Author Archives: admin


Trajectory of the Changing GA Treatment Landscape – AJMC.com Managed Markets Network

Ryan Haumschild, PharmD, MS, MBA: Now I would like to really transition into the future considerations of geographic atrophy [GA]. Obviously, theres been a lot of excitement here recently around complement inhibitors, and I feel like the treatment of the future landscape is even more exciting. And were going to have more options for our patients to really improve outcomes, give durable responses, and ultimately, improve the quality of life. Dr Lally, I would like to start with you. What are you most excited about in the treatment landscape of GA in the next 5 years? And what are some final thoughts that you want to share with our viewing audience from todays discussion?

David Lally, MD: I think the take-home message that Im excited about is there has really been an explosion of clinical trials and different strategies of trying to tackle this disease of GA. Blocking complement is one very important part of the puzzle. But as we have seen and we have talked about earlier, complement inhibition is really just the tip and just the start of what is to come. And really our goal is we want to prevent GA from even developing, or if it develops, we want to stop it in its track. These new therapies are really the first step of showing a slowing progression, but the disease is still progressing. We do not want it to progress. We want to stop it or prevent it from even developing. There are a lot of different strategies out there beyond complement [inhibitors] looking to try to accomplish this goal. Something we look at is neuroprotection, which is a big umbrella term thats kind of even hard to define what neuroprotection means. But I think neuroprotective medicines that can protect the retina; the retina is like an outpouching of the brain. We consider it like neural tissue, an outpouching of the brain. Any medication that can really preserve neuronal health, I think is going to be an exciting place to look. I think what is exciting is there is a lot of work going into trying to design and figure out end points that can be used to see the effects of treatments at the intermediate stage of dry AMD [age-related macular degeneration] before GA develops. And I think, again, if we can find really good clinical trial outcome measures, for the development of GA, in a reasonable time frame to run a clinical trial, I think we are really going to see the field move forward. There are a lot of people working on functional outcome measures, on structural outcome measures, to really try to help us hone in there. I think regenerative medicine is interesting. Some strategies are looking at replenishing the atrophic area with pluripotent embryonic stem cells. And theres some work that is actually getting into the later stages of development. Stem cells, although we are not all the way there yet, I think are starting to make some progress in the development of hopefully getting to an FDA-approval someday, and actually restoring the loss of the photoreceptors. But to me, the most encouraging if we look at these complement inhibitors is I hope someday we have gene therapy for these complement inhibitors. Wouldnt it be wonderful if we could give one intravitreal injection with a gene therapy that went into the cells, and we had our own retina cells make the complement inhibitors themselves where it went on forever? Because, as I mentioned earlier, these patients live with this disease for the rest of their lives. The way its looking right now, in the current state, they are going to be receiving intravitreal injections, either monthly or every other month, indefinitely. I think gene therapy is a place to be watching in the future. But the take-home message is its a really exciting time if you are a patient with GA. This is really a hallmark time in our field, having our first FDA-approved treatment. Hopefully, we may have a second soon in the summertime. The knowledge is really exponentially moving forward, and I really think in 5 years we are going to have even a lot more knowledge and we are going to have a lot better treatments coming for our patients.

Ryan Haumschild, PharmD, MS, MBA: Absolutely. Great final comments. And a lot more real-world evidence to make more informed decisions. Dr Lopes, curious what are your thoughts on how you expect the treatment landscape to change in the next 5 years, and upon that, what are your final thoughts from todays discussion?

Maria Lopes, MD, MS: Its certainly an exciting time to be in this disease space and going from no treatments to several, with 1 already approved and more in the pipeline. I guess until there is a cure, there is an unmet need. Exciting to see not just slowing disease progression, but that were looking at different mechanisms of action that hopefully make a very significant impact on preserving vision and potentially, halting progression as well as maybe even reversing disease, which is really exciting and innovative. [I would] love to see maybe more personalized medicine around predictive tools because as we have more treatment options, how do we sequence those options? How do we define what success looks like in this disease state if were just looking at a rate of growth? [I would] love to see more about any predictive tools that help us, not just identify, but then have the right shared decision approach that hopefully has and meets patient expectations, as well as payer needs and budget impact, and ultimately, making a significant impact on a clinically meaningful difference, which is about vision preservation.

Ryan Haumschild, PharmD, MS, MBA: Excellent. Clinical meaningful difference is really whats going to carry us forward, I feel like, from a treatment selection standpoint. Dr Khanani, we couldnt end without your thoughts on the evolving treatment landscape in the next 5 years. And also, what are some of your final thoughts and takeaways for our viewing audience?

Arshad Khanani, MD: Ryan, thank you again for moderating this great discussion. I really enjoyed it. I think the bottom line for me is that GA is a devastating disease that progresses 100% of the time, in 100% of the patients. And its a really severe disease that can take your independence away. It puts our patients in really tough situations. They cannot function and they go into depression. It really impacts the quality of life, and it leads to other comorbidities because the patients cannot see. Now, its a really exciting time to have the first FDA-approved treatment in pegcetacoplan [Syfovre], and hopefully, avacincaptad pegol coming in August. As physicians, there are still big unmet needs in this space. Obviously, complement inhibitors are a great start. Its chapter 1 of a really thick book that we will write together over the next 1 to 2 decades. In the next 5 years or so, I think we have both of these approved treatments, hopefully, that we utilize in an appropriate fashion to help our patients. And I think having artificial intelligence to help us with finding the right patients, doing the right treatment interval, monitoring the growth will be important. Now, its exciting because we have so many things in the pipeline. Gene therapy programs, some of them are in phase 2 trials, where you are actually enriching a complement factor I, and kind of modulate the overactive complement system in bringing it towards normal complement activity. We have to wait for the data to see if that pans out. Treatment burden will likely be a big problem with frequent injections. Gene therapy, as Dr Lally said, with one-time treatment targeting the complement system in one way or another, whether in the operating room or in clinic, will be exciting. We have some other novel drugs and mechanisms of action that are in the pipeline. We saw some promising data from elamipretide to preserve mitochondrial function. There are other pathways we are looking at. But at this point, over the next 5 years, I think we will have to utilize the complement inhibitors in a fashion to help our patients preserve their vision. Final comments from me, it was very depressing over the last 15 years of practice for me to give the bad news of blindness to our patients with GA. Now I can give them some hope. They will be able to preserve their vision longer. Yes, we cannot reverse the disease. Yes, we cannot stop the disease. But slowing the disease down can have meaningful outcomes in the future because the treatment effect is greater the longer you treat these patients. And then, hopefully, we will have more treatments come down the pipeline and treat this disease early at the intermediate stage so we can actually tell our patients that you are not going to go blind.

Ryan Haumschild, PharmD, MS, MBA: Complement inhibitors sure are going to be a game changer in the field of GA. Thank you all so much. Thank you to our expert panelists for this rich and informative discussion, and to our viewing audience, we hope that you found this AJMC Peer Exchangeto be useful and informative.

Transcript edited for clarity.

See the original post:
Trajectory of the Changing GA Treatment Landscape - AJMC.com Managed Markets Network

Brain cells are starved of energy when autophagy malfunctions, new … – University of Birmingham

Research has major implications for neurodegenerative disease treatments

Neurodegeneration in brain cells may be happening when the natural cellular cleaning process malfunctions due to falling levels of a niacin-related coenzyme and leaves cells starved of energy, new research shows.

