Author Archives: admin


Ground Breaking New Website REGENX, provides credible and up to date information on Stem Cell research straight from …

Manchester UK (PRWEB UK) 10 February 2014

RegenX Content The content posted on RegenX is generated through Dr. Stephen Richardson and a number of other stem cell experts in a collaborative effort between Brickhouse Publications and the University of Manchester. Dr. Richardson's 10 years of experience working with adult stem cells, coupled with the expertise of top-notch scientists, provides website visitors with the most current research information. The website is designed for people of all ages to read and comprehend, making it truly accessible to all.

In order to break down the complex concepts about stem cells and regenerative medicine, the website was designed with many visuals to aid in understanding. For those who learn best through reading text, there are many articles and informational bits. In addition, there are also many short animations, including a spoof news video, to help the general public understand the science behind research.

As far as the different topics are concerned, RegenX presents visitors with a wide range of information, building up from the simple to the complex. Some information simply shares the basics around stem cell and regenerative medicine research, while other pieces delve into more technical details. There are even informational pieces available that discuss the ethics around stem cell research, specifically. There is even a stem cell quiz on the website so readers can take to see where they stand on their understanding of the research and use.

Out in the general public, there is not very much accurate information shared about stem cell and regenerative medicine research. The media does not help as it often mis-portrays the benefits. Most often, the mis-portrayals lie in the legality and morality of the issue. Unfortunately, the misunderstood issues surrounding stem cell research can be huge roadblocks for those trying to advance the science around it.

Educational Outreach In order to address some of the misunderstandings about stem cell research, RegenX provides teacher packs that complement the site. These packets can be used in schools, colleges, and universities, to help educate the public. The classroom activities presented are usually animated or in video format, making it more engaging and easy to understand. In addition to helping students learn, the videos also help classroom teachers who are lacking the information to build some background knowledge. The teacher packets also include debate and discussion topics for students to process the information.

Included in the teacher packets from RegenX are interviews with stem cell research experts. Their information is research-based as they all work at the University of Manchester. In addition to discussing stem cell and regenerative medicine, the experts also share information about the jobs and the research currently conducted at the University. They even talk about their careers and what they needed to do in order to earn the privilege of conducting such research.

Funding The RegenX website is funded with monies from the Biotechnology and Biological Sciences Research Council (BBSRC) and the University of Manchester. Their reason for funding the project was to offer unbiased, scientifically accurate information for people from a variety of backgrounds. Their intended audience is not purely scientists, but also children and adults of all ages from all walks of life.

Staying Updated In order to keep people updated in a fast-changing field, the website has Facebook and Twitter pages to complement it. These social media networks allow RegenX to relay a great deal of updated information in a quick way. They are also able to reach a larger population of readers at any time of the day to keep them posted as well.

Making sure that people are getting the most updated information as quickly as possible is one way to build a community, which was the initial goal of Dr. Stephen Richardson. He wanted to make sure that there was a community of individuals who have slight or intense interest in stem cell and regenerative medicine research. It is also healthy to generate debate around the latest information in the field.

See the original post:
Ground Breaking New Website REGENX, provides credible and up to date information on Stem Cell research straight from ...

Okyanos Heart Institute Hosts Networking Reception for the International Stem Cell Society (STEMSO) World Conference …

Freeport, Bahamas (PRWEB) February 11, 2014

Matt Feshbach, CEO of Okyanos Heart Institute whose mission it is to bring a new standard of care and better quality of life to patients with coronary artery disease using cardiac stem cell therapy, announces the company will host a hard hat reception for conference attendees at their new facility in Freeport. The conference, titled Bridging the Gap: Research to Point of Care, brings together medical scientists, clinicians, regulatory experts, and investors to discuss progress in the field of research and clinical protocols and the process of taking promising therapies to fight chronic disease to market in a responsible manner. Gold Sponsor Okyanos Heart Institute hosts a networking reception for conference attendees at their facility in Freeport on Friday, February 21st from 5:00 7:00 p.m. The company is calling the reception a hard hat reception metaphorically as the construction is not yet completed.

Chief Medical Officer Howard Walpole, M.D., M.B.A., F.A.C.C., F.S.C.A.I. and Chief Science Officer Leslie Miller, M.D., F.A.C.C. will host the reception, along with CEO Matthew Feshbach and offer tours of the commercial cath lab which will offer stem cell therapy to qualified patients with advanced coronary artery disease under the new laws and regulations in The Bahamas.

