Author Archives: admin


stem cell therapy treatment for cerebral palsy with mental retardation with low vision by dr alok – Video


stem cell therapy treatment for cerebral palsy with mental retardation with low vision by dr alok
improvement seen in just 3 months after stem cell therapy treatment for cerebral palsy with mental retardation with low vision by dr alok sharma, mumbai, ind...

By: Neurogen Brain and Spine Institute

Continue reading here:
stem cell therapy treatment for cerebral palsy with mental retardation with low vision by dr alok - Video

Cancer Stem Cells Linked to Drug Resistance

Contact Information

Available for logged-in reporters only

Newswise Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered a molecule, or biomarker, called CD61 on the surface of drug-resistant tumors that appears responsible for inducing tumor metastasis by enhancing the stem cell-like properties of cancer cells.

The findings, published in the April 20, 2014 online issue of Nature Cell Biology, may point to new therapeutic opportunities for reversing drug resistance in a range of cancers, including those in the lung, pancreas and breast.

There are a number of drugs that patients respond to during their initial cancer treatment, but relapse occurs when cancer cells become drug-resistant, said David Cheresh, PhD, Distinguished Professor of Pathology and UC San Diego Moores Cancer Center associate director for Innovation and Industry Alliances. We looked at the cells before and after they became resistant and asked, What has changed in the cells?

Cheresh and colleagues investigated how tumor cells become resistant to drugs like erlotinib or lapatinib, known as receptor tyrosine kinase inhibitors and commonly used in standard cancer therapies. They found that as drug resistance occurs, tumor cells acquire stem cell-like properties that give them the capacity to survive throughout the body and essentially ignore the drugs.

Specifically, the scientists delineated the molecular pathway that facilitates both cancer stemness and drug resistance, and were able to identify existing drugs that exploit this pathway. These drugs not only reverse stem cell-like properties of tumors, but also appear to re-sensitize tumors to drugs that the cancer cells had developed resistance to.

The good news is that weve uncovered a previously undefined pathway that the tumor cells use to transform into cancer stem cells and that enable tumors to become resistant to commonly used cancer drugs, said Cheresh.

Based on these findings, Hatim Husain, MD, an assistant professor who treats lung and brain cancer patients at Moores Cancer Center, has designed a clinical trial to attack this pathway in patients whose tumors are drug-resistant. The trial will be open to patients with lung cancer who have experienced cancer progression and drug resistance to erlotinib. It is expected to begin in the next year.

Resistance builds to targeted therapies against cancer, and we have furthered our understanding of the mechanisms by which that happens, said Husain. Based on these research findings we now better understand how to exploit the Achilles heel of these drug-resistant tumors. Treatments will evolve into combinational therapies where one may keep the disease under control and delay resistance mechanisms from occurring for extended periods of time.

Originally posted here:
Cancer Stem Cells Linked to Drug Resistance

Top Phoenix Foot and Ankle Specialist, Valley Foot Surgeons, Now Offering Stem Cell Procedures for Healing Diabetic …

Phoenix, Arizona (PRWEB) April 21, 2014

The top foot and ankle specialists in Arizona at Valley Foot Surgeons are now offering stem cell treatments for diabetic wounds. The treatments may propel these difficult wounds to heal in a much shorter time frame than they would without regenerative medicine therapy. The stem cell doctor is a four-time Phoenix Magazine Top Doc Winner; call (480) 994-5977 for more information and scheduling.

With up to a third of individuals suffering from diabetes (or pre-diabetes), wounds and ulcers are becoming more common all the time in the foot and ankle area. Due to the immunocompromised state of diabetics, it can be extremely difficult for the human body to naturally heal these wounds. Sometimes, they persist for years, become infected, and may lead to an eventual need for an amputation.

At Valley Foot Surgeons, Phoenix Top Doc Richard Jacoby is now offering stem cell treatments for diabetic wounds. These treatments are performed as an outpatient and involve subcutaneous injections of amniotic derived stem cell material around the wound.

The procedure offers several benefits in addition to a hefty concentration of stem cells. The material is immunologically privileged and does not cause a rejection reaction. It is processed from an FDA regulated lab.

The amniotic derived stem cells assists with the creation of new blood vessels to help heal the wounds and also contains a significant amount of growth factors. The stem cell material also has antimicrobial properties, helping avoid infection.