Brain cells die from malfunction of autophagy, a process by which cells get rid of cellular waste and generate energy for their survival. In new research published in Cell Reports, researchers have found that a metabolic failure arising from loss of autophagy is detrimental to brain cells called neurons. When autophagy stops working, the levels of a coenzyme called nicotinamide adenine dinucleotide (NAD) falls, causing the cells to not be able to get enough energy to maintain normal function and to survive.

Researchers led by Dr Sovan Sarkar at the University of Birmingham along with his PhD students, Ms Congxin Sun and Dr Elena Seranova, and in collaboration with Prof. Rudolf Jaenisch at the Whitehead Institute for Biomedical Research, developed a human embryonic stem cell (hESC) model with deletion of a key gene involved in autophagy.

They generated neurons from these hESCs to understand how loss of autophagy kills brain cells. In autophagy-deficient neurons, depletion of NAD was identified to mediate cell death. The researchers found that upon loss of autophagy, NAD was consumed by hyperactivation of naturally occurring enzymes such as Sirtuins and PARPs.

Critically for brain health, dropping NAD levels resulted in undesirable electrical changes to mitochondria, leading to them not being able to function effectively and cells arent able to metabolise energy to continue to maintain homeostasis.

The researchers say that the findings of this neurotoxic pathway provide new clues about a way to combat neurodegenerative diseases, by showing that compounds boosting NAD levels can improve the survival of neurons with loss of autophagy.

....identifying that NAD levels are being depleted when autophagy malfunctions is a very important step in thinking about a way to manage decline in brain health both in older age and among at-risk populations.

Dr Sovan Sarkar, a Birmingham Fellow in the Institute of Cancer and Genomic Sciences at the University of Birmingham and lead senior author of the paper said:

We have shown a new mechanism of how brain cells are dying when autophagy stops working properly by using a hESC-derived neuronal model of autophagy deficiency. Autophagy is a critical process across all cells, especially in neurons, and identifying that NAD levels are being depleted when autophagy malfunctions is a very important step in thinking about a way to manage decline in brain health both in older age and among at-risk populations.

NAD can be boosted through the use of targeted therapeutics such as supplementation with NAD precursors like nicotinamide (NAM), nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), as well as through the consumption of vitamin B3 also called niacin.

Our research also identifies the potential for drugs that slow down the NAD-eating enzymes in the PARP and Sirtuin families, all of which could support healthy ageing and reduced risk of neurodegeneration.

The results suggest that among the many roles that autophagy plays, helping maintain the levels of NAD that supports cell metabolism is an important process for staving off neurodegeneration. It also provides new potential targets for future treatments for neurodegenerative diseases, both by targeting the enzymes (SIRT1 and 2 and PARP1 and 2) that ate up NAD and by supplementing NAD precursors.

Dr Viktor Korolchuk, Associate Professor at Newcastle University and a senior co-author of the paper said:

Both autophagy and NAD levels decline in our cells and tissues as we get older contributing to age-related diseases. Our study helps to explain how these processes are interlinked: loss of autophagy also causes depletion of NAD.

Our recent paper demonstrated this in yeast and mouse cells, and the current study in human cells unequivocally shows that this intimate link between autophagy and NAD can trigger the death of human neurons. This finding significantly adds to our understanding of ageing and age-related neurodegeneration and opens new avenues to explore.

Read more:
Brain cells are starved of energy when autophagy malfunctions, new ... - University of Birmingham

Map of spinal cord formation gives new knowledge on diseases of … – EurekAlert

Researchers at Karolinska Institutet in Sweden have mapped how cells in the human spinal cord are formed in the embryo and what genes control the process. Their findings can give rise to new knowledge on how injury to and diseases of the spinal cord arise and how they can be treated. The study has been published in the journal Nature Neuroscience.

The spinal cord is part of the central nervous system, serving as an important bridge for communication between the brain and the rest of the body. There are many different types of cells in the human spinal cord but much still remains to be understood about how these cells are formed from stem cells during embryonic development.

Many neurodegenerative diseases and injuries of the spinal cord are incurable because of the poor regeneration of human spinal cord cells, says the studys first author Xiaofei Li, assistant professor at the Department of Neurobiology, Care Sciences and Society, Karolinska Institutet. A better grasp of how the spinal cord is formed and how different genes control this development can lead to new therapies for spinal cord injuries and diseases such as ALS or cancer of the nervous system.

User-friendly online tool

The researchers have built up an extensive map of all the cell types of the human spinal cord, showing where the cells are and what genes they express during embryonic development. The information has been gathered in a user-friendly interactive online tool that researchers or other interested parties can use to search for genes that shape how the spinal cord develops.

The study identified key genes that affect how the stem cells migrate when the spinal cord is formed and what specialisations they have. A comparison with spinal cord development in mice revealed important differences between mice and humans.

These findings are very important because much of what we already know is based on mouse studies, says Dr Li.

The study was conducted using single-cell RNA sequencing and spatial transcriptomics, which enabled the researchers to map thousands of genes in each individual cell and analyse how they are expressed at different sites of the same tissue section.

Learning more about child cancer

The researchers also studied an unusual tumour type called ependymoma, which manifests as malignant brain tumours in children or benign spinal cord tumours in adults. On identifying genes that are specific to tumour development they were thus able to demonstrate how their findings can be used to increase understanding of diseases of the nervous system.

Well now be interrogating how stem cells form different cell types and change their properties both during embryonic development and later during maturity and ageing, as well as in different kinds of pathological conditions, says the studys last author Erik Sundstrm, senior researcher at the Department of Neurobiology, Care Sciences and Society, Karolinska Institutet.

The study was financed by the Erling Persson Foundation, the Knut and Alice Wallenberg Foundation, Karolinska Institutet and SciLifeLab. Co-authors Zaneta Andrusivova, Ludvig Larsson and Joakim Lundeberg are consultants at 10x Genomics Inc., for which Mats Nilsson is also an advisor.

Publication: Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Xiaofei Li, Zaneta Andrusivova, Paulo Czarnewski, Christoffer Mattsson Langseth, Alma Andersson, Yang Liu, Daniel Gyllborg, Emelie Braun, Ludvig Larsson, Lijuan Hu, Zhanna Alekseenko, Hower Lee, Christophe Avenel, Helena Kopp Kallner, Elisabet kesson, Igor Adameyko, Mats Nilsson, Sten Linnarsson, Joakim Lundeberg, Erik Sundstrm. Nature Neuroscience, online 24 April 2023, doi: 10.1038/s41593-023-01312-9.

Nature Neuroscience

Experimental study

Human tissue samples

Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin

24-Apr-2023

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read the original post:
Map of spinal cord formation gives new knowledge on diseases of ... - EurekAlert

Developing cells likely can ‘change their mind’ about their destiny – Phys.org

This article has been reviewed according to ScienceX's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

A neural crest cell (a type of stem cell) begins with the ability to differentiate into any number of specialist cell types, but it also appears to retain the capacity to "change its mind" and differentiate anew when the circumstances are right, according to new research from the University of Bath. As a result of this hyper-flexibility, the possibilities for these cells in replacing damaged human tissue is likely to be even greater than previously thought.

