact on our understanding of how humans develop and on the field of regenerative medicine.

The human embryonic stem cells (ESCs) that scientists currently study in the lab are able to develop into several different types of cell but are already pre-determined to some extent.

Published in the top scientific journal Nature, researchers from the Max Delbrck Centre for Molecular Medicine (MDC), Berlin, Germany and our university have for the first time discovered human ESCs that appear to behave like "nave" cells able to develop into any type of cell.

These nave-like cells, only previously found in mice, are easy to grow in the lab and could have huge potential for regenerating damaged tissues in the body, potentially leading to treatments for diseases such as dementia or reducing the need for organ transplantation.

Professor Laurence Hurst from our Department of Biology & Biochemistry and a co-author of the study explained: "Most stem cells are primed to some extent to become a certain type of cell. If you use the analogy of a train network, these cells are like one of the main London stations. Trains from Paddington can go to Cardiff or Exeter, but not to Norwich. In the same way, these cells can develop into a fixed number of different cell types.

"However the nave-like cells we've identified are like a central terminus; they are present earlier in the embryo's development and so we think their fates can go in any direction and become any type of cell."

Co-investigator Dr Zsuzsanna Izsvk, (MDC, corresponding author) said: "We were very excited by this discovery it was one of those Eureka moments that rarely happens in science."

The Bath and Berlin team found the nave-like cells by looking at which genes were expressed in very early human embryos. They pinpointed a virus called human endogenous retrovirus H (HERVH) that has become integrated into human DNA and was very highly expressed at just the right time and place in human embryos, where they would expect to see nave-like cells if they existed.

They identified a protein called LBP9, which is essential for the activity of HERVH in early embryos. Using a reporter system that made cells expressing HERVH via LBP9 glow green, the Berlin and our team found that they had purified cells that showed all of the hallmarks of a mouse nave cell.

Read more from the original source:
Scientists identify "nave-like" human stem cell

Shannon Layne, DVM and VCA Dunmore Animal Hospital Now Offer Stem Cell Therapy to Pet Patients in Pain

Dunmore, Pennsylvania (PRWEB) October 17, 2014

VCA Dunmore Animal Hospital is proud to announce the addition of Shannon Layne, DVM and her interest in stem cell therapy to their team. Credentialed in Regenerative Cell Therapy with Vet-Stem since January of 2011, Dr. Layne has proudly been treating pets with osteoarthritis and ligament injuries in north-east Pennsylvania with stem cell therapy for the last four years.

Dr. Layne graduated from North Carolina State University, College of Veterinary Medicine in 2010 and has taken a special interest in Regenerative Veterinary Medicine and stem cell therapy since. In contrast to widely used drug therapies for pain management, cell-based therapies (like stem cell therapy) can promote healing, reduce inflammation, and decrease pain. Dr Layne also offers traditional Chinese veterinary medicine including acupuncture and Chinese herbs if clients are interested in a more holistic approach.

Stem cells are regenerative cells that can differentiate into many tissue types (reducing pain and inflammation) thus helping to restore range of motion and regenerate tendon, ligament and joint tissues (Vet-Stem.com/science). In a study using Vet-Stem Regenerative Cell Therapy on dogs with osteoarthritis of the hip joint it was found that regenerative cell therapy (adipose-derived stem cells) decreases patient discomfort and increases patient functional ability.

Once Dr. Layne has identified a patient as a good candidate for stem cell therapy the procedure begins with a fatty tissue collection from the patient. The tissue sample is sent overnight to Vet-Stems lab in California for processing. Once processed the stem cells are extracted and fresh, injectable doses of the patients stem cells are sent overnight, back to Dr. Layne at VCA Dunmore Animal Hospital. Within 48hrs of collecting a fat sample from a patient Dr. Layne is able to inject stem cells into (arthritic or injured) affected areas and regeneration and healing can begin.

At VCA Dunmore Animal Hospital Dr. Layne will be practicing in an 8,800 square foot, state of the art facility that includes two extensive surgery suites. For more information on VCA Dunmore Animal Hospital please visit their website at http://www.vcahospitals.com/dunmore.

About Vet-Stem, Inc.

Since its formation in 2002, Vet-Stem, Inc. has endeavored to improve the lives of animals through regenerative medicine. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem pioneered the use of regenerative stem cells for horses, dogs, cats, and some exotics. In 2004 the first horse was treated with Vet-Stem Regenerative Cell Therapy for a tendon injury that would normally have been career ending. Ten years later Vet-Stem celebrated its 10,000th animal treated, and the success of establishing stem cell therapy as a regenerative medicine for certain inflammatory, degenerative, and arthritic diseases. As animal advocates, veterinarians, veterinary technicians, and cell biologists, the team at Vet-Stem tasks themselves with the responsibility of discovering, refining, and bringing to market innovative medical therapies that utilize the bodys own healing and regenerative cells.

