Author Archives: admin


'She received the best care': Qld Stem cell mum dies in Russia

Kellie van Meurs, pictured with her husband Mark, died while undergoing stem cell treatment in Russia. Photo: Facebook

Supporters of a Brisbane mother of two who died while undergoing a controversial stem cell treatment in Russia say it did not cause her death, nor have others been discouraged from seeking it.

Kellie van Meurs suffered from a rare neurological disorder called Stiff Person Syndrome, which causes progressive rigidity of the body and chronic pain.

She travelled to Moscow in late June to undergo an autologous hematopoietic stem cell transplant (HSCT) under the care of Dr Denis Fedorenko from the National Pirogov Medical Surgical Centre.

Kellie van Meurs, pictured with family and supporters, died while undergoing stem cell treatment in Russia. Photo: Facebook

The transplant more commonly used for multiple sclerosis patients involves rebooting a patients immune system with their own stem cells after high-dose chemotherapy.

Advertisement

Ms van Meurs was Dr Fedorenkos first SPS patient, and her husband Mark said she died of a heart attack on July 19.

I do know that Rosemary [Kellie's aunt and carer in Moscow] felt she received the best possible care, especially from Dr Fedorenko, he said.

Given her level of constant pain and overlapping auto-neuronal problems I still don't think we had a better option.

Read the original post:
'She received the best care': Qld Stem cell mum dies in Russia

Cell therapy for multiple sclerosis patients: Closer than ever?

Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute are one step closer to creating a viable cell replacement therapy for multiple sclerosis from a patient's own cells.

For the first time, NYSCF scientists generated induced pluripotent stem (iPS) cells lines from skin samples of patients with primary progressive multiple sclerosis and further, they developed an accelerated protocol to induce these stem cells into becoming oligodendrocytes, the myelin-forming cells of the central nervous system implicated in multiple sclerosis and many other diseases.

Existing protocols for producing oligodendrocytes had taken almost half a year to produce, limiting the ability of researchers to conduct their research. This study has cut that time approximately in half, making the ability to utilize these cells in research much more feasible.

Stem cell lines and oligodendrocytes allow researchers to "turn back the clock" and observe how multiple sclerosis develops and progresses, potentially revealing the onset of the disease at a cellular level long before any symptoms are displayed. The improved protocol for deriving oligodendrocyte cells will also provide a platform for disease modeling, drug screening, and for replacing the damaged cells in the brain with healthy cells generated using this method.

"We are so close to finding new treatments and even cures for MS. The enhanced ability to derive the cells implicated in the disease will undoubtedly accelerate research for MS and many other diseases," said Susan L. Solomon, NYSCF Chief Executive Officer.

"We believe that this protocol will help the MS field and the larger scientific community to better understand human oligodendrocyte biology and the process of myelination. This is the first step towards very exciting studies: the ability to generate human oligodendrocytes in large amounts will serve as an unprecedented tool for developing remyelinating strategies and the study of patient-specific cells may shed light on intrinsic pathogenic mechanisms that lead to progressive MS." said Dr. Valentina Fossati, NYSCF -- Helmsley Investigator and senior author on the paper.

In multiple sclerosis, the protective covering of axons, called myelin, becomes damaged and lost. In this study, the scientists not only improved the protocol for making the myelin-forming cells but they showed that the oligodendrocytes derived from the skin of primary progressive patients are functional, and therefore able to form their own myelin when put into a mouse model. This is an initial step towards developing future autologous cell transplantation therapies in multiple sclerosis patients

This important advance opens up critical new avenues of research to study multiple sclerosis and other diseases. Oligodendrocytes are implicated in many different disorders, therefore this research not only moves multiple sclerosis research forward, it allows NYSCF and other scientists the ability to study all demyelinating and central nervous system disorders.

"Oligodendrocytes are increasingly recognized as having an absolutely essential role in the function of the normal nervous system, as well as in the setting of neurodegenerative diseases,such as multiple sclerosis. The new work from the NYSCF Research Institute will help to improve our understanding of these important cells. In addition, being able to generate large numbers of patient-specific oligodendrocytes will support both cell transplantation therapeutics for demyelinating diseases and the identification of new classes of drugs to treat such disorders," said Dr. Lee Rubin, NYSCF Scientific Advisor and Director of Translational Medicine at the Harvard Stem Cell Institute.

Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system, distinguished by recurrent episodes of demyelination and the consequent neurological symptoms. Primary progressive multiple sclerosis is the most severe form of multiple sclerosis, characterized by a steady neurological decline from the onset of the disease. Currently, there are no effective treatments or cures for primary progressive multiple sclerosis and treatments relies merely on symptom management.

Follow this link:
Cell therapy for multiple sclerosis patients: Closer than ever?

California stem cell agency head takes stand on 'personal ethics'

The California Institute for Regenerative Medicine has continued in damage-control mode since the state agencys former president, Alan Trounson, joined the board of directors at StemCells Inc. this month, just seven days after leaving the agency.

Newark-based StemCells has been awarded nearly $20 million in CIRM funding, as part of a long relationship that, in the wake of Trounson's departure, has raised concern about potential conflict of interest.

The agency's new president, C. Randal Mills, said he was taking a strong stand on personal ethics, signing an agreement not to accept a job with any company funded by CIRM for at least one year after leaving his position at the state agency.

"We take even the appearance of conflicts of interest very seriously," Mills said in a statement this month.

But a scientist whose grant proposal was turned down even though it received a higher rating than the StemCells proposal called the relationship between the state agency and the company interesting.

In my opinion, Mr. Trounson and the CIRM staff were clearly antagonistic to us and strongly supportive of StemCells, Lon S. Schneider, a scientist at USCs Keck School of Medicine, told the California Stem Cell Report ,a blog that follows news related to the stem cell agency.

And Times columnist Michael Hiltzik pointed out that the agency has hired its own law firm to conduct the investigation, rather than a completely independent party.

The unanswered question burning a hole through CIRM's credibility is whether StemCells Inc. got its money because its research was promising, or because it knew the right people, Hiltzik wrote.

The stem cell agency has also voted to cut $5 million from a $70-million effort to create a series of statewide stem cell clinics, according to the California Stem Cell Report. And even though the board has 29 members, only eight could vote because of conflicts of interest among the others, according to the report.

Following a thorough review it is my opinion that the $70-million price tag is not clearly justified in terms of the benefits it will deliver to the people of California, Mills wrote in a memo to the agency's board.

See the article here:
California stem cell agency head takes stand on 'personal ethics'

Tissue Collection Aids Search for Neurologic and Neuromuscular Disease Causes and Cures

Contact Information

Available for logged-in reporters only

Newswise LOS ANGELES (July 24, 2014) Like other major research centers studying genetic causes of uncommon and poorly understood nervous system disorders, Cedars-Sinai maintains a growing collection of DNA and tissue samples donated by patients.

What sets Cedars-Sinais Repository of Neurologic and Neuromuscular Disorders apart is its special emphasis on tissue collection part of its focus on creating future individualized treatments for patients.

One of our major priorities is to advance the concept of personalized medicine. The idea is to take DNA from a patient, look at the cells derived from their tissue, and try to understand why this particular person got this disease. Then we can determine which therapy or therapies would work for each individual by first testing their cells. Many centers look at the genetics; ours is dedicated to looking at the genetics and the patients tissues, combining the two to understand how to treat the disease, said Robert H. Baloh, MD, PhD, director of neuromuscular medicine in the Department of Neurology and director of the ALS Program for research and treatment of amyotrophic lateral sclerosis, or Lou Gehrigs disease.

This individualized treatment approach depends on collaborative efforts among doctors and researchers who treat and study individual diseases and scientists at the Cedars-Sinai Regenerative Medicine Institute, one of a very few hospital-based centers devoted to stem cell research. The teams work together to discover disease-generating molecular and cellular defects, make disease-in-a-dish models and begin to fashion personalized stem cell-based research interventions.

We know that nearly every disease has some genetic component some more than others so we collect DNA for research to identify those genetic elements. But weve also expanded our focus to include the collection of skin and blood samples that can be turned into specialized stem cells. Patients are usually very willing to donate tissue to try and help us understand the causes of their neurologic or neuromuscular disease, said Baloh, a member of the Brain Program at the Regenerative Medicine Institute.

