Author Archives: admin


New Development in Stem Cell Treatment

Physicians and researchers have used Hematopoietic Stem Cell Therapgy for more than 50 years to treat many diseases according to the National Institutes of Health. You ask, "What is Hematopoietic Stem Cell? The National Institutes of Health states it is a stem cell that is isolated from the blood or bone marrow and it can renew itself. Cells have long term and short term replicating ability. The classic source of these cells is through bone marrow. I recall a friend of mine dying at a young age, while waiting for a bone marrow transplant. It is sad to hear of those unable to find a donor while they wait for a transplant.

Have you ever asked, "Where do you find stem cells?" Well, they can come from several places such as bone marrow, the bloodstream, or the umbilical cord after it has been detached from the baby. Stem cells for transplant can come from your own body or from a donor's body. If they come from your body, they are generally taken and frozen before chemotherapy and radiation. This type of transplant is called autologous transplant. Then after chemotherapy and radiation treatment they are put back in your body to increase the number of good cells. If the transplant is from a donor, there must be testing to be sure of a perfect match.

Stem Cell Studies

Did you know there may be a stem cell treatment for the cure of baldness? If the clinical trials are successful, women can benefit from this as well as men. This new approach could increase the hair follicles. It would require fewer hair cells to grow in a lab culture, then the multiplied cells would be transplanted back into the bald or thinning hair area. Sounds like a plan to me.

More from this author:

New Medical Technology Apps 2013

IPad Verses Tablet

Breast Cancer Technology

Link:
New Development in Stem Cell Treatment

Vet-Stem, Inc. is Proud to Announce Its 10,000th Animal in 10 Years of Stem Cell Therapy

Poway, California (PRWEB) January 18, 2014

The leading Regenerative Veterinary Medicine Company, Vet-Stem, Inc., is proud to announce that its regenerative stem cell therapy has been used to treat 10,000 animals in the last 10 years of offering tissue processing services to veterinarians. Vet-Stem was founded in 2002, seeking to discover a successful treatment for horses with potentially fatal injuries to tendons and ligaments.

Dr. Robert Harman, CEO and Founder of Vet-Stem has spoken at many human and veterinary conferences sharing the results of real treatments. He has also authored or co-authored numerous peer-reviewed papers on stem cells as well as written book chapters on stem cells.

In 2003 Vet-Stem signed a worldwide exclusive license for adipose-derived (fat derived) stem cell technology for veterinary application, and the first horse was treated. Shortly after, the first dogs were treated with Vet-Stem Regenerative Cell Therapy. Vet-Stem started providing stem cell banking to their clients from the beginning so that cells could be stored for future use. By August of 2005 500 horses had been treated. Vet-Stem had effectively introduced a new, natural, injectable treatment to the equine and small animal veterinary industry that could serve as an alternative to euthanasia for some conditions.

By April 2006, 1000 animals had been treated using Vet-Stem cell therapy, including the first cat. Another milestone was the first ever randomized double-blinded placebo-controlled multi-centered study that was published reporting that using Vet-Stem processing, intra-articular injection of adipose-derived stem cells into the hip joint of a dog decreases patient discomfort and increases patient functional ability in relation to arthritis.

Only nine months after formally launching a Small Animal application, over 1,000 dogs had been treated for orthopedic conditions. At the same time Veterinary Therapeutics published a peer-reviewed study on the use of stem cells for treatment of chronic osteoarthritis in the elbow of dogs. The clinical trial reported significant improvement in lameness, range of motion, and functional ability in dogs treated with Vet-Stem Regenerative Cell Therapy.

Although the large majority of animals treated have been horses, dogs and cats, Vet-Stem has provided services for exotic species as well. The U.S. Navy, Office of Naval Research, awarded Vet-Stem a contract to engage in a collaborative study of stem cell biology in marine mammals in 2009. From this, the first peer-reviewed article was published showing successful isolation of stem cells from dolphin fat. Several media outlets featured a story on a panther from the Tallahassee Museum who received stem cell therapy by Vet-Stem for arthritis of the elbow in 2011. After the therapy he was able to stand up and scratch on his favorite tree with both front paws.