For more information about Vet-Stem and Regenerative Veterinary Medicine visit http://www.vet-stem.com or call 858-748-2004.

Original post:
Shannon Layne, DVM and VCA Dunmore Animal Hospital Now Offer Stem Cell Therapy to Pet Patients in Pain

Stem cells discovered in the esophagus

Despite previous indications to the contrary, the esophagus does have its own pool of stem cells, said researchers from the University of Pittsburgh School of Medicine in an animal study published online today in Cell Reports. The findings could lead to new insights into the development and treatment of esophageal cancer and the precancerous condition known as Barrett's esophagus.

According to the American Cancer Society, more than 18,000 people will be diagnosed with esophageal cancer in the U.S. in 2014 and almost 15,500 people will die from it. In Barrett's esophagus, the lining of the esophagus changes for unknown reasons to resemble that of the intestine, though gastro-esophageal reflux disease or GERD is a risk factor for its development.

"The esophageal lining must renew regularly as cells slough off into the gastrointestinal tract," said senior investigator Eric Lagasse, Pharm.D., Ph.D., associate professor of pathology, Pitt School of Medicine, and director of the Cancer Stem Cell Center at the McGowan Institute for Regenerative Medicine. "To do that, cells in the deeper layers of the esophagus divide about twice a week to produce daughter cells that become the specialized cells of the lining. Until now, we haven't been able to determine whether all the cells in the deeper layers are the same or if there is a subpopulation of stem cells there."

The research team grew pieces or "organoids" of esophageal tissue from mouse samples, and then conducted experiments to identify and track the different cells in the basal layer of the tissue. They found a small population of cells that divide more slowly, are more primitive, can generate specialized or differentiated cells, and have the ability to self-renew, which is a defining trait of stem cells.

"It was thought that there were no stem cells in the esophagus because all the cells were dividing rather than resting or quiescent, which is more typical of stem cells," Dr. Lagasse noted. "Our findings reveal that there indeed are esophageal stem cells, and rather than being quiescent, they divide slowly compared to the rest of the deeper layer cells."

In future work, the researchers will examine human esophageal tissues for evidence of stem cell dysfunction in Barrett's esophagus disease.

"Some scientists have speculated that abnormalities of esophageal stem cells could be the origin of the tissue changes that occur in Barrett's disease," Dr. Lagasse said. "Our current and future studies could make it possible to test this long-standing hypothesis."

Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.

The rest is here:
Stem cells discovered in the esophagus

Pitt/McGowan Institute team discovers stem cells in the esophagus

PUBLIC RELEASE DATE:

16-Oct-2014

Contact: Anita Srikameswaran SrikamAV@upmc.edu 412-578-9193 University of Pittsburgh Schools of the Health Sciences @UPMCnews

PITTSBURGH, Oct. 16, 2014 Despite previous indications to the contrary, the esophagus does have its own pool of stem cells, said researchers from the University of Pittsburgh School of Medicine in an animal study published online today in Cell Reports. The findings could lead to new insights into the development and treatment of esophageal cancer and the precancerous condition known as Barrett's esophagus.

According to the American Cancer Society, more than 18,000 people will be diagnosed with esophageal cancer in the U.S. in 2014 and almost 15,500 people will die from it. In Barrett's esophagus, the lining of the esophagus changes for unknown reasons to resemble that of the intestine, though gastro-esophageal reflux disease or GERD is a risk factor for its development.

"The esophageal lining must renew regularly as cells slough off into the gastrointestinal tract," said senior investigator Eric Lagasse, Pharm.D., Ph.D., associate professor of pathology, Pitt School of Medicine, and director of the Cancer Stem Cell Center at the McGowan Institute for Regenerative Medicine. "To do that, cells in the deeper layers of the esophagus divide about twice a week to produce daughter cells that become the specialized cells of the lining. Until now, we haven't been able to determine whether all the cells in the deeper layers are the same or if there is a subpopulation of stem cells there."

The research team grew pieces or "organoids" of esophageal tissue from mouse samples, and then conducted experiments to identify and track the different cells in the basal layer of the tissue. They found a small population of cells that divide more slowly, are more primitive, can generate specialized or differentiated cells, and have the ability to self-renew, which is a defining trait of stem cells.

"It was thought that there were no stem cells in the esophagus because all the cells were dividing rather than resting or quiescent, which is more typical of stem cells," Dr. Lagasse noted. "Our findings reveal that there indeed are esophageal stem cells, and rather than being quiescent, they divide slowly compared to the rest of the deeper layer cells."

In future work, the researchers will examine human esophageal tissues for evidence of stem cell dysfunction in Barrett's esophagus disease.