Baloh and colleagues recently showed this approach is feasible, using skin biopsies from patients with ALS. With induced pluripotent stem cells, or iPSCs, they created ALS neurons in a lab dish. Then, inserting molecules made of small stretches of genetic material, they blocked the damaging effects of a defective gene. This provided proof of concept for a new therapeutic strategy an important step in moving research findings into clinical trials.

Baloh, the repositorys principal investigator, has a particular interest in ALS and other neuromuscular disorders, but DNA, tissue and data collection is conducted for Cedars-Sinai neuroscience researchers studying virtually any disease. And its holdings can have widespread influence: Repositories of genetic material enable scientists studying similar diseases at multiple research centers to access patient data in larger quantities than any single site could provide.

We work with many other research institutions across the country to share the samples themselves as well as de-identified information about the patients what disease they have, the severity of their disease, and similar disorder-related details. This improves our ability to find new gene abnormalities, because it cant always be done with just tens or even hundreds of patients. We may need thousands of patients, especially for very rare genetic forms of disease that have very subtle genetic effects. Therefore, we study our own patients in great detail, but we also share our resources more broadly, said Baloh, adding that genetic discoveries often have implications even for patients who dont have genetic forms of disease.

The rest is here:
Tissue Collection Aids Search for Neurologic and Neuromuscular Disease Causes and Cures

Binay hit for questioning DAP allocation for stem cell research

Sen. Nancy Binay. INQUIRER.net PHOTO

MANILAHealth Secretary Enrique Ona has expressed disappointment with Sen. Nancy Binay, who questioned the allocation of P70 million under Disbursement Acceleration Program for a stem cell research project of the Lung Center of the Philippines.

Binay had said the money could have been better spent on more beds for government hospitals.

Im so disappointed with the Senator rather than support the opportunities for our doctors to do all types of research, not just on stem cell Filipinos can jumpstart medical research, comparing it with research capacity of other countriesthats what I would want to hear from her, Ona said Friday on the sidelines of the Department of Healths distribution of awards to the unsung heroes of Typhoon Yolanda.

And I also wish to tell her, I hope she increases the funds for various research being conducted by our doctors, he added. Because if not, these doctors may just opt to work in other countries.

Speaking at the Senate finance committee hearing on Thursday, Ona confirmed that P70 million from DAP was used to fund a Bio-Regenerative Technology Program or Stem Cell Research aimed at harnessing stem cell research and technology to reconstruct new health cells, replacing cancer or dead cells.

According to Ona, medical research is important and its significance should not be compared to the lack of hospital beds.

I hope they dont simplify medical research with [the number of] beds, he said, adding that those making such comments appeared to have limited knowledge in medicine.

Ona said the government bought 8,000 to 10,000 beds for hospitals, though he acknowledged that it needed to buy 5,000 to 10,000 more.

Explaining stem cell research, Ona said he was looking at preventive, promotive, curative and even rehabilitation needs of the entire health sector.

See the original post:
Binay hit for questioning DAP allocation for stem cell research

FUT Hair Transplant 2000 Grafts Anshuman at Satya Hair Transplant Clinic – Video


FUT Hair Transplant 2000 Grafts Anshuman at Satya Hair Transplant Clinic
Follicular Unit Transplant - Anshuman was suffering from Grade 4 male pattern baldness. He had undergone a series of treatments but nothing worked from him. He came to us with a reference...

By: Satya Hair Transplant Clinic | Hair Loss Treatment | Stem Cell Treatment

Excerpt from:
FUT Hair Transplant 2000 Grafts Anshuman at Satya Hair Transplant Clinic - Video

11-year-olds critical need for a stem cell transplant

WATCH:An 11-year-old girl with a rare blood disease is in need of a stem cell transplant ideally from a match within the South Asian Community. Angie Seth reports.

Stem cell and bone marrow donations are critical for hundreds of people in Canada suffering from certain types of cancers or blood diseases.

Right now there are approximately 800 people on the transplant list. Among them is 11-year-old Cierra Singh.