Douglas Hammond, president of STEMSO, states, STEMSO will continue to provide a proactive and positive voice for organizations and jurisdictions using adult stem cells for therapies and transplants. The Commonwealth of The Bahamas, and our Gold Sponsor Okyanos Heart Institute provide an excellent example of the results that can be brought about with realistic, modern and balanced regulations that serve the national economic interest, patient needs for life-saving medicine and the business advantages for commercialization and translation of adult stem cells.

The reception in our facility will showcase the capabilities in The Bahamas to deliver high quality healthcare to patients in need, says Walpole. It will also provide an informal forum for relevant discussion on bridging the gap between research and point of care between scientists, regulatory experts, clinicians and government officials, and help to address issues of paramount importance such as patient safety and effective tracking of progress once the patients return home. We are proud to host this reception at Okyanos Heart Institute.

Treating patients with adipose-derived stem and regenerative cells (ADRCs) is showing existing promise in clinical trials, states Leslie Miller, M.D., F.A.C.C. an investigator in more than eighty clinical trials for heart failure. The next step in delivering stem cells to patients outside of clinical trials is close. I am enormously excited about the opportunity with this conference to engage in meaningful discussion around what parameters must exist to treat heart failure patients safely and tracking the effectiveness of these new options, which previously were unavailable to patients who have had heart attacks and/or stents, and who continue to worsen after exhausting all other interventions available to them.

The complete agenda for the conference can be found on STEMSOs website at http://www.stemso.org. Other speakers include stem cell researchers, scientists and practitioners from around the world with leading discoveries in the field, and investors in the healthcare space.

Registration is open for attending and exhibiting on STEMSOs website.

About Okyanos Heart Institute: (Oh key AH nos) Based in Freeport, The Bahamas, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.S.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive catheterization, stimulate the growth of new blood vessels, a process known as angiogenesis. The treatment facilitates blood flow in the heart and supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos (Oceanos) symbolizes flow. For more information, go to http://www.okyanos.com.

Okyanos LinkedIn Page: http://www.linkedin.com/company/okyanos-heart-institute Okyanos Facebook Page: https://www.facebook.com/OKYANOS Okyanos Twitter Page: https://twitter.com/#!/OkyanosHeart Okyanos Google+ Page: https://plus.google.com/+Okyanos/posts Okyanos You Tube Physician Channel: http://www.youtube.com/user/okyanosforphysicians

Read the original here:
Okyanos Heart Institute Hosts Networking Reception for the International Stem Cell Society (STEMSO) World Conference ...

What Is Stem Cell Treatment? | eHow

Browse Articles & Videos By Category

Bronwyn Timmons

Based in Colorado, Bronwyn Timmons has been writing professionally since 2009. Her work has appeared on a variety of websites, covering topics such as career and education planning, wedding planning, home improvement, crafts and gardening. Timmons is pursuing her bachelor's degree in mortuary science.

Stem cell research is on the rise, giving hope to patients and providing treatment for many diseases and disorders. While stem cell treatments are a fairly new science, they can have life-saving effects.

Stem cell treatments consist of removing healthy regenerative cells from the patient and transplanting them into the affected area. This treatment helps repair and reverse a variety of conditions and diseases.

Regenerative cells can be harvested from the patient's bone marrow, fat or peripheral blood. This is done to eliminate the risk of cell rejection in the patient.

Typically, four to six treatments are administered depending on how the condition reacts to the stem cell treatment. Treatments are given over a period of seven to 12 days.

Stem cell treatments are effective at treating autoimmune diseases, cerebral palsy, degenerative joint disease, multiple sclerosis, osteoarthritis, rheumatoid arthritis, spinal injuries and type 2 diabetes. It is thought that in the future, stem cell treatment can be used to treat Alzheimer's disease.

Stem cell therapy can reduce pain and discomfort; it can help patients suffering from arthritis regain mobility. In serious cases, such as cerebral palsy and multiple sclerosis, stem cell treatments can be life-saving.

Because stem cell treatment is a new science, little is known about its long term effects. According to Cell Medicine, no side effects have been reported by patients other than pain at the injection site.