Neural crest cellsfound in very young embryos, and vital for determining the color of hair and skinare highly flexible by nature, giving rise to many different types of vital cells, including neurons. New research from the University of Bath suggests their flexibility remains greater than previously thought, a finding that has significant implications for regenerative medicine.

Until now, it was assumed that neural crest cells became committed to becoming a particular cell type very early, after which their fate was sealed. However, studies led by Professor Robert Kelsh from the Department of Life Sciences at Bath suggest they retain their adaptability even after they have become visibly differentiated.

This newly discovered flexibility helps explain why neural crest stem cellsan important type of stem cell that can also be readily isolated from adult skinhave immense potential as treatments to replace and repair damaged body tissue in many parts of the body.

The finding that even after choosing a destiny (for instance, developing into skin pigment cells), neural crest cells might be able to "change their mind" and choose a new destiny (perhaps becoming cartilage cells) reconciles a long-standing debate among biologists over the nature of neural crest cell differentiation.

In humans, neural crest cells are multipotent, meaning they are capable of developing into many different types of cell, including cells of the peripheral nervous system, cardiac muscle, and cartilage, as well as pigment cells in the skin and hair. These are all cells with highly specific functions.

Until now, two rival theories have sought to explain how, exactly, they pull this off.

"The question of how the fate of these cells becomes decided and restricted has been unclear and much debated for over 40 years," said Professor Kelsh.

According to the first theory, neural crest cells begin to commit to a specific role in the young embryo before leaving the place from which they arisethe neural tube (which develops into the brain and spine). The thinking goes that by the time they start migrating to their final destinationbe that the gut, skin, or connective tissuetheir destiny is already partially limited (i.e., some options are already off the table) and that more and more options become eliminated as they migrate.

The second theory posits that neural crest cells remain multipotent when they leave the neural tube and only commit to a specific differentiation path once they reach their destination.

There has been a general feeling in the field that the first model was the more accurate of the two. The new study published in Nature Communications, however, finds that neither of these "static" theories is correct.

"It would appear that these cells are choosing their fate in a much more dynamic, mobile way and are not narrowing their options irreversibly until much later than we previously thought," said Professor Kelsh. "This provides experimental biologists with a new, updated model to help them understand the behavior of neural crest cells."

It has long been known that neural crest cells use molecular signals from their environments to turn into one type of cell or another. However, Professor Kelsh's genetic work on zebrafisha freshwater fish with many genetic similarities to humansshows these steps are likely reversible: remove the signals and the cells revert to a more primitive state, where their potential to differentiate differently is restored.

Professor Kelsh said, "Our work shows these cells become biased by their environment. Take them out of that environment and they relax back to a more broadly competent state, likely capable of becoming anything."

He added, "Our findings will be of interest to other stem-cell researchers, as they give us a theoretical understanding of how neural crest cells might be used in medicine to repair any number of defects, from skin-pigmentation defects such as vitiligo to defects of the nervous system."

More information: Tatiana Subkhankulova et al, Zebrafish pigment cells develop directly from persistent highly multipotent progenitors, Nature Communications (2023). DOI: 10.1038/s41467-023-36876-4

Journal information: Nature Communications

Visit link:
Developing cells likely can 'change their mind' about their destiny - Phys.org

Cell Therapy Market to Witness Rapid Growth, Driven by Growing Applications in Oncology and Regenerative Medic – openPR

Global Cell Therapy Market report from Global Insight Services is the single authoritative source of intelligence on Cell Therapy Market. The report will provide you with analysis of impact of latest market disruptions such as Russia-Ukraine war and Covid-19 on the market. Report provides qualitative analysis of the market using various frameworks such as Porters' and PESTLE analysis. Report includes in-depth segmentation and market size data by categories, product types, applications, and geographies. Report also includes comprehensive analysis of key issues, trends and drivers, restraints and challenges, competitive landscape, as well as recent events such as M&A activities in the market.

To Remain 'Ahead' Of Your Competitors, Request for A Sample: https://www.globalinsightservices.com/request-sample/GIS21212

Cell therapy is a type of treatment that uses living cells to treat a disease or condition. The cells can be from the patient's own body, or they can be from a donor. Cell therapy is also called cellular therapy, cell transplantation, or regenerative medicine.

Key Trends:

The major factors driving the growth of this market are the increasing prevalence of cancer and chronic diseases, and the growing demand for personalized medicine.

However, the high cost of cell therapy treatments and the lack of skilled professionals are the major factors restraining the growth of this market.

Read more about Cell Therapy Market here: https://www.globalinsightservices.com/reports/cell-therapy-market

Key Drivers:

The key drivers of the cell therapy market are the increasing incidence of cancer, the rise in the aging population, and the growing demand for minimally invasive treatments.

The aging population is also a major driver of the cell therapy market, as the risk of developing cancer increases with age.

The demand for minimally invasive treatments is also growing, as patients seek to avoid the side effects of traditional cancer treatments such as chemotherapy and radiation therapy.

Get Customized Report as Per Your Requirement: https://www.globalinsightservices.com/request-customization/GIS21212

Market Segments:

The cell therapy market is segmented by therapy type, therapeutic area, end-user, and region. By therapy type, the market is classified into autologous, and allogenic. On the basis of therapeutic area, it is bifurcated into malignancies, autoimmune disorders, dermatology, and others. Based on end-use, it is divided into hospitals, clinics, academic, and others. Region-wise, the market is segmented into North America, Europe, Asia Pacific, and Rest of the World.

Key Players:

The global cell therapy market includes players such as Allosource, Cells for Cells, Holostem Terapie Avanzate Srl, JCR Pharmaceuticals Co Ltd, Kolon Tissuegene Inc, Medipost Co Ltd, Mesoblast Ltd, Nuvasive Inc, Osiris Therapeutics, Inc, Stemedica Cell Technologies Inc, and others.

For In-Depth Competitive Analysis, Purchase this Report: https://www.globalinsightservices.com/checkout/single_user/GIS21212

Contact Us:

Global Insight Services LLC16192, Coastal Highway, Lewes DE 19958E-mail: info@globalinsightservices.comPhone: +1-833-761-1700

About Global Insight Services:

Global Insight Services (GIS) is a leading multi-industry market research firm headquartered in Delaware, US. We are committed to providing our clients with highest quality data, analysis, and tools to meet all their market research needs. With GIS, you can be assured of the quality of the deliverables, robust & transparent research methodology, and superior service.

This release was published on openPR.

View original post here:
Cell Therapy Market to Witness Rapid Growth, Driven by Growing Applications in Oncology and Regenerative Medic - openPR

The first babies conceived with a sperm-injecting robot have been born – MIT Technology Review

I was calm. In that exact moment, I thought, Its just one more experiment, says Eduard Alba, the student mechanical engineer who commanded the sperm-injecting device.

The startup company that developed the robot, Overture Life, says its device is an initial step toward automating in vitro fertilization, or IVF, and potentially making the procedure less expensive and far more common than it is today.

Right now, IVF labs are staffed by trained embryologists who earn upwards of $125,000 a year to delicately handle sperm and eggs using ultra-thin hollow needles under a microscope.

But some startups say the entire process could be carried out automatically, or nearly so. Overture, for instance, has filed a patent application describing a biochip for an IVF lab in miniature, complete with hidden reservoirs containing growth fluids, and tiny channels for sperm to wiggle through.