Along with the stem cell procedures, Valley Foot Surgeons offers laser treatment simultaneously which further helps with the healing process. With approximately 100 stem cell procedures performed so far for diabetic wounds, the outcomes have been nothing short of incredible.

Wounds have been healing, and much faster than with conventional methods. For more information and treatment with the top foot and ankle stem cell doctor in Phoenix and Scottsdale, call (480) 420-3499.

See the rest here:
Top Phoenix Foot and Ankle Specialist, Valley Foot Surgeons, Now Offering Stem Cell Procedures for Healing Diabetic ...

Lost stem cells are replaced by non-stem cells: Study

Home > News > health-news

Washington, Apr 18 : A new study has found that when a certain kind of stem cell is killed off experimentally, another group of non-stem cells can come out of retirement to replace them.

Johns Hopkins researchers have discovered the unexpected phenomenon in the organs that produce sperm in fruit flies.

The discovery sheds light on the tiny "environments" that stem cells occupy in animal bodies and may help explain how stem cells in tumors replenish themselves, the researchers said.

Damage of the kind duplicated in the laboratory occurs naturally after exposure to radiation and perhaps also after ingestion of toxic chemicals such as those used in chemotherapy.

The research group, led by Erika Matunis, Ph.D., a professor of cell biology at the Johns Hopkins University School of Medicine, has been using the fruit fly as a model living system in which to study stem cells in their natural state.

Most stem cell research is done on cells grown in the laboratory, but in real life, stem cells reside in tissues, where they are sequestered in tiny spaces known as niches.

Adult stem cells keep dividing throughout life to make various kinds of cells, like new blood cells and germ cells.

Matunis' group studies such niches in fruit fly testes, the sperm-producing organs shaped like a coiled tube whose end houses a niche. In the niche are three kinds of cells: germ line stem cells, which divide to produce sperm; somatic cyst stem cells, which make a kind of cell that helps the sperm-producing cells out; and hub cells, which make signals that keep the other two kinds of cells going.

The hub cells are not stem cells; they have settled on their final form, incapable of dividing further or changing their function or so everyone thought.

Read more:
Lost stem cells are replaced by non-stem cells: Study

Scientists use cloning to make stem cells matched to two adults

Scientists have replicated one of the most significant accomplishments in stem cell research by creating human embryos that were clones of two men.

The lab-engineered embryos were harvested within days and used to create lines of infinitely reproducing embryonic stem cells, which are capable of growing into any type of human tissue.

The work, reported Thursday in the journal Cell Stem Cell, comes 11 months after researchers in Oregon said they had produced the world's first human embryo clones and used them to make stem cells. Their study, published in Cell, aroused skepticism after critics pointed out multiple errors and duplicated images.

In addition, the entire effort to clone human embryos and then dismantle them in the name of science troubles some people on moral grounds.

MORE: Medicines and machines, inspired by nature

The scientists in Oregon and the authors of the new report acknowledged that the clones they created could develop into babies if implanted in surrogate wombs. But like others in the field, they have said reproductive cloning would be unethical and irresponsible.

The process used to create cloned embryos is called somatic cell nuclear transfer, or SCNT. It involves removing the nucleus from an egg cell and replacing it with a nucleus from a cell of the person to be cloned. The same method was used to create Dolly the sheep in 1996, along with numerous animals from other species.

Human cloning was a particular challenge, in part because scientists had trouble getting enough donor eggs to carry out their experiments. Some scientists said SCNT in humans would be impossible.

Dr. Robert Lanza, the chief scientific officer for Advanced Cell Technology Inc. in Marlborough, Mass., has been working on SCNT off and on for about 15 years. He and his colleagues finally achieved success with a modified version of the recipe used by the Oregon team and skin cells donated by two men who were 35 and 75.

After swapping out the nucleus in the egg cell, both groups used caffeine to delay the onset of cell division a technique that has been called "the Starbucks effect." But instead of waiting 30 minutes to prompt cell division, as was done in the Oregon experiment, Lanza and his team waited two hours.

Read this article:
Scientists use cloning to make stem cells matched to two adults

Researchers successfully clone adult human stem cells

20 hours ago by Bob Yirka Credit: Cell Stem Cell, DOI: 10.1016/j.stem.2014.03.015

(Phys.org) An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem cells. A paper by the team describing their work has been published in the journal Cell Stem Cell.

