Author Archives: admin


Recipe for Poor Wound Healing: Bacterial Infection Plus Stress

Sacramento, CA (PRWEB) April 28, 2014

The stress hormone epinephrine the source of the fight-or-flight response also heightens stresses at the cellular level, inhibiting wound healing and promoting a state of chronic inflammation that prohibits the bodys stem cells from migrating to a wound to encourage skin regeneration, UC Davis researchers have found.

The research, published in the April issue of the scientific journal Stem Cells Translational Medicine, is the first to show that epinephrine cross-activates other cellular pathways that feed off each other, generating inflammatory proteins in an exaggerated response that impedes wound healing. The research has important implications for the development of new treatments for chronic nonhealing wounds, conditions that affect more than 5 million Americans.

We have discovered that the pathways activated by the fight-or-flight hormone epinephrine and those activated by the presence of bacteria in wounds communicate with one another synergistically, greatly promoting inflammation, said Mohan R. Dasu, lead author of the study and an associate researcher in the UC Davis Department of Dermatology. The combination of stress and infection is a recipe for chronic infection.

Chronic infections are a major global health problem, with annual costs in the United States alone estimated to be more than $23 billion. Nonhealing wounds are particularly common in patients with diabetes, who often develop sores in the foot or leg that become chronic despite intensive antibiotic treatment and sometimes require amputation.

While chronic wounds are traditionally treated primarily with antibiotics, the findings open the way for enhancing therapy with agents that counteract stress hormones. Recent case studies have reported that topical treatment with beta blockers agents that block adrenergic receptors have improved chronic skin wounds, although until now, these outcomes have not been well explained.

Everyone knows that stress is harmful to the body, said Roslyn Isseroff, professor of dermatology at UC Davis and principal investigator of the study. Our findings provide a framework for systematically developing new therapeutic strategies that could selectively regulate inflammatory responses in nonhealing wounds. Isseroff is also chief of the dermatology service at the UC Davis-affiliated Department of Veterans Affairs Northern California Health Care System where she directs a multi-specialty wound clinic.

The biology of a nonhealing wound

Bacterial colonization produces in the body an inflammatory response mediated by Toll-like receptors on the cell membrane receptors that when activated, generate interleukin 6 (IL-6), a protein that plays an important role in fighting infection. Earlier work by lead author Dasu has demonstrated that activation of these receptors can contribute to nonhealing wounds in diabetic patients. In the current work, he provides an important advance to how this pathway works in the face of stress.

At the same time, wounds cause the release of stress hormones such as epinephrine that act on adrenergic receptors to also generate IL-6. Although IL-6 is essential to fighting infection, too much creates a state of chronic inflammation and actually impairs healing. Activation of adrenergic receptors also slows movement of the bodys stem cells that naturally migrate to a wound and promote healing and skin regeneration.

Continued here:
Recipe for Poor Wound Healing: Bacterial Infection Plus Stress

Stem cell cloning may be aid treatment for diabetes

Scientists have moved one step closer to creating and effective diabetes treatment by creating insulin-producing cells with the DNA of a diabetic woman.

The approach could someday aid treatment of the Type 1 form of the illness, which is usually diagnosed in childhood and accounts for about 5 percent of diabetes cases in the U.S. The disease kills insulin-making cells in the pancreas. People with Type 1 diabetes use shots or a small pump to supply the hormone, which is needed to control blood sugar.

The new work is a step toward providing genetically matched replacement cells for transplant, said Dieter Egli of the New York Stem Cell Foundation Research Institute in New York. He led the research, which was reported online Monday in the journal Nature.

Doug Melton of the Harvard Stem Cell Institute, who was not involved with the work, called the paper an impressive technical achievement. But he said he believed the cells would be useful as a research tool rather than a source of transplants. They could help scientists uncover what triggers Type 1 diabetes, he said, which could in turn lead to better therapies.

Scientists had previously made insulin cells that match diabetic patients by another means, so the new work gives researchers another option for comparison. Researchers are also exploring transplants of insulin-producing cells from cadavers as a potential treatment.