Think of a box where sperm and eggs go in, and an embryo comes out five days later, says Santiago Munn, the prize-winning geneticist who is chief innovation officer at the Spanish company. He believes that if IVF could be carried out inside a desktop instrument, patients might never need to visit a specialized clinic, where a single attempt at getting pregnant can cost $20,000 in the US. Instead, he says, a patients eggs might be fed directly into an automated fertility system at a gynecologists office. It has to be cheaper. And if any doctor could do it, it would be, says Munn.

MIT Technology Review identified a half-dozen startups with similar aims, with names like AutoIVF, IVF 2.0, Conceivable Life Sciences, and Fertilis. Some have roots in university laboratories specializing in miniaturized lab-on-a-chip technology.

So far, Overture has raised the most: about $37 million from investors including Khosla Ventures and Susan Wojcicki, the former CEO of YouTube.

The main goal of automating IVF, say entrepreneurs, is simple: its to make a lot more babies. About 500,000 children are born through IVF globally each year, but most people who need help having kids dont have access to fertility medicine or cant pay for it.

How do we go from half a million babies a year to 30 million? wonders David Sable, a former fertility doctor who now runs an investment fund. You cant if you run each lab like a bespoke, artisanal kitchen, and that is the challenge facing IVF. Its been 40 years of outstanding science and really mediocre systems engineering.

While an all-in-one fertility machine doesnt yet exist, even automating parts of the process, like injecting sperm, freezing eggs, or nurturing embryos, could make IVF less expensive and eventually support more radical innovations, like gene editing or even artificial wombs.

But it wont be easy to fully automate IVF. Just imagine trying to make a robot dentist. Test-tube conception involves a dozen procedures, and Overtures robot so far performs only one of them, and only partially.https://wp.technologyreview.com/wp-content/uploads/2023/04/robot-procedure-notext.mp4An video showing robotic fertilization of an egg at Overture Life Sciences. A vibrating needle pierces the egg, depositing a single sperm cell.

OVERTURE

The concept is extraordinary, but this is a baby step, says Gianpiero Palermo, a fertility doctor at Weill Cornell Medical Center who is credited with developing the fertilization procedure known as intracytoplasmic sperm injection, or ICSI, in the 1990s. Palermo notes that Overtures researchers still relied on some manual assistance for tasks like loading a sperm cell into the injector needle. This is not yet robotic ICSI, in my opinion, he says.

Other doctors are skeptical that robots can, or should, replace embryologists anytime soon. You pick up a sperm, put it in an egg with minimal trauma, as delicately as possible, says Zev Williams, director of Columbia Universitys fertility clinic. For now, humans are far better than a machine, he says.

His center did develop a robot, but it has a more limited aim: dispensing tiny droplets of growth medium for embryos to grow in. Its not good for the embryos if the drop size differs, says Williams. Creating the same drops over and over againthat is where the robot can shine. He calls it a low risk way to introduce automation to the lab.

One obstacle to automating conception is that so-called microfluidicsanother name for lab-on-a-chip technologyhasnt lived up to its hype.

Jeremy Thompson, an embryologist based in Adelaide, Australia, says hes spent his career figuring out how to make the lives of embryos better as they grow in laboratories. But until recently, he says, his tinkering with microfluidic systems yielded an unambiguous result: Bollocks. It didnt work. Thompson says IVF remains a manual process in part because no one wants to trust an embryoa potential personto a microdevice where it could get trapped or harmed by something as tiny as an air bubble.

A few years ago, though, Thompson saw images of a minuscule Eiffel Tower, just one millimeter tall. It had been made using a new type of additive 3D printing, in which light beams are aimed to harden liquid polymers. He decided this was the needed breakthrough, because it would let him build a box or a cage around an embryo.

Since then, a startup he founded, Fertilis, has raised a couple of million dollars to print what it calls see-through pods or micro-cradles. The idea is that once an egg is plopped into one, it can be handled more easily and connected to other devices, such as pumps to add solutions in minute quantities.

Inside one of Fertiliss pods, an egg sits in a chamber no larger than a bead of mist, but the container itself is large enough to pick up with small tongs. Fertilis has published papers showing it can flash-freeze eggs inside the cradles and fertilize them there, too, by pushing in a sperm with a needle.

A human egg is about 0.1 millimeters across, at the limit of what a human eye can see unaided. Right now, to move one, an embryologist will slurp it up into a hollow needle and squirt it out again. But Thompson says that once inside the companys cradles, eggs can be fertilized and grow into embryos, moving through the stations of a robotic lab as if on a conveyor belt. Our whole story is minimizing stress to embryos and eggs, he says.

Thompson hopes someday, when doctors collect eggs from a womans ovaries, theyll be deposited directly into a micro-cradle and, from there, be nannied by robots until theyre healthy embryos. Thats my vision, he says.https://wp.technologyreview.com/wp-content/uploads/2023/04/better-injection.mp4A video taken through a microscope shows a microneedle penetrating eggs held in 3D-printed pods, or cradles. An egg is about 0.1 mm across.

FERTILIS

MIT Technology Review found one company, AutoIVF, a spinout from a Massachusetts General HospitalHarvard University microfluidics lab, that has won more than $4 million in federal grants to develop such an egg-collecting system. It calls the technology OvaReady.

Egg collection happens after a patient is treated with fertility hormones. Then a doctor uses a vacuum-powered probe to hoover up eggs that have ripened in the ovaries. Since theyre floating in liquid debris and encased in protective tissue, an embryologist needs to manually find each one and denude it by gently cleaning it with a glass straw.

An AutoIVF executive, Emre Ozkumur, declined to discuss the projectthe company wants to stay under the radar a little bit longer, he saysbut its grant and patent documents suggest it is testing a device that can spot and isolate eggs and then automatically strip them of surrounding tissue, perhaps by swishing them through something that resembles a microscopic cheese grater.

Once an egg is in hand, doctors need to match it with a sperm cell. To help them pick the right one, Alejandro Chavez-Badiola, a fertility doctor based in Mexico, started a company, IVF 2.0, that developed software to rank and analyze sperm swimming in a dish. Its similar to computer-vision programs that track sports players as they run, collide, and switch directions on a pitch.

The job is to identify healthy sperm by assessing their shape and seeing how well they swim. Motility, says Chavez-Badiola, is the ultimate expression of sperm health and normality. While a person can only keep an eye on a few sperm at one time, a computer doesnt face that limit. We humans are good at channeling our attention to a single point. We can assess five or 10 sperm, but you cant do 50, says Chavez-Badiola.

His IVF clinic is running a head-to-head study of human- and computer-picked sperm, to see which lead to more babies. So far, the computer holds a small edge.

We dont claim its better than a human, but we do claim its just as good. And it never gets tired. A human has to be good at 8 a.m., after coffee, after having an argument on the phone, he says.

Chavez-Badiola says such software will be the brains to command future automated labs. This year, he sold the rights to use his sperm-tracking program to Conceivable Life Sciences, another IVF automation startup being formed in New York where Chavez-Badiola will act as chief product officer. Also joining the company is Jacques Cohen, a celebrated embryologist who once worked at the British clinic where the first IVF baby was born in 1978.https://wp.technologyreview.com/wp-content/uploads/2023/04/Conceivable-720.mp4A computer system developed by IVF 2.0 tracks and grades sperm as they swim, using image-recognition software.