Cierra has a rare blood disease calledMyelodysplastic Syndrome.

Mybone marrow and my bones are not producing enough healthy cells. So there are platelets and the white blood cells and the red blood cells. My mom tells me they are not working as well as they should work, Cierra tells Global News.

We had the opportunity to meet this incredible little girl who strives to give back to others in every which way.

Everyone says its a big deal, but I dont see it as a big deal. I just try to stay positive all the time, she says.

Cierra was diagnosed with the rare blood disease in April. A trip to Sick Kids hospital because of a swollen leg led doctors to discover Cierras immune system was not functioning properly.

Her Mothers fears paint a bleak picture.

If she were to get a fever of 38.5 and up we need to rush her into emergency within the hour . The risk of infectious diseases is very high so they need to pump her body with antibiotics because she wont be able to fight it. The only cure for Myelodysplastic Syndrome is a stem cell transplant, there is no other option, KiranBenet, Cierras Mom says.

See the article here:
11-year-olds critical need for a stem cell transplant

Stem cell agency tightens ethics rules

Stem cell agency President C. Randal Mills (left) and Chairman of the Board Jonathan Thomas.

Responding to his predecessor's ethically controversial departure, the president and chief executive of California's stem cell agency said Thursday he is taking legal steps to minimize conflicts of interests with those who have business before the agency.

C. Randal Mills said he will not take a job with any company funded by the California Institute for Regenerative Medicine for one year after he departs the agency. In addition, he also will not accept gifts or travel payments from any company, institution or person who gets agency funding.

Mills' action, announced at the agency's meeting in Millbrae, will be enforced with a legal agreement he will sign. His action comes less than a month after he replaced Alan Trounson as the agency chief. One week after his departure, CIRM-funded StemCells Inc. announced it had appointed Trounson to its board. StemCells Inc. had received an award of nearly $20 million from the agency to develop a therapy for Alzheimers disease.

While Trounson's appointment wasn't illegal, critics said it was unseemly for him to join a company that had received agency funding so soon after he left CIRM. An ethical controversy could harm the agency's chances of getting more funding from California voters, who gave the agency $3 billion with the passage of Proposition 71 in 2004.

Mills said the new rules apply only to himself, because of his central role at CIRM.

"This specifically addresses an issue where an individual in an organization has a disproportionate amount of power, and I want to make sure it's known that power will not be abused," Mills said.

Mills made the right decision, said Jeanne Loring, a CIRM-funded stem cell researcher at The Scripps Research Institute.

"There's a difference between what is legal and what is ethical," said Loring, who attended the meeting. "And he's going to be pushing the needle a lot more toward the ethical side without worrying whether he can get away with stuff."

John Simpson of Santa Monica-based Consumer Watchdog, who has often criticized CIRM for conflicts of interest, also praised the decision.

Here is the original post:
Stem cell agency tightens ethics rules

StemGenex Gives Hope to Parkinsons Patients through New Stem Cell Clinical Study

La Jolla, CA (PRWEB) July 23, 2014

StemGenex, the leading resource for adult adipose stem cell therapy in the US aimed at improving the lives of patients dealing with degenerative diseases today announced their newest clinical study for Parkinsons disease. StemGenex believes that a commitment to the safety and efficacy of stem cell therapy are paramount when providing care to patients with degenerative diseases.

This clinical study makes stem cell therapy accessible to the millions of individuals currently living with Parkinsons disease. The protocol used in these stem cell treatments is unique to StemGenex, having the possibility of being more effective than other stem cell treatments currently available. StemGenex has developed a multiple administration protocol for patients suffering from Parkinsons disease which includes targeted methods of stem cell delivery. Among these methods is a novel approach for delivering stem cells past the blood brain barrier an issue most stem cell treatments have been challenged by.

Principal Investigator Dr. Jeremiah McDole, Ph.D. stated, As is the case with most neurodegenerative conditions, there are few available drugs to treat Parkinsons disease. The handful of drugs that are available can only ameliorate symptoms and unfortunately, prolonged usage can create terrible side-effects. Further, these drugs do not halt disease progression or aid in the repair of established damage. Our goal is to provide regenerative medicine applications that address these critical issues. The study we are conducting is designed to provide us with a large amount of rigorously collected data so that we can better understand the clinical benefit of Parkinsons patients treated with stem cells.