The latest work used a technique that partially resembles the process used to clone animals. Basically, scientists put DNA from the woman's skin cells into donated human eggs. The eggs were grown into early embryos. From these, the scientists removed stem cells, which can grow into any cell type in the body. These stem cells were turned into the insulin-producing cells.

Egli told reporters that these cells have shown promise in animal tests, but that he could not estimate a timetable for human experiments. The new work is the third report of using the cloning approach to make human stem cells, and the first using the technique to create insulin-making cells.

Stem cells cloning is an area of research that's showing promise to treat a number of diseases. In January, Dr. Jon LaPook, chief medical correspondent for CBS News, reported an experimental stem cell treatment for patients with multiple sclerosis. Scientists have also been able to repair bones using the stem cells of fatty tissue and also use cloned cells can repair a damaged heart.

Continue reading here:
Stem cell cloning may be aid treatment for diabetes

Stem Cell Therapies Look Promising For Heart Disease

Stem cell therapies work as a complement to standard treatments, potentially cutting the number of deaths after a year, suggests evidence from the latest Cochrane review: Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Taking stem cells from a patients bone marrow and injecting them into their damaged heart may be an effective way to treat heart disease.

The new review, published in The Cochrane Library, uses data involving 1,255 people from 23 randomised controlled trials, where all participants received standard treatments. Compared to standard treatment alone or with placebo, stem cell therapy using bone marrow cells resulted in fewer deaths due to heart disease and heart failure, reduced the likelihood of patients being readmitted to hospital, and improved heart function. However, researchers say that with much larger clinical trials underway, the findings are awaited to enable more certainty about the effects.

Dr Enca Martin-Rendon, author of the review, Cochrane Heart Review Group, and based at NHS Blood and Transplant and the University of Oxford, UK, said: This is encouraging evidence that stem cell therapy has benefits for heart disease patients. However, it is generated from small studies and it is difficult to come to any concrete conclusions until larger clinical trials that look at longer- term effects are carried out.

Stem cell therapies are experimental treatments that are currently only available in facilities carrying out medical research. If eventually found to be effective, they might offer an alternative or complementary treatment to standard drug and surgical treatments for some patients with chronic heart disease. The procedure involves collecting stem cells from a patient's own blood or bone marrow and using them to repair damaged tissues in the patient's heart and arteries.

Although within the first year there were no clear benefits of stem cell therapy over standard treatment alone, when longer term data were analysed a year or more later about 3 per cent of people treated with their stem cells had died compared with 15 per cent of people in the control groups. Hospital readmissions were reduced to 2 in every 100 people compared to 9 in the control group, and adverse effects were rare.

Dr Martin-Rendon continued, It isn't clear which types of stem cells work best or why stem cell therapies seem to work for some people but not for others. We need to find out what's different in the people who aren't responding well to these treatments as it might then be possible to tailor therapies to these patients, so that they work better."

Dr David Tovey, Editor-in-Chief, Cochrane, said: This review should help to raise awareness of the potential of stem cell therapy to improve patient outcomes, but it also demonstrates the importance of recognising the uncertainty of initial findings and the need for further research. A Cochrane review aims to analyse all available data to give a clear picture of what the evidence shows. Ensuring health decision makers, health professionals and the general public has access to up-to-date, relevant evidence research will help to raise awareness of the effectiveness of treatments and medications and therefore improve health care.

Cochrane Library

Visit link:
Stem Cell Therapies Look Promising For Heart Disease

Study of stem cell trials links discrepancies in data with reported success of treatment

PUBLIC RELEASE DATE:

28-Apr-2014

Contact: Franca Davenport f.davenport@imperial.ac.uk 020-759-42198 Imperial College London

New research looking at the success of clinical trials of stem cell therapy shows that trials appear to be more successful in studies where there are more discrepancies in the trial data.

Researchers from Imperial College London conducted a meta-analysis of 49 randomised controlled trials of bone marrow stem cell therapy for heart disease. The study, published today in the British Medical Journal, identified and listed over 600 discrepancies within the trial reports.