CONCEIVABLE

Conceivable plans to create an autonomous robotic workstation that can fertilize eggs and cultivate embryos, and it hopes to demonstrate all the key steps this year. But Cohen allows that automation could take a while to become reality. It will happen step by step, he says. Even things that seem obvious take 10 years to catch on, and 20 to become routine.

The investors behind Conceivable think they can cash in by expanding the use of IVF. Its nearly certain that the IVF industry could grow to five or 10 times its current size. In the US, fewer than 2% of kids are born this way, but in Denmark, where the procedure is free and encouraged, the figure is near 10%.

That is the true demand, says Alan Murray, an entrepreneur with a background in software and co-working spaces who cofounded Conceivable with his business partner, Joshua Abram. The challenge is that these wonderful rich and eccentric countries can do it, but the rest of the world cannot. But they have demonstrated the true human need, he says. What they have done with money, we need to do with technology.

Murray estimates the average IVF baby in the US costs $83,000 if you include failed attempts, which are common. He says his companys objective is to lower the cost by 70%, something he says can happen if success rates increase.

But its not a given that robots will reduce the cost of IVF or that any savings will be passed on to patients. Rita Vassena, an advisor to Conceivable and CEO at Fecundis, a fertility science company, says the field has a history of introducing innovations without appreciably increasing pregnancy rates. The trend [is] toward piling up tests and technologies rather than a true effort to lower access barriers, she says.

Last fall, the researchers at Overture and doctors at New Hope published a description of their work with the robot, claiming that two patients had become pregnant. That was done after gaining ethics approval for the study, says John Zhang, founder of New Hope and senior author of the report.

Both those children have now been born, says Jenny Lu, the egg donation coordinator at New Hope. MIT Technology Review was able to speak to the father of one of the children.

Its wild, isnt it, said the father, who asked to remain anonymous. They said up until now it had always been done manually.

He said he and his partner had tried IVF several times before, without success. Both cases of robot injection involved donor eggs, which were provided to the patients for free (they can cost $15,000 otherwise). In each case, after being fertilized and grown into embryos, they were implanted in the uterus of the patient.

Donor eggs are most often used when a patient is older, in her 40s, and cant get pregnant otherwise.

Since automation wont directly solve the problem of aging eggs, an IVF lab-in-a-box wont fix this intractable reason that fertility treatments fail. However, automation could let doctors begin precisely measuring what they do, allowing them to fine-tune their procedures. Even a small increase in success rates could mean tens of thousands of extra babies every year.

Kathleen Miller, chief scientist of Innovation Fertility, a chain of clinics in the southern US, says her centers are now using computer-vision systems to study time-lapse videos of growing embryos and trying to see if any data explain why some become babies and others dont. Were putting it into models, and the question is Tell me something I dont know, she says.

Were going to see an evolution of what an embryologist is, Miller predicts. Right now, they are technicians, but theyre going to be data scientists.

For some proponents of IVF automation, an even wilder future awaits. By giving over conception to machines, automation could speed the introduction of still-controversial techniques such as genome editing, or advanced methods of creating eggs from stem cells.

Although Munn says Overture Life has no plans to modify the genetic makeup of children, he allows it would be a simple matter to use the sperm-injecting robot for that purpose, since it could dispense precise amounts of gene-editing chemicals into an egg. It should be very easy to add to the machine, he says.

Even more speculative technology is on the horizon. Fertility machines could gradually evolve into artificial wombs, with children gestated in scientific centers until birth. I do believe we are going to get there, says Thompson. There is credible evidence that what we thought was impossible is not so impossible.

Others imagine that robots could eventually be shot into outer space, stocked with eggs and sperm held in a glassy state of stasis. After a thousand-year journey to a distant planet, such machines might boot up and create a new society of humans.

Its all part of the goal of creating more people, and not just here on Earth. There are people thinking that humankind should be an interplanetary species, and human lifetimes are not going to be enough to reach out to these worlds, says Chavez-Badiola. Part of the job of a scientist is to keep dreaming.

More:
The first babies conceived with a sperm-injecting robot have been born - MIT Technology Review

Loss of autism-linked gene dampens social interactions in animals – Spectrum – Autism Research News

Stranger danger: Unlike wildtype mice (top row), those lacking GIGYF1 (bottom row) avoid unfamiliar mice (right) in favor of those they know (left), position heat maps show.

Mice and zebrafish that lack the autism-linked gene GIGYF1 show atypical social behaviors, according to a new study. The findings tie variations in the gene to social traits in autistic people, the researchers say.

Among the genes strongly linked to autism, GIGYF1 ranks as the second most commonly mutated one in people with autism and related neurodevelopmental conditions. But little is known about the genes contribution to autism traits, says Bo Xiong, professor of forensic medicine at Huazhong University of Science and Technology in China. Initial findings point to a role in regulating social behavior: Deleting the gene blunts social memory in mice, through mechanisms thought to be mediated by impaired insulin signaling.

GIGYF1 is also implicated in other pathways including autophagy and mRNA regulation that are often altered in people with neurodevelopmental conditions, says Jeremy Veenstra-VanderWeele, professor of developmental psychiatry at Columbia University, who was not involved in the study. But it had not previously been rigorously studied for its impact on neurodevelopment and downstream behavior, he says.

Xiong and his colleagues combed sequencing data from SPARK, a project that aims to collect genetic and clinical information from 50,000 families that have at least one child with autism. (SPARK is funded by the Simons Foundation, Spectrums parent organization).

They identified seven new GIGYF1 mutations and pooled the data with 19 previously reported variants. Cross-referencing with clinical information revealed that 86 percent of people with GIGYF1 mutations have autism. A similar proportion have communication difficulties and social phobia, alongside sleep problems and delayed speech.

Zebrafish embryos edited via CRISPR to lack GIGYF1 develop more slowly than their wildtype counterparts, Xiong and his colleagues found. As adults, the fish are more anxious and less willing to socialize.

Zebrafish are typically highly sociable: They rarely swim alone, preferring to travel in clusters called shoals. When placed in a three-chambered enclosure with a fish at one end and an empty chamber at the other, wildtype fish will opt for company. But fish lacking GIGYF1 prefer solitude and appear anxious, frequently darting around the tank. Whats more, they form looser shoals, maintaining more distance between themselves and others.

Mice engineered to express just one copy of the GIGYF1 gene also display social deficits. When the researchers tested for social novelty a mouses inclination to investigate a stranger over those it already knows the mutant mice stayed near the familiar mouse. GIGYF1 deletion also triggered repetitive behaviors, one of the core traits of autism.

The study plays to the strengths of each model, says Julia Dallman, associate professor of biology at the University of Miami in Florida, who was not involved in the study. For example, delayed embryogenesis is easier to spot in zebrafish, which develop outside their mothers body, than in mice. These different models can provide complementary windows of insight into gene function, she says.

But the fish could be tweaked to better reflect the genetics of autism, says Dallman. The study used zebrafish lacking both copies of GIGYF1, but people with the condition have one mutated copy and one functional copy.

Disrupting both gene copies is a good way to understand the biological importance of GIGYF1 but does not model the human condition, Veenstra-VanderWeele agrees.