This study is registered through The National Institutes of Health which can be found at http://www.clinicaltrials.gov and is being conducted under IRB approval. According to StemGenex Director of Patient Advocacy, Joe Perricone, It is important patients have access to top-tier stem cell therapy. By providing access to registered clinical studies through The National Institutes of Health, we are providing patients with the ability to choose a stem cell treatment center with the highest standard of care.

Rita Alexander, founder and president of StemGenex stated, Parkinson's disease affects a very small part of the brain but anyone suffering with this disease understands the negative impact on his or her life is very big, actually, enormous. Over the last several years we have observed significant improvement in the symptoms of Parkinsons patients through stem cell treatment. We are determined to be part of the solution and are eager to document and publish our findings in the next few years.

Stem cell treatment studies are currently being offered by StemGenex to patients diagnosed with Parkinsons disease and other degenerative neurological diseases. StemGenex takes a unique approach of compassion and empowerment while providing access to the latest stem cell therapies for degenerative neurological diseases including Multiple Sclerosis, Alzheimers disease, stroke recovery and others.

To find out more about stem cell therapy, contact StemGenex either by phone at (800) 609-7795 or email Contact(at)stemgenex(dot)com.

Read more:
StemGenex Gives Hope to Parkinsons Patients through New Stem Cell Clinical Study

Joslin Scientists Create the First IPS Cells to Offer Human Model of Insulin Resistance

Contact Information

Available for logged-in reporters only

Newswise BOSTON July 24, 2014 Japanese biologist Shinya Yamanaka won a Nobel Prize in 2012 for discovering how to create induced pluripotent stem cells (iPSCs), cells derived from normal adult cells that have the ability to differentiate into almost any other kind of cells. Scientists at Joslin Diabetes Center now have created the first iPSCs that offer a human model of insulin resistance, a key driver of type 2 diabetes.

This is one of the very first studies of human iPSC models for type 2 diabetes, and it points out the power of this technology to look at the nature of diabetes, which is complex and may be different in different individuals, says C. Ronald Kahn, MD, Joslins Chief Academic Officer and the Mary K. Iacocca Professor of Medicine at Harvard Medical School.

Until now, scientists examining the causes and effects of insulin resistance have struggled with a general lack of human cell lines from tissues such as muscle, fat and liver that respond significantly to insulin, Kahn says. Studying insulin resistance as it progresses through pre-clinical stages of type 2 diabetes has been particularly challenging.

There have been no good human cell models to study insulin resistance, but such cells can now be made with iPSCs, says Kahn, co-senior author on a paper about the study published in the journal Diabetes.

Generation of iPSCs typically starts with fibroblasts (connective tissue cells) from skin samples. Kahn and his colleagues used fibroblasts from three patients with severe insulin resistance brought on by mutations in the gene for the insulin receptor (IR)a molecule that crosses the cell membrane and plays a key role in insulin signaling and glucose metabolism.

The Joslin researchers reprogrammed the fibroblasts into iPSCs by using viral procedures that activated four genes that together maintain cells in the iPSC state. The scientists then looked at gene activation in insulin signaling pathways for iPSCs and fibroblasts with IR mutations, and for corresponding cells derived from people without those mutations.

Among the study findings, IR mutations alter expression of many genes both in fibroblasts and iPSCs compared to normal cells, but the impact is very much dependent on the cell type, says Kahn. You see one type of expression pattern in the fibroblasts and a different type of pattern in the iPSCs.

Insulin is a key ingredient for the growth and proliferation of normal stem cells, and the study demonstrated that insulin resistance also reduces the ability of the iPSCs to grow and proliferate. That defect may represent a previously unrecognized mechanism that aids in developing diabetes, Kahn says, as well as helping to explain the problems in wound healing, tissue repair and even beta-cell growth that are common among people with diabetes.

More:
Joslin Scientists Create the First IPS Cells to Offer Human Model of Insulin Resistance