Discrepancies were defined as two (or more) reported facts that could not both be accurate because they were logically or mathematically incompatible. For example, one trial reported that it involved 70 patients, who were divided into two groups of 35 and 80.

The researchers found eight trials that each contained over 20 discrepancies.

The researchers found that the discrepancy count in a trial was the most important determinant of the improvement in cardiac function reported by that trial. Trials with fewer and fewer discrepancies showed progressively smaller improvements in cardiac function. The five trials with no discrepancies at all showed an effect size of zero (see bar chart in Notes to Editors).

Previous meta-analyses looking at the results of lots of clinical trials have suggested that on average, bone marrow stem cell therapy has a significant positive effect on improving heart function. However, some trials have shown that it successfully improves heart function whilst others have not. The reasons for this are unclear.

Professor Darrel Francis, one of the study authors from the National Heart and Lung Institute at Imperial College London, said: "Clinical trials involve a huge amount of data and so it is understandable that discrepancies sometimes arise when researchers are presenting their findings. However, our study suggests that these discrepancies can have a significant impact on the overall results. It is a powerful reminder to all of us conducting clinical trials to be careful and vigilant to avoid discrepancies appearing in the work.

Read more:
Study of stem cell trials links discrepancies in data with reported success of treatment

Stem Cell Institute Welcomes Special Guest Speaker Roberta F. Shapiro DO, FAAPM&R to Stem Cell Therapy Public Seminar …

New York, NY (PRWEB) April 29, 2014

The Stem Cell Institute located in Panama City, Panama, welcomes special guest speaker Roberta F. Shapiro, DO, FAAPM&R to its public seminar on umbilical cord stem cell therapy on Saturday, May 17, 2014 in New York City at the New York Hilton Midtown from 1:00 pm to 4:00 pm.

Dr. Shapiro will discuss A New York Doctors Path to Panama.

Dr. Shapiro operates a private practice for physical medicine and rehabilitation in New York City. Her primary professional activities include outpatient practice focused on comprehensive treatment of acute and chronic musculoskeletal and myofascial pain syndromes using manipulation techniques, trigger point injections, tendon injections, bursae injections, nerve and motor point blocks. Secondary work at her practice focuses on the management of pediatric onset disability.

She is the founder and president of the Dayniah Fund, a non-profit charitable foundation formed to support persons with progressive debilitating diseases who are faced with catastrophic events such as surgery or illness. The Dayniah Fund educates the public about the challenges of people with disabilities and supports research on reducing the pain and suffering caused by disabling diseases and conditions.

Dr. Shapiro serves as assistant clinical professor in the Department of Rehabilitation and Regenerative Medicine at Columbia University Medical Center.

Stem Cell Institute Speakers include:

Neil Riordan PhD Clinical Trials: Umbilical Cord Mesenchymal Stem Cell Therapy for Autism and Spinal Cord Injury

Dr. Riordan is the founder of the Stem Cell Institute and Medistem Panama Inc.

Jorge Paz-Rodriguez MD Stem Cell Therapy for Autoimmune Disease: MS, Rheumatoid Arthritis and Lupus

Continue reading here:
Stem Cell Institute Welcomes Special Guest Speaker Roberta F. Shapiro DO, FAAPM&R to Stem Cell Therapy Public Seminar ...

Researchers create artificial skin using stem cells

SAN FRANCISCO, April 28 (UPI) -- An international team of researchers developed skin grown from human stem cells that may eliminate using animals for drug and cosmetics testing and help develop news therapies for skin disorders.

The team led by Kings College London and the San Francisco Veteran Affairs Medical Center developed the first laboratory-grown epidermis -- the outer layer of skin -- similar to real skin.

"We can use this model to study how the skin barrier develops normally, how the barrier is impaired in different diseases and how we can stimulate its repair and recovery."

The new skin is grown from human pluripotent stem cells -- stem cells that have the potential to differentiate into almost any cell in the body. Under the right circumstances, the stem cell can produce almost all of the cells in the body.