I started Vet-Stem in order to help horses with career ending injuries to their tendons and ligaments but so many more animals have been saved from a life of pain or even from euthanasia. I feel privileged and excited to be a part of this therapy that has changed how veterinary medicine is practiced as well as contributing to changes in human medicine, Robert Harman, DVM, CEO and Founder of Vet-Stem, Inc.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

Read more:
Vet-Stem, Inc. is Proud to Announce Its 10,000th Animal in 10 Years of Stem Cell Therapy

Stem cells: What they are and what they do – Mayo Clinic

Stem cells: What they are and what they do Stem cells and derived products offer great promise for new medical treatments. Learn about stem cell types, current and possible uses, ethical issues, and the state of research and practice. By Mayo Clinic Staff

You've heard about stem cells in the news, and perhaps you've wondered if they might help you or a loved one with a serious disease. You may wonder what stem cells are, how they're being used to treat disease and injury, and why they're the subject of such vigorous debate.

Here are some answers to frequently asked questions about stem cells.

Researchers and doctors hope stem cell studies can help to:

Generate healthy cells to replace diseased cells (regenerative medicine). Stem cells can be guided into becoming specific cells that can be used to regenerate and repair diseased or damaged tissues in people.

People who might benefit from stem cell therapies include those with spinal cord injuries, type 1 diabetes, Parkinson's disease, Alzheimer's disease, heart disease, stroke, burns, cancer and osteoarthritis.

Stem cells may have the potential to be grown to become new tissue for use in transplant and regenerative medicine. Researchers continue to advance the knowledge on stem cells and their applications in transplant and regenerative medicine.

Test new drugs for safety and effectiveness. Before using new drugs in people, some types of stem cells are useful to test the safety and quality of investigational drugs. This type of testing will most likely first have a direct impact on drug development for cardiac toxicity testing.

New areas of study include the effectiveness of using human stem cells that have been programmed into tissue-specific cells to test new drugs. For testing of new drugs to be accurate, the cells must be programmed to acquire properties of the type of cells to be tested. Techniques to program cells into specific cells continue to be studied.

For instance, nerve cells could be generated to test a new drug for a nerve disease. Tests could show whether the new drug had any effect on the cells and whether the cells were harmed.

More here:
Stem cells: What they are and what they do - Mayo Clinic

Belgian Clinic Repairs Bones Using Stem Cells From Fatty Tissue

By Philip Blenkinsop

BRUSSELS, Jan 15 (Reuters) - Belgian medical researchers have succeeded in repairing bones using stem cells from fatty tissue, with a new technique they believe could become a benchmark for treating a range of bone disorders.

The team at the Saint Luc university clinic hospital in Brussels have treated 11 patients, eight of them children, with fractures or bone defects that their bodies could not repair, and a spin-off is seeking investors to commercialise the discovery.

Doctors have for years harvested stem cells from bone marrow at the top of the pelvis and injected them back into the body to repair bone.

The ground-breaking technique of Saint Luc's centre for tissue and cellular therapy is to remove a sugar cube sized piece of fatty tissue from the patient, a less invasive process than pushing a needle into the pelvis and with a stem cell concentration they say is some 500 times higher.

The stem cells are then isolated and used to grow bone in the laboratory. Unlike some technologies, they are also not attached to a solid and separate 'scaffold'.

"Normally you transplant only cells and you cross your fingers that it functions," the centre's coordinator Denis Dufrane told Reuters television.

His work has been published in Biomaterials journal and was presented at an annual meeting of the International Federation for Adipose Therapeutics and Science (IFATS) in New York in November.

BONE FORMATION

"It is complete bone tissue that we recreate in the bottle and therefore when we do transplants in a bone defect or a bone hole...you have a higher chance of bone formation."

Continue reading here:
Belgian Clinic Repairs Bones Using Stem Cells From Fatty Tissue

Belgian clinic repairs bones with new ground-breaking stem cell technique

BRUSSELS (Reuters) - Belgian medical researchers have succeeded in repairing bones using stem cells from fatty tissue, with a new technique they believe could become a benchmark for treating a range of bone disorders.

The team at the Saint Luc university clinic hospital in Brussels have treated 11 patients, eight of them children, with fractures or bone defects that their bodies could not repair, and a spin-off is seeking investors to commercialize the discovery.