Mice missing a copy of the gene in only their excitatory neurons still showed repetitive behaviors and impairments in social novelty. Yet deleting a copy of GIGYF1 in only inhibitory neurons triggered a different set of traits, including heightened anxiety and poorer cognition, suggesting that GIGYF1 plays distinct roles in different cell types.

The findings were published 14 March in Biological Psychiatry.

Exactly how GIGYF1 variants cause changes in social behavior remains an open question. Right now, we only know a small piece of the whole picture. We still dont know the exact molecular mechanisms by which these mutations cause behavioral defects, Xiong says.

Initial findings hint at changes in neuronal communication. By screening for transcripts and proteins that bind to GIGYF1, the researchers identified hundreds of downstream targets, including several involved in synaptic transmission. They are now harnessing electrophysiology to see how GIGYF1 deletion in mice influences neuronal chatter.

Because GIGYF1s function appears to be conserved among animal models, it would be interesting to see whether similar effects are seen in organoids and stem cells, says Ctia Igreja, a researcher at the Max Planck Institute for Biology in Tbingen, Germany, who was not involved in the study. If so, scientists may be able to pinpoint the GIGYF1s molecular mechanisms and identify potential therapeutic interventions that alleviate GIGYF1 deficiency, she adds.

Cite this article: https://doi.org/10.53053/GPMX9020

Go here to read the rest:
Loss of autism-linked gene dampens social interactions in animals - Spectrum - Autism Research News

A burst of genomic innovation at the origin of placental mammals … – Nature.com

Lynch, V. J. et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10, 551561 (2015).

Article CAS PubMed PubMed Central Google Scholar

Kin, K. et al. The transcriptomic evolution of mammalian pregnancy: gene expression innovations in endometrial stromal fibroblasts. Genome Biol. Evol. 8, 24592473 (2016).

Article CAS PubMed PubMed Central Google Scholar

Wagner, G. P. Evolutionary innovations and novelties: let us get down to business! Zool. Anz. 256, 7581 (2015).

Article Google Scholar

Hertel, J. et al. The expansion of the metazoan microRNA repertoire. BMC Genom. 7, 25 (2006).

Article Google Scholar

Prochnik, S. E., Rokhsar, D. S. & Aboobaker, A. A. Evidence for a microRNA expansion in the bilaterian ancestor. Dev. Genes Evol. 217, 7377 (2007).

Article CAS PubMed Google Scholar

Grimson, A. et al. The early origins of microRNAs and Piwi-interacting RNAs in animals. Nature 455, https://doi.org/10.1038/nature07415 (2008).

Keniry, A. et al. The H19 lincRNA is a developmental reservoir of miR-675 which suppresses growth and Igf1r. Nat. Cell Biol. 14, 659665 (2012).

Article CAS PubMed PubMed Central Google Scholar

Munaut, C. et al. Dysregulated circulating miRNAs in preeclampsia. Biomed. Rep. 5, 686692 (2016).

Article CAS PubMed PubMed Central Google Scholar

Bastian, F. et al. MirGeneDB 2.0: the metazoan microRNA complement. Nucleic Acids Res. 48, 1 (2020).

Google Scholar

Bastian, F. et al. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet. 49, 213242 (2015).

Article Google Scholar

Ito, M. et al. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development. Development 142, 24252430 (2015).

CAS PubMed PubMed Central Google Scholar

Farrokhnia, F., Aplin, J. D., Westwood, M. & Forbes, K. MicroRNA regulation of mitogenic signaling networks in the human placenta. J. Biol. Chem. 289, 3040430416 (2014).

Article CAS PubMed PubMed Central Google Scholar

Luo, L. et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J. Cell Sci. 125, 3124 LP3132 (2012).

Google Scholar

Morales-Prieto, D. M. et al. MicroRNA expression profiles of trophoblastic cells. Placenta 33, 725734 (2012).

Article CAS PubMed Google Scholar

Tochigi, H. et al. Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci. Rep. 7, 40001 (2017).

Article CAS PubMed PubMed Central Google Scholar

Fu, G., Brki, J., Hayder, H. & Peng, C. MicroRNAs in human placental development and pregnancy complications. Int. J. Mol. Sci. 14, 55195544 (2013).

Article CAS PubMed PubMed Central Google Scholar

Harapan, H. & Andalas, M. The role of microRNAs in the proliferation, differentiation, invasion, and apoptosis of trophoblasts during the occurrence of preeclampsiaa systematic review. Tzu Chi Med. J. 27, 5464 (2015).

Article Google Scholar

Hosseini, M. K., Gunel, T., Gumusoglu, E., Benian, A. & Aydinli, K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol. Med. Rep. 17, 49414952 (2018).

CAS PubMed PubMed Central Google Scholar

Rahman, M. L. et al. Regulation of birthweight by placenta-derived miRNAs: evidence from an arsenic-exposed birth cohort in Bangladesh. Epigenetics 13, 573590 (2018).

Article PubMed PubMed Central Google Scholar

do Imperio, G. E. et al. Chorioamnionitis induces a specific signature of placental ABC transporters associated with an increase of miR-331-5p in the human preterm placenta. Cell. Physiol. Biochem. 45, 591604 (2018).

Article PubMed Google Scholar

Fallen, S. et al. Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour. J. Cell. Mol. Med. 22, 27602773 (2018).

Article CAS PubMed PubMed Central Google Scholar

Suwen, C., Liping, S. & Guijiao, F. SP1-mediated long noncoding RNA POU3F3 accelerates the cervical cancer through miR-127-5p/FOXD1. Biomed. Pharmacother. 117, 109133 (2019).

Wang, D., Tang, L., Wu, H., Wang, K. & Gu, D. MiR-127-3p inhibits cell growth and invasiveness by targeting ITGA6 in human osteosarcoma. IUBMB Life 70, 411419 (2018).

Ferri, C. et al. MiR-423-5p prevents MALAT1-mediated proliferation and metastasis in prostate cancer. J. Exp. Clin. Cancer Res. 41, 20 (2022).

Article CAS PubMed PubMed Central Google Scholar

Liu, Q., Yan, S., Yuan, Y., Ji, S. & Guo, L. miR-28-5p improved carotid artery stenosis by regulating vascular smooth muscle cell proliferation and migration. Vascular 30, 764770 (2021).

Sheng, C. et al. MiR-340 promotes the proliferation of vascular smooth muscle cells by targeting von HippelLindau tumor suppressor gene. J. Cardiovasc. Pharmacol. 77, 875884 (2021).

Kuang, M. J. et al. CircUSP45 inhibited osteogenesis in glucocorticoid-induced osteonecrosis of femoral head by sponging miR-127-5p through PTEN/AKT signal pathway: experimental studies. Biochem. Biophys. Res. Commun. 509, 255261 (2019).

Farre-Garros, R. et al. Quadriceps miR-542-3p and -5p are elevated in COPD and reduce function by inhibiting ribosomal and protein synthesis. J. Appl. Physiol. 126, 15141524 (2019).

Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, 138 (2015).

Article Google Scholar

Esnault, C., Cornelis, G., Heidmann, O. & Heidmann, T. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV Syncytin, captured for a function in placentation. PLoS Genet. 9, e1003400 (2013).