Go here to see the original:
What Is Stem Cell Treatment? | eHow

Global Stem Cells, Inc., Bioheart, Inc., and Paul Perito Urology Announce Plans to Launch Stem Cell Clinical Trials …

Miami, FL (PRWEB) February 11, 2014

Global Stem Cells Group, Bioheart, Inc., and Paul Perito Urology announce plans to launch stem cell clinical trials for treatment of Erectile Dysfunction (ED).

Paul Perito, M.D. of Perito Urology in Coral Gables, Florida and the principal investigator of the trial study, titled, "An Open-label, Non-randomized, Single-center Study to Assess the Safety and Effects of Autologous Adipose-derived Stromal Cells Delivered into the Corpus Cavernosum in Patients with Erectile Dysfunction," aims to assess the safety and efficacy of stem cell implantation therapy in patients with ED.

The cell therapy in this study will be composed of stem cells derived from a patients own adipose (fat) tissue, harvested by syringe liposuction. The adipose stem cells will then be delivered into the corpus cavernosum of the penis.

Clinical trials will be held at Perito Urology, in cooperation with Global Stem Cells Group and Bioheart. Up to 20 patients will be enrolled.

Fort Myers Florida-based Emcyte Corporation, a leading provider of biotechnology products for platelet rich plasma and bone marrow concentrate grafting procedures, will be providing systems and kits to be used in the trial.

To learn more about Global Stem Cells Group's clinical trials, and for investor information, visit the Global Stem Cell Group website, email bnovas(at)regenestem(dot)com, or call 305-224-1858.

About the Global Stem Cell Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions. With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

Read the original post:
Global Stem Cells, Inc., Bioheart, Inc., and Paul Perito Urology Announce Plans to Launch Stem Cell Clinical Trials ...

Autologous Stem Cell and Non-Stem Cell Based Therapies Market Worth $2.2 Billion by 2017

(PRWEB) February 11, 2014

The report Autologous Cell Therapy (ACT) Market (2012 - 2017), would be the first global and exclusive report on ACT market. It also gives clear information about the complete industry, approved products and potential market size; it also identifies driving and restraining factors for the global ACT market with analysis of trends, opportunities and challenges. The market is segmented and revenue is forecasted on the basis of major regions such as USA, Europe and Rest of the World (ROW). Further, market is segmented and revenues are forecasted on the basis of potential application areas of ACT.

Browse ACT market research data tables/figures spread through 111 slides and in-depth TOC on Autologous Cell Therapy Market". http://www.marketsandmarkets.com/Market-Reports/autologous-cell-therapy-market-837.html

Early buyers will receive 10% customization on this report @ http://www.marketsandmarkets.com/requestCustomization.asp?id=837.

The global market for ACT is valued around $650 million by 2011 with a CAGR of 21%. Several products and technologies of ACT are in pipeline which is expected to hit the market during the forecast period, which will result in increased growth rate.

There is a wide market potential and favorable landscape for adoption across many geographical locations of the world. During the forecast period, these technologies are expected to revolutionize the area of bio-pharma and personalized medicine. High incidence and lack of effective treatment for several diseases will drive the ACT technology in developed and developing nations.

Investment activities, for the past five years are actively held in research and developments, attracting interests of cell therapy industry firms, medical centers and academic institutions. ACT potential can be demonstrated by mergers, collaborations, acquisitions and partnerships that happened actively between the ACT technology developing companies in past three years. Development of sophisticated automation devices for cell expansion and culture process for use in the treatment is one of the emerging trends of ACT market.

Autologous Stem Cell and Non-Stem Cell Based treatments in North America are rapidly emerging as a major treatment for various incurable diseases such as Myocardial infarction, ischemic heart failure and diabetes.