Doctors have for years harvested stem cells from bone marrow at the top of the pelvis and injected them back into the body to repair bone.

The ground-breaking stem cell technique of Saint Luc's centre for tissue and cellular therapy is to remove a sugar cube sized piece of fatty tissue from the patient, a less invasive process than pushing a needle into the pelvis and with a stem cell concentration they say is some 500 times higher.

The stem cells are then isolated and used to grow bone in the laboratory. Unlike some technologies, they are also not attached to a solid and separate 'scaffold'.

"Normally you transplant only cells and you cross your fingers that it functions," the centre's coordinator Denis Dufrane told Reuters television.

His work has been published in Biomaterials journal and was presented at an annual meeting of the International Federation for Adipose Therapeutics and Science (IFATS) in New York in November.

BONE FORMATION

"It is complete bone tissue that we recreate in the bottle and therefore when we do transplants in a bone defect or a bone hole...you have a higher chance of bone formation."

The new material in a lab dish resembles more plasticine than bone, but can be molded to fill a fracture, rather like a dentist's filling in a tooth, hardening in the body.

See original here:
Belgian clinic repairs bones with new ground-breaking stem cell technique

Cell Medicine – Cognizant Communication Corp

Aims & Scope

The importance of translatingoriginal, peer-reviewed research and review articles on the subject of cell therapy and its application to human diseases to societyhas led to the formation ofthe journalCell Medicine. To ensure high-quality contributions from all areas of transplantation, the same rigorous peer review will be applied to articles published in Cell Medicine. Articles may deal with a wide range of topics including physiological, medical, preclinical, tissue engineering, and device-oriented aspects of transplantation of nervous system, endocrine, growth factor-secreting, bone marrow, epithelial, endothelial, and genetically engineered cells, and stem cells, among others. Basic clinical studies and immunological research papers may also be featured if they have a translational interest. To provide complete coverage of this revolutionary field, Cell Medicine will report on relevant technological advances and their potential for translational medicine. Cell Medicine will be a purely online Open Access journal. There will therefore be an inexpensive publication charge, which is dependent on the number of pages, in addition to the charge for color figures. This will allow your work to be disseminated to a wider audience and also entitle you to a free PDF, as well as prepublication of an unedited version of your manuscript.

Cell Medicine features:

Original Contributions: Peer-reviewed, high-quality research investigations that represent new and significant contributions to science. Review Articles: Reviews of major areas in cellular transplantation. These may be of any length and are peer reviewed. Brief Communications: Timely and brief peer-reviewed studies. Letters to the Editor: Readers' comments on journal articles and other matters of interest to transplant researchers. Announcements and News: Notices of upcoming meetings, conferences, seminars, and other events of interest to those in the field.

Submission Requirements: From the beginning of November 2009, authors are requested to submit the original manuscript (and revised manuscript if needed) via our ManuscriptCentral websiteat http://mc.manuscriptcentral.com/cogcom-ct.

Please include a cover letter, specifying your intent to submit to Cell Medicine, as well as containing the name, address, telephone, and fax number, and electronic mail address of the author responsible for correspondence. Follow the General Form guidelines below to prepare the manuscript, figures, and tables.

At the time of submission you will be asked to confirm that you will pay the relatively inexpensive open access fees ($900 for less than 5 pages, $1800 for 5-12 pages and +$75 for each additional page) when billed. In addition, there are sections for detailing any conflicts of interest and financial support and that you (as corresponding/submitting author) have the permission of the other authors to submit the manuscript. You will be given the option of which section of the editorial office to submit to. Here you would select Cell Medicine.

There will also be a $105 submission fee.

On receipt of your manuscript, it will be checked to ensure that it is correctly formatted.

When the manuscript is accepted for publication, the author(s) will be required to provide two hard copies of the manuscript, two high-quality copies of all artwork, and a CD or disk (no zip disks) (see Final Accepted Manuscript/Disk below). Information on where to mail the final hard copy, figures, and CD/disk will be provided in an acceptance letter. Manuscripts are accepted for consideration with the understanding that they have not been published elsewhere except in abstract form and are not concurrently under review elsewhere.