The human induced pluripotent stem cells can produce an unlimited supply of pure keratinocytes, the predominant cell type in the outermost layer of skin that closely match keratinocytes generated from human embryonic stem cells.

The artificial skin forms a protective barrier between the body and the environment keeping out microbes and toxins, while not allowing water from escaping the body.

The findings were published in the journal Stem Cell Reports.

See the article here:
Researchers create artificial skin using stem cells

Stem cell treatment for ALS gets clinical trial greenlight from FDA

(Reuters) - BrainStorm Cell Therapeutics said the U.S. Food and Drug Administration approved the start of a mid-stage clinical trial of its adult stem cell treatment for patients with amyotrophic lateral sclerosis (ALS).

The Phase II trial will be launched initially at Massachusetts General Hospital in Boston and the University of Massachusetts Memorial Hospital in Worcester.

Dana-Farber Cancer Institute's Connell O'Reilly Cell Manipulation Core Facility will manufacture BrainStorm's NurOwn cells for these two clinical sites. The trial will also be conducted at the Mayo Clinic, the Israel-based company said on Sunday. The trials are expected to start soon.

"Today's announcement represents the most significant milestone BrainStorm has achieved to date," the company's president, Chaim Lebovits, said.

This trial will be the first Phase II double-blinded stem cell study to be conducted for ALS, he added.

ALS, also known as Lou Gehrig's Disease, is a progressive neurodegenerative disease that affects nerve cells in the brain and spinal cord.

BrainStorm's Phase II trial is designed to evaluate the safety and efficacy of transplantation of the stem cells in 48 ALS patients. The cells will be administered via intramuscular and intrathecal injection.

Patients will be followed monthly for three months before transplantation and for six months following transplantation.

Earlier clinical trials have shown that treatment with NurOwn cells was well tolerated and safe.

Last week, Cytokinetics Inc said its experimental treatment for Lou Gehrig's Disease failed the main goal in a mid-stage trial.

View original post here:
Stem cell treatment for ALS gets clinical trial greenlight from FDA

Center for Joint Regeneration in Phoenix Now Offering Stem Cell Procedures for Nonoperative Rotator Cuff Tendon Repair

Phoenix, Arizona (PRWEB) April 28, 2014

Center for Joint Regeneration is now offering stem cell procedures for nonoperative rotator cuff repair with Board Certified orthopedic doctors. The regenerative medicine procedures are performed as an outpatient and involve either bone marrow derived or amniotic derived stem cell material. Call (480) 466-0980 for more information and scheduling.

Millions of Americans are affected by shoulder pain due to a rotator cuff bursitis or tendon tear. The pain may persist for months and may end up needing surgery if traditional treatments fail. These may include steroid injections, physical therapy and pain medication.

Treatment with regenerative medicine has now become available with stem cell material. The Board Certified orthopedic doctors at Center for Joint Regeneration offer stem cell procedures for rotator cuff injuries with either bone marrow or amniotic derived stem cells.

The bone marrow stem cells involve harvesting the material in a short procedure from the patient, with immediate processing to concentrate the stem cells and growth factors for injection into the shoulder. The amniotic material is obtained from consenting donors after a scheduled c-section procedure. There is no fetal tissue used at all, alleviating any ethical concerns.

Small studies to date have shown stem cell procedures to work well for pain relief and restoration of function with musculoskeletal conditions such as knee arthritis, ligament injury and tendonitis. The stem cell material includes growth factors, stem cells, hyaluronic acid and anti-inflammatory medicine as well.

Center for Joint Regeneration also offers stem cell procedures for joint arthritis, ligament injuries and tendonitis of other areas of the body as well. This helps patients avoid surgery as well as helping athletes return to sporting activities.

For more information and scheduling to discuss regenerative medicine stem cell procedure options, call (480) 466-0980.

View post:
Center for Joint Regeneration in Phoenix Now Offering Stem Cell Procedures for Nonoperative Rotator Cuff Tendon Repair