Browse Related Reports: Global Transfection Technologies Market (Lipofection, Calcium Phosphate, Electroporation, Nucleofection, Magnetofection, Gene Gun, Viral) And Types (Gene Delivery, DNA Delivery, Protein Delivery, SiRNA Delivery) (2012 2017) http://www.marketsandmarkets.com/Market-Reports/transfection-technologies-market-895.html

High Throughput Screening (HTS) Market by Technology (Cell Based, Ultra High Throughput Screening (uHTS), Label Free, Bioinformatics), by Apllications (Target Identification, Primary Screening, Toxicology, Stem Cell) & by End Users (Pharmaceutical Industry, Biotechnology Industry, CRO) - Forecast to 2018 http://www.marketsandmarkets.com/Market-Reports/high-throughput-screening-market-134981950.html

Follow this link:
Autologous Stem Cell and Non-Stem Cell Based Therapies Market Worth $2.2 Billion by 2017

New stem cell research removes reliance on human and …

A new study, published today in the journal Applied Materials & Interfaces, has found a new method for growing human embryonic stem cells, that doesn't rely on supporting human or animal cells.

Traditionally, these stem cells are cultivated with the help of proteins from animals, which rules out use in the treatment of humans. Growing stem cells on other human cells risks contamination with pathogens that could transmit diseases to patients.

The team of scientists led by the University of Surrey and in collaboration with Professor Peter Donovan at the University of California have developed a scaffold of carbon nanotubes upon which human stem cells can be grown into a variety of tissues. These new building blocks mimic the surface of the body's natural support cells and act as scaffolding for stem cells to grow on. Cells that have previously relied on external living cells can now be grown safely in the laboratory, paving the way for revolutionary steps in replacing tissue after injury or disease.

Dr Alan Dalton, senior lecturer from the Department of Physics at the University of Surrey said: "While carbon nanotubes have been used in the field of biomedicine for some time, their use in human stem cell research has not previously been explored successfully."

"Synthetic stem cell scaffolding has the potential to change the lives of thousands of people, suffering from diseases such as Parkinson's, diabetes and heart disease, as well as vision and hearing loss. It could lead to cheaper transplant treatments and could potentially one day allow us to produce whole human organs without the need for donors."

Story Source:

The above story is based on materials provided by University of Surrey. Note: Materials may be edited for content and length.

Read this article:
New stem cell research removes reliance on human and ...

Adult Stem Cell Breakthrough Will Transform Medicine …

Dr. Marc Darrow, M.D., J.D.

(CNSNews.com) A scientific breakthrough that enables researchers to create adult stem cells much faster and easier will radically transform the way medicine is practiced, predicts Dr. Marc Darrow,assistant clinical professor of medicine at the University of California/Los Angeles (UCLA) School of Medicine.

It will be the standard of care, said Darrow, who teaches regenerative techniques utilizing platelets and adult stem cells to medical residents at UCLA, and who has been using the same techniques to treat patients with joint, tendon, ligament and muscle injuries in his own LAclinic.

Darrow explained that in the past, creating stem cell lines was a very tedious procedure which required using a pipette to take nuclear material from one cell to put into another.

But an article published January 29th in the peer-reviewed journalNature describes a new technique for creating undifferentiatedadult stem cells by immersing blood cells in an acid bath for half an hour.

BiologistHaruko Obokata, a stem cell researcher from Japans RIKEN Center of Developmental Biology, then injected the acid-stressed, florescently-tagged blood cells into a mouse embryo, where they created entire organs including a beatingheart.

Haruko Obokata (RIKEN Center for Developmental Biology)

Its amazing. I would have never thought external stress could have this effect, said study co-author YoshikiSasai. (See STAP cells.pdf)

The generation of these cells is essentially Mother Natures way of responding to injury, added co-author Charles Vacanti, director of the Laboratory for Tissue Engineering and Regenerative Medicine at the Harvard-affiliated Brigham Womens Hospital.

Read more:
Adult Stem Cell Breakthrough Will Transform Medicine ...

Genome editing goes hi-fi: Technique in stem cells to …

13 hours ago Beating-heart cells derived from iPS cells are shown. A single DNA base-pair of the PRKAG2 gene was edited using the method developed by Drs. Miyaoka and Conklin. Credit: Luke Judge/Gladstone Institutes

Sometimes biology is cruel. Sometimes simply a one-letter change in the human genetic code is the difference between health and a deadly disease. But even though doctors and scientists have long studied disorders caused by these tiny changes, replicating them to study in human stem cells has proven challenging. But now, scientists at the Gladstone Institutes have found a way to efficiently edit the human genome one letter at a timenot only boosting researchers' ability to model human disease, but also paving the way for therapies that cure disease by fixing these so-called 'bugs' in a patient's genetic code.