Article CAS PubMed PubMed Central Google Scholar

Dunwell, T. L., Paps, J. & Holland, P. W. H. Novel and divergent genes in the evolution of placental mammals. Proc. Biol. Sci. 284, 20171357 (2017).

PubMed PubMed Central Google Scholar

Than, N. G. et al. A primate subfamily of galectins expressed at the maternalfetal interface that promote immune cell death. Proc. Natl Acad. Sci. USA 106, 9731 LP9739736 (2009).

Article Google Scholar

Yates, A. et al. Ensembl 2016. Nucleic Acids Res. 44, D710D716 (2016).

Article CAS PubMed Google Scholar

Hauguel-de Mouzon, S. & Guerre-Millo, M. The placenta cytokine network and inflammatory signals. Placenta 27, 794798 (2006).

Article CAS PubMed Google Scholar

Woods, L., Perez-Garcia, V. & Hemberger, M. Regulation of placental development and its impact on fetal growthnew insights from mouse models. Front. Endocrinol. 9, 570 (2018).

Article Google Scholar

Gal, H. et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 38, e100849e100849 (2019).

Article PubMed PubMed Central Google Scholar

Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 11541159 (2011).

Article CAS PubMed Google Scholar

Tian, X. et al. Evolution of telomere maintenance and tumour suppressor mechanisms across mammals. Philos. Trans. R. Soc. B Biol. Sci. 373, 20160443 (2018).

Article Google Scholar

McNab, B. K. An analysis of the factors that influence the level and scaling of mammalian BMR. Comp. Biochem. Physiol. Part A 151, 528 (2008).

Article Google Scholar

Garratt, M., Gaillard, J.-M. J., Brooks, R. C. P., Lemaitre, J.-F. & Lematre, J.-F. Diversification of the eutherian placenta is associated with changes in the pace of life. Proc. Natl Acad. Sci. USA 110, 77607765 (2013).

Article CAS PubMed PubMed Central Google Scholar

Welch, J. J., Bininda-Emonds, O. R. P. & Bromham, L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol. Biol. 8, 53 (2008).

Article PubMed PubMed Central Google Scholar

Spencer, T. E. & Bazer, F. W. Temporal and spatial alterations in uterine estrogen receptor and progesterone receptor gene expression during the estrous cycle and early pregnancy in the Ewe1. Biol. Reprod. 53, 15271543 (1995).

Article CAS PubMed Google Scholar

Godkin, J. D., Bazer, F. W., Moffatt, J., Sessions, F. & Roberts, R. M. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at Day 1321. Reproduction 65, 141150 (1982).

Article CAS Google Scholar

Morgan, F. J. & Canfield, R. E. Nature of the subunits of human chorionic gonadotropin. Endocrinology 88, 10451053 (1971).

Article CAS PubMed Google Scholar

Tinning, H. et al. The role of CAPG in molecular communication between the embryo and the uterine endometrium: Is its function conserved in species with different implantation strategies? FASEB J. 34, 1101511029 (2020).

Article CAS PubMed Google Scholar

Forde, N. et al. Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant?1. Biol. Reprod. 85, 144156 (2011).

Article CAS PubMed Google Scholar

Morgan, C. C. et al. Heterogeneous models place the root of the placental mammal phylogeny. Mol. Biol. Evol. 30, 21452156 (2013).

Article CAS PubMed PubMed Central Google Scholar

Tarver, J. E. et al. The interrelationships of placental mammals and the limits of phylogenetic inference. Genome Biol. Evol. 8, 330344 (2016).

Article CAS PubMed PubMed Central Google Scholar

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403410 (1990).

Article CAS PubMed Google Scholar

Giribet, G. TNT: tree analysis using new technology. Syst. Biol. 54, 176178 (2005).

Article Google Scholar

Bartel, D. P. MicroRNA target recognition and regulatory functions. Cell 136, 215233 (2009).

Article CAS PubMed PubMed Central Google Scholar

Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419D426 (2019).

Article CAS PubMed Google Scholar

Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481D487 (2016).

Article CAS PubMed Google Scholar

Anisimova, M. & Yang, Z. Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol. Biol. Evol. 24, 12191228 (2007).

See the original post:
A burst of genomic innovation at the origin of placental mammals ... - Nature.com

New Method To Cure HIV Yields Long-Term Successful Results – SciTechDaily

HIV (Human Immunodeficiency Virus) is a virus that attacks the immune system, which is the bodys natural defense against infections and diseases. HIV can be transmitted through certain bodily fluids, such as blood, semen, vaginal fluids, and breast milk. If left untreated, HIV can lead to AIDS (Acquired Immunodeficiency Syndrome), a condition where the immune system is severely compromised and unable to fight off infections and diseases.

Scientists report lasting success in a novel method to cure HIV that involves transplanting HIV-resistant stem cells from umbilical cord blood. The technique was effectively employed to treat the New York patient, a mixed-race, middle-aged woman with leukemia and HIV, who has been free of HIV in her blood since her 2017 transplant. Utilizing stem cells from cord blood, as opposed to compatible adult donors as done in previous cases, expands the possibility of curing HIV through stem cell transplantation for individuals of all racial backgrounds.

The complete findings were recently published in the journal Cell, with preliminary information on the case study presented in February 2022 at the 29th annual Conference on Retroviruses and Opportunistic Infections.

The HIV epidemic is racially diverse, and its exceedingly rare for persons of color or diverse race to find a sufficiently matched, unrelated adult donor, says Yvonne Bryson of UCLA, who co-led the study with fellow pediatrician and infectious disease expert Deborah Persaud of the Johns Hopkins University School of Medicine. Using cord blood cells broadens the opportunities for people of diverse ancestry who are living with HIV and require a transplant for other diseases to attain cures.

Nearly 38 million people around the world live with HIV, and antiviral treatments, while effective, must be taken for life. The Berlin patient was the first person to be cured of HIV in 2009, and since then, two other menthe London patient and Dsseldorf patienthave also been rid of the virus. All three received stem cell transplants as part of their cancer treatments, and in all cases, the donor cells came from compatible or matched adults carrying two copies of the CCR5-delta32 mutation, a natural mutation that confers resistance to HIV by preventing the virus from entering and infecting cells.

Only around 1% of white people are homozygous for the CCR5-delta32 mutation and it is even rarer in other populations. This rarity limits the potential to transplant stem cells carrying the beneficial mutation into patients of color because stem cell transplants usually require a strong match between donor and recipient.

Knowing it would be almost impossible to find the New York patient a compatible adult donor with the mutation, the team instead transplanted CCR5-delta32/32-carrying stem cells from banked umbilical cord blood to try to cure both her cancer and HIV simultaneously. The patient received her transplant in 2017 at Weill Cornell Medicine thanks to a team of transplant specialists led by Drs. Jingmei Hsu and Koen van Besien. Her case was part of the NIH-sponsored International Maternal Adolescent AIDS Clinical Trials (IMPAACT) Network and was co-endorsed by the Adult AIDS Clinical Trials Network (ACTG).

The umbilical cord blood cells were infused alongside stem cells from one of the patients relatives to increase the procedures chance of success. With cord blood, you may not have as many cells, and it takes a little longer for them to populate the body after theyre infused, says Bryson. Using a mixture of stem cells from a matched relative of the patient and cells from cord blood gives the cord blood cells a kick start.