"Some scientists have speculated that abnormalities of esophageal stem cells could be the origin of the tissue changes that occur in Barrett's disease," Dr. Lagasse said. "Our current and future studies could make it possible to test this long-standing hypothesis."

See the original post:
Pitt/McGowan Institute team discovers stem cells in the esophagus

Vision Quest: Stem Cells Treat Blinding Disease

Powerful stem cells injected into the eyes of 18 patients with diseases causing progressive blindness have proven safe and dramatically improved the vision of some of the patients, scientists report.

Three years of follow up show that vision improved measurably in seven of the patients, the team at Advanced Cell Technology report in the Lancet medical journal. In some cases, the improvement was dramatic.

For instance, we treated a 75-year-old horse rancher who lives in Kansas, said Dr. Robert Lanza, chief medical officer for the Massachusetts-based company. The rancher had poor vision 20/400 in one eye.

Once month after treatment his vision had improved 10 lines (20/40) and he can even ride his horses again. Other patients report similarly dramatic improvements in their lives, Lanza added. For instance, they can use their computers or read their watch. Little things like that which we all take for granted have made a huge difference in the quality of their life.

Not all the patients improved and one even got worse. But overall, Lanzas team reported, the patients vision improved by three lines on a standard vision chart.

"They can use their computers or read their watch. Little things like that which we all take for granted have made a huge difference in the quality of their life.

The researchers treated only one eye in each patient. There was no improvement in vision in the untreated eyes.

The patients had either Stargardts disease, a common type of macular degeneration, or dry macular degeneration, which is the leading cause of blindness in the developed world. There are no treatments for either condition, and patients gradually lose vision over the years until they are, often, blind.

Lanzas team used human embryonic stem cells, made using human embryos. They are powerful cells, each one capable of giving rise to all the cells and tissues in the body. The ACT team took one cell from embryos at the eight-cell stage to make batches of these cells.

They reprogrammed them to make immature retinal cells, which they injected into the eyes of the patients. The hope is that the immature cells would take up the places of the degenerated cells and restore vision.

Read more from the original source:
Vision Quest: Stem Cells Treat Blinding Disease

Discovery of Repair Process After Heart Attack Suggests Potential for New Treatment Strategy

Contact Information

Available for logged-in reporters only

Newswise In a study that could point the way toward a new strategy for treating patients after a heart attack, UCLA stem cell researchers led by associate professor of medicine (cardiology) and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research member Dr. Arjun Deb have discovered that some scar-forming cells in the heart, known as fibroblasts, have the ability to become endothelial cells (the cells that form blood vessels). The UCLA team also found that a drug could enhance this phenomenon and improve the repair process after a heart attack.

The findings are reported in the October 15, 2014 edition of the journal Nature.

It is well known that increasing the number of blood vessels in the injured heart following a heart attack improves its ability to heal, said Dr. Deb, the studys senior author. We know that scar tissue in the heart is associated with a poorer prognosis. Reversing or preventing scar tissue from forming has been one of the major challenges of cardiovascular medicine.

Heart disease remains a leading cause of death in the United States. Each year in this country, approximately 720,000 people experience a heart attack (roughly one every 30 seconds) and about 600,000 people die of heart disease.

A heart attack most commonly occurs when there is a sudden blockage of the flow of blood through a vessel in the heart. The portion of the heart muscle that fails to receive adequate blood dies and is replaced by non-functional scar tissue (a process known as fibrosis) reducing the ability of the heart to adequately pump blood. Once scar forms it is thought to persist throughout the lifetime of the individual. Scar-forming cells (fibroblasts) and blood vessel-forming cells (endothelial cells) exist in close proximity in the injured heart.

Several years ago, Dr. Deb and his colleagues were investigating the relationship between the fibroblasts and endothelial cells. Performing experiments in mice in which scar-forming cells in the heart were genetically labeled, the researchers unexpectedly discovered that many of the fibroblasts in the hearts injured region changed into endothelial cells and contributed directly to blood vessel formation, a phenomenon the research team coined mesenchymal-endothelial transition, or MEndoT.

The researchers identified a molecular mechanism regulating MEndoT and administering a small molecule to augment MEndoT led to less scarring and better healing of the heart. The researchers plan to test similar small molecules in other models to determine whether the strategy could potentially be translated for human benefit.

Our findings suggest the possibility of coaxing scar-forming cells in the heart to change their identity into blood vessel-forming cells, which could potentially be a useful approach for better heart repair, said Dr. Deb. There are remarkable similarities in the process of scarring in different organs after injury. Our hope is that this approach can be used to treat scar tissue in other organs as well.

Read this article:
Discovery of Repair Process After Heart Attack Suggests Potential for New Treatment Strategy