Led by Gladstone Investigator Bruce Conklin, MD, the research team describes in the latest issue of Nature Methods how they have solved one of science and medicine's most pressing problems: how to efficiently and accurately capture rare genetic mutations that cause diseaseas well as how to fix them. This pioneering technique highlights the type of out-of-the-box thinking that is often critical for scientific success.

"Advances in human genetics have led to the discovery of hundreds of genetic changes linked to disease, but until now we've lacked an efficient means of studying them," explained Dr. Conklin. "To meet this challenge, we must have the capability to engineer the human genome, one letter at a time, with tools that are efficient, robust and accurate. And the method that we outline in our study does just that."

One of the major challenges preventing researchers from efficiently generating and studying these genetic diseases is that they can exist at frequencies as low as 1%, making the task of finding and studying them labor-intensive.

"For our method to work, we needed to find a way to efficiently identify a single mutation among hundreds of normal, healthy cells," explained Gladstone Research Scientist Yuichiro Miyaoka, PhD, the paper's lead author. "So we designed a special fluorescent probe that would distinguish the mutated sequence from the original sequences. We were then able to sort through both sets of sequences and detect mutant cellseven when they made up as little one in every thousand cells. This is a level of sensitivity more than one hundred times greater than traditional methods."

The team then applied these new methods to induced pluripotent stem cells, or iPS cells. These cells, derived from the skin cells of human patients, have the same genetic makeupincluding any potential disease-causing mutationsas the patient. In this case, the research team first used a highly advanced gene-editing technique called TALENs to introduce a specific mutation into the genome. Some gene-editing techniques, while effective at modifying the genetic code, involve the use of genetic markers that then leave a 'scar' on the newly edited genome. These scars can then affect subsequent generations of cells, complicating future analysis. Athough TALENs, and other similarly advanced tools, are able to make a clean, scarless single letter edits, these edits are very rare, so that new technique from the Conklin lab is needed.

"Our method provides a novel way to capture and amplify specific mutations that are normally exceedingly rare," said Dr. Conklin. "Our high-efficiency, high-fidelity method could very well be the basis for the next phase of human genetics research."

"Now that powerful gene-editing tools, such as TALENs, are readily available, the next step is to streamline their implementation into stem cell research," said Dirk Hockemeyer, PhD, assistant professor of molecular and cellular biology at the University of California, Berkeley, who was not involved in this study. "This process will be greatly facilitated by the method described by Dr. Conklin and colleagues."

"Some of the most devastating diseases we face are caused by the tiniest of genetic changes," added Dr. Conklin. "But we are hopeful that our technique, by treating the human genome like lines of computer code, could one day be used to reverse these harmful mutations, and essentially repair the damaged code."

Go here to read the rest:
Genome editing goes hi-fi: Technique in stem cells to ...

Genome editing goes hi-fi: Technique in stem cells to boost scientists' ability to study genetic disease

13 hours ago Beating-heart cells derived from iPS cells are shown. A single DNA base-pair of the PRKAG2 gene was edited using the method developed by Drs. Miyaoka and Conklin. Credit: Luke Judge/Gladstone Institutes

Sometimes biology is cruel. Sometimes simply a one-letter change in the human genetic code is the difference between health and a deadly disease. But even though doctors and scientists have long studied disorders caused by these tiny changes, replicating them to study in human stem cells has proven challenging. But now, scientists at the Gladstone Institutes have found a way to efficiently edit the human genome one letter at a timenot only boosting researchers' ability to model human disease, but also paving the way for therapies that cure disease by fixing these so-called 'bugs' in a patient's genetic code.

Led by Gladstone Investigator Bruce Conklin, MD, the research team describes in the latest issue of Nature Methods how they have solved one of science and medicine's most pressing problems: how to efficiently and accurately capture rare genetic mutations that cause diseaseas well as how to fix them. This pioneering technique highlights the type of out-of-the-box thinking that is often critical for scientific success.

"Advances in human genetics have led to the discovery of hundreds of genetic changes linked to disease, but until now we've lacked an efficient means of studying them," explained Dr. Conklin. "To meet this challenge, we must have the capability to engineer the human genome, one letter at a time, with tools that are efficient, robust and accurate. And the method that we outline in our study does just that."