The transplant successfully put both the patients HIV and leukemia into remission, and this remission has now lasted more than four years. Thirty-seven months after the transplant, the patient was able to cease taking HIV antiviral medication. The doctors, who continue to monitor her, say she has now been HIV-negative for more than 30 months since stopping antiviral treatment (at the time that the study was written, it had only been 18 months).

Stem cell transplants with CCR5-delta32/32 cells offer a two-for-one cure for people living with HIV and blood cancers, says Persaud. However, because of the invasiveness of the procedure, stem cell transplants (both with and without the mutation) are only considered for people who need a transplant for other reasons, and not for curing HIV in isolation; before a patient can undergo a stem cell transplant, they need to undergo chemotherapy or radiation therapy to destroy their existing immune system.

This study is pointing to the really important role of having CCR5-delta32/32 cells as part of stem cell transplants for HIV patients, because all of the successful cures so far have been with this mutated cell population, and studies that transplanted new stem cells without this mutation have failed to cure HIV, says Persaud. If youre going to perform a transplant as a cancer treatment for someone with HIV, your priority should be to look for cells that are CCR5-delta32/32 because then you can potentially achieve remission for both their cancer and HIV.

The authors emphasize that more effort needs to go into screening stem cell donors and donations for the CCR5-delta32 mutation. With our protocol, we identified 300 cord blood units with this mutation so that if someone with HIV needed a transplant tomorrow, they would be available, says Bryson, but something needs to be done [on] an ongoing basis to search for these mutations, and support will be needed from communities and governments.

Reference: HIV-1 remission and possible cure in a woman after haplo-cord blood transplant by Jingmei Hsu, Koen Van Besien, Marshall J. Glesby, Savita Pahwa, Anne Coletti, Meredith G. Warshaw, Lawrence D. Petz, Theodore B. Moore, Ya Hui Chen, Suresh Pallikkuth, Adit Dhummakupt, Ruth Cortado, Amanda Golner, Frederic Bone, Maria Baldo, Marcie Riches, John W. Mellors, Nicole H. Tobin, Renee Browning, Deborah Persaud and Dwight Yin, 16 March 2023, Cell.DOI: 10.1016/j.cell.2023.02.030

The study was funded by the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, the AIDS Clinical Trials Group, the Weill Cornell Medicine-New Jersey Medical School Clinical Trials Unit, the PAVE Collaboratory, the Johns Hopkins CFAR, the IMPAACT Center subspecialty laboratory, the Miami CFAR at the University of Miami Miller School of Medicine, and the ACTG and IMPAACT Networks.

More:
New Method To Cure HIV Yields Long-Term Successful Results - SciTechDaily

Stem Cell Assay Market Segmentation by Product Type Active … – Digital Journal

Stem cells are basic form of biological cells, which can differentiate into other types of cells and can produce more of the same type of stem cells. There are two types of stem cells, which include embryonic stem cells, and adult stem cells. These cells are present in areas in the body such as bone marrow, adipose tissue, and blood. Stem cells are also taken from umbilical cord blood. The stem cell population in the body is maintained through two processes, which include obligatory asymmetric replication and stochastic differentiation.

[140+ Pages Research Study] Coherent Market Insight has released a new research study titled Stem Cell Assay market is growing rapidly, which signifies a strong interest in Stem Cell Assay research as we enter 2023.

Todays business leaders face an endless stream of decisions around target markets, pricing, promotion, distribution channels, and product features and benefits. They must account for all the factors involved, and there are market research studies and methodologies strategically designed to capture meaningful data to inform every choice.

Get a Sample PDF of This Report: https://www.coherentmarketinsights.com/insight/request-sample/1632

Note Updated Version 2023 is available

(The sample of this report is readily available on request. The report sample contains a brief introduction to the research report, a Table of Contents, a Graphical introduction of regional analysis, Top players in the market with their revenue analysis, and our research methodology.)

Our Sample Report May Includes:

2030 Updated Report Introduction, Overview, and In-depth industry analysis. 100+ Pages Research Report (Inclusion of Updated Research). Provide Chapter-wise guidance on Requests. 2023 Updated Regional Analysis with Graphical Representation of Size, Share & Trends Includes Updated List of tables & figures. Updated Report Includes Top Market Players with their Business Strategy, Sales Volume, and Revenue Analysis.

Competitive Landscape:

The given section on the global Stem Cell Assay market will include an extensive examination of the various players in this industry, their respective company overviews, an analysis of existing product portfolios, financials, etc. We even include a supply-chain analysis, a PEST analysis, market probability scenarios, Porters Five Forces analysis, and other related frameworks that are meant to aid in the expansion of your reputed organization. The specific application of these given findings allows all our clients to apply essential yet accurate data when formulating the most-suitable business strategies with the aim of improving their business footprint in this global industry.

Top Key Players:

Merck & Co., Thermo Fisher Scientific, GE Healthcare, Agilent Technologies, Bio-Rad Laboratories, Promega Corporation, Cell Biolabs, PerkinElmer, Miltenyi Biotec, HemoGenix, Bio-Techne Corporation, STEMCELL Technologies, and Cellular Dynamics International.

This report also splits the market by region:

Americas, United States, Canada, Mexico, Brazil, APAC, China, Japan, Korea, Southeast Asia, India, Australia, Europe, Germany, France, UK, Italy, Russia, Spain, Middle East and Africa, Egypt, South Africa, Israel, Turkey, GCC Countries

Request For Customization of Research Report @ https://www.coherentmarketinsights.com/insight/request-customization/1632

Research Methodology:

Highlights the following Key Factors:

Purchase This Premium Research Report : https://www.coherentmarketinsights.com/insight/buy-now/1632

Purchasing the Stem Cell Assay Market for the Following Reasons:

The study examines emerging market trends as well as the likelihood that various trends will impact expansion.The analysis also discusses the factors, challenges, and opportunities that will have a significant impact on the global Stem Cell Assay industry. Technological tools and benchmarks that reflect the industrys projected growth of the Stem Cell Assay industry. The research includes a detailed analysis of market statistics as well as historical and current growth conditions in order to provide futuristic growth estimates.The research includes a detailed analysis of market statistics as well as historical and current growth conditions in order to provide futuristic growth estimates.

Why Choose Coherent Market Insights?

Identified business opportunities Our market research report can be used to analyze potential markets and new products. It can give information about customer needs, preferences, and attitudes. Also, it compare products and services.

A clear understanding of your customers A market report gives companys marketing department an in-depth picture about customers needs and wants. This knowledge can be used to improve products, prices, and advertising.

Clear data-driven insights Our Market research encompasses a wide range of activities, from determining market size and segment to forecasting demand, and from identifying competitors to monitoring pricing. All of these are quantified and measurable which means that gives you a clear path for building unique decisions based on numbers.

Explore More Related Insights:

rHu Albumin Market

Next Generation Sequencing Market

Pneumococcal Vaccines Market

Cell Cryopreservation Market

:

Mr. Shah

Coherent Market Insights Pvt Ltd,533 Airport Boulevard, Suite 400,Burlingame, CA 94010, United StatesEmail: [emailprotected]United States of America: +1-206-701-6702United Kingdom: +44-020-8133-4027Japan: +050-5539-1737India: +91-848-285-0837

View post:
Stem Cell Assay Market Segmentation by Product Type Active ... - Digital Journal