The achievement by the team is actually a replication of work done by another team just last yearin that effort the team did the same thing but used donor cells from infants. In this new experiment, two men aged 35 and 75 donated skin cells.

Technically called somatic-cell nuclear transfer aka "therapeutic cloning" the process is similar to that used to clone Dolly the sheep back in 1997. Since that time, researchers have run into a myriad of obstacles in achieving the same results in humans, though it should be noted that there is a major difference in objectivewith humans, the aim is to clone stem cells so that they can be used to treat diseases, not reproduce whole human beings.

To clone the stem cells, the researchers used unfertilized eggs donated by several unidentified women. After removing the DNA material inside the egg, new DNA material extracted from the skin cells of the male donors was injected inside and the resulting filled egg was exposed to a small dose of electricity to cause fusingthe egg was then allowed to "rest" for two hours. Afterwards each egg reprogrammed itself and grew into a blastocyst which eventually grew into a pluripotent stem cell that genetically matched the skin donor. Theoretically such stem cells could then be engineered to grow into various cells, e.g. heart, lung, liver, for transplant into a patient.

Funding for the research was provided by an unnamed foundation and the Korean Governmentthe experiments were conducted in a lab in California. The researchers point out that the process cannot be used to create a whole human being.

The team notes that despite their success, there is still a lot of work to do before cloned stem cells become a viable option for treating medical problems in people. They note that out of 77 eggs donated and used in the experiments, only two led to successful cloningone from each of the male donors. Their experiments do prove however, they add, that successful cloning of human stem cells is possible with donors of any age.

Explore further: Researchers discover ancient virus DNA remnants necessary for pluripotency in humans

More information: Human Somatic Cell Nuclear Transfer Using Adult Cells, Cell Stem Cell, dx.doi.org/10.1016/j.stem.2014.03.015

Summary Derivation of patient-specific human pluripotent stem cells via somatic cell nuclear transfer (SCNT) has the potential for applications in a range of therapeutic contexts. However, successful SCNT with human cells has proved challenging to achieve, and thus far has only been reported with fetal or infant somatic cells. In this study, we describe the application of a recently developed methodology for the generation of human ESCs via SCNT using dermal fibroblasts from 35- and 75-year-old males. Our study therefore demonstrates the applicability of SCNT for adult human cells and supports further investigation of SCNT as a strategy for regenerative medicine.

See the original post here:
Researchers successfully clone adult human stem cells

Scientists create stem cells from adult skin cells

A breakthrough in human stem cell research could lead to the treatment of countless diseases, invaluable scientific research and yes, human cloning.

According to a study in the journalCell Stem Cell, scientists have synthesized human embryonic stem cells from the cells of adults, creating two different lines from the skin of two donors.

>> Read more trending stories

Using the nuclear transfermethod,scientists took DNA out of egg cells and replaced it with the donor DNA. The cells were basically reprogrammed, butof the 77 samplesonly two fully developed into cloned stem cells.

Lead researcher Robert Lanza says the 5 percent success rate isn't surprising."Reprogramming is more difficult for adult cells than for fetal [and] infant cells, presumably at least in part because their epigenetic landscape from the pluripotent state,"meaning the cells generally dont' have the right enzymes for change anymore.

The researchers reportedly tweaked a method made famous by the cloning of the sheep Dolly in 1996 and improved by scientists at Oregon Health & Science University just last year.

The nuclear transfermethod is the third discovered way to harvest or create stem cells. In the past, scientists have extracted cells from leftover embryos after in vitro fertilizations,a controversial practice. And in 2006 aJapanese researcher discovered a way to create themby injecting new genes. (ViaAsian Scientist)

Lanza's method could provide easy access to stem cells, opening up new research intodiseases like diabetes, Parkinsons and even leukemia. And according toNPR, the researcher wants to create a virtual library of cells using carefully selected DNA donors.

The implications of a real and viable approach for creating stem cells could be startling, andscientists have been wrestling with the ethical questions since the cloning of Dolly.

An official at Oregon Health & Science Universitythinks studying stemcells is necessary, tellingTime,They have become kind of like cursed cells. But we clearly need to understand more about them.

Read more here:
Scientists create stem cells from adult skin cells