One of the major challenges preventing researchers from efficiently generating and studying these genetic diseases is that they can exist at frequencies as low as 1%, making the task of finding and studying them labor-intensive.

"For our method to work, we needed to find a way to efficiently identify a single mutation among hundreds of normal, healthy cells," explained Gladstone Research Scientist Yuichiro Miyaoka, PhD, the paper's lead author. "So we designed a special fluorescent probe that would distinguish the mutated sequence from the original sequences. We were then able to sort through both sets of sequences and detect mutant cellseven when they made up as little one in every thousand cells. This is a level of sensitivity more than one hundred times greater than traditional methods."

The team then applied these new methods to induced pluripotent stem cells, or iPS cells. These cells, derived from the skin cells of human patients, have the same genetic makeupincluding any potential disease-causing mutationsas the patient. In this case, the research team first used a highly advanced gene-editing technique called TALENs to introduce a specific mutation into the genome. Some gene-editing techniques, while effective at modifying the genetic code, involve the use of genetic markers that then leave a 'scar' on the newly edited genome. These scars can then affect subsequent generations of cells, complicating future analysis. Athough TALENs, and other similarly advanced tools, are able to make a clean, scarless single letter edits, these edits are very rare, so that new technique from the Conklin lab is needed.

"Our method provides a novel way to capture and amplify specific mutations that are normally exceedingly rare," said Dr. Conklin. "Our high-efficiency, high-fidelity method could very well be the basis for the next phase of human genetics research."

"Now that powerful gene-editing tools, such as TALENs, are readily available, the next step is to streamline their implementation into stem cell research," said Dirk Hockemeyer, PhD, assistant professor of molecular and cellular biology at the University of California, Berkeley, who was not involved in this study. "This process will be greatly facilitated by the method described by Dr. Conklin and colleagues."

"Some of the most devastating diseases we face are caused by the tiniest of genetic changes," added Dr. Conklin. "But we are hopeful that our technique, by treating the human genome like lines of computer code, could one day be used to reverse these harmful mutations, and essentially repair the damaged code."

Here is the original post:
Genome editing goes hi-fi: Technique in stem cells to boost scientists' ability to study genetic disease

Local mom bounces back after life-threatening illness

Published: Sunday, February 9, 2014 at 4:30 a.m. Last Modified: Saturday, February 8, 2014 at 10:56 p.m.

An avid runner, tennis player and rollerblader, Massagee's journey began nearly 10 years ago, when she began to notice her body slowly change, and included an endless parade of doctors, chemptherapy and a risky stem cell transplant.

Over time, Massagee's muscles grew larger. That wasn't necessarily a bad thing for an athletic woman in her early 50s, but as people age they tend to lose, not gain, muscle mass. Then her muscles began to harden and tighten, causing her significant pain.

Her husband, Buddy, a Hendersonville attorney, declared one day that something just wasn't right. Massagee had become so muscular that some in her social circle silently wondered if she was taking steroids to bulk up. She looked more like a professional body builder than an active mother of five.

As her muscles continued to harden and tighten, physical activity became more and more difficult. Massagee sought medical treatment from at least a dozen doctors, including the best of the best at Duke University Medical Center in Durham. After batteries of tests over several years, not a single doctor could tell Massagee what was wrong. Some doctors later confided to her that they thought I was secretly taking steroids and lying about it.

When a brain scan showed that the muscles behind her eyes were much larger than they should have been, doctors realized she wasn't on steroids, but they still weren't any closer to figuring out what was wrong. Bouncing from doctor to doctor, test to test, began to take its toll on Massagee physically and emotionally.

What broke my heart the most was looking at the pain it was causing Buddy and the children, she recalled. The couple's children, Sarah, 32, Rachel, 28, Kelly, 26, Lucy, 24 and Ty, 22, weren't very open about it we didn't talk about it a lot, Massagee said. But I knew it was very, very difficult for them.

Eventually, she found it impossible to undertake the most rudimentary physical activity, let alone work as a CPA.

I couldn't stand to make dinner, she said. I'd stand to chop something and then I'd need to sit down on a stool. I couldn't walk two blocks without having to stop.

One day, Massagee found it impossible to lift her arms enough to put on a pair of earrings.

Continued here:
Local mom bounces back after life-threatening illness