Read the rest here:
Cell Medicine - Cognizant Communication Corp

Stem cell therapy following meniscus knee surgery may reduce pain, restore meniscus

Jan. 16, 2014 A single stem cell injection following meniscus knee surgery may provide pain relief and aid in meniscus regrowth, according to a novel study appearing in the January issue of the Journal of Bone and Joint Surgery (JBJS).

More than one million knee arthroscopy procedures are performed each year in the U.S. primarily for the treatment of tears to the meniscus -- the wedge-shaped pieces of cartilage that act as "shock absorbers" between the thighbone and shinbone in the knee joint.

In the first-of-its-kind study, "Adult Human Mesenchymal Stem Cells (MSC) Delivered via Intra-Articular Injection to the Knee, Following Partial Medial Meniscectomy," most patients who received a single injection of adult stem cells following the surgical removal of all or part of a torn meniscus, reported a significant reduction in pain. Some patients?24 percent of one MSC group and 6 percent of another?experienced at least a 15 percent increase in meniscal volume at one year. There was no additional increase in meniscal volume at year two.

"The results demonstrated that high doses of mesenchymal stem cells can be safely delivered in a concentrated manner to a knee joint without abnormal tissue formation," said lead study author C. Thomas Vangsness, Jr., MD. "No one has ever done that before." In addition, "the patients with arthritis got strong improvement in pain" and some experienced meniscal regrowth.

Specific Study Details The study involved 55 patients, ages 18 to 60, who underwent a partial medial meniscectomy (the surgical removal of all or part of a torn meniscus) at seven medical institutions. Patients were randomly placed in one of three treatment groups: Group A patients (18) received a "low-dose" injection of 50 million stem cells within seven to 10 days after meniscus surgery; Group B patients (18), a higher dose of 100 million stem cells; and the "control group (19)," sodium hyaluronate only. Patients were assessed to evaluate safety, meniscus regeneration through MRI and X-ray images, overall condition of the knee joint and clinical outcomes through two years. While most of the patients had some arthritis, patients with severe (level three or four) arthritis, in the same compartment as the meniscectomy, were excluded from the study.

Key Study Findings

"The results of this study suggest that mesenchymal stem cells have the potential to improve the overall condition of the knee joint," said Dr. Vangsness. "I am very excited and encouraged" by the results. With the success of a single injection, "it begs the question: What if we give a series of injections?"

More here:
Stem cell therapy following meniscus knee surgery may reduce pain, restore meniscus

Pros And Cons Of Stem Cell Research – AllAboutPopularIssues.org

You are here: Popular Issues >> Pros And Cons Of Stem Cell Research

Pros and Cons of Stem Cell Research - What are Stem Cells? There has been much controversy in the press recently about the pros and cons of stem cell research. What is the controversy all about? "Stem" cells can be contrasted with "differentiated" cells. They offer much hope for medical advancement because of their ability to grow into almost any kind of cell. For instance, neural cells in the brain and spinal cord that have been damaged can be replaced by stem cells. In the treatment of cancer, cells destroyed by radiation or chemotherapy can be replaced with new healthy stem cells that adapt to the affected area, whether it be part of the brain, heart, liver, lungs, or wherever. Dead cells of almost any kind, no matter the type of injury or disease, can be replaced with new healthy cells thanks to the amazing flexibility of stem cells. As a result, billions of dollars are being poured into this new field.

Pros and Cons of Stem Cell Research - Where Do They Come From? To understand the pros and cons of stem cell research, one must first understand where stem cells come from. There are three main sources for obtaining stem cells - adult cells, cord cells, and embryonic cells. Adult stem cells can be extracted either from bone marrow or from the peripheral system. Bone marrow is a rich source of stem cells. However, some painful destruction of the bone marrow results from this procedure. Peripheral stem cells can be extracted without damage to bones, but the process takes more time. And with health issues, time is often of the essence. Although difficult to extract, since they are taken from the patient's own body, adult stem cells are superior to both umbilical cord and embryonic stem cells. They are plentiful. There is always an exact DNA match so the body's immune system never rejects them. And as we might expect, results have been both profound and promising.

Stem cells taken from the umbilical cord are a second very rich source of stem cells. Umbilical cells can also offer a perfect match where a family has planned ahead. Cord cells are extracted during pregnancy and stored in cryogenic cell banks as a type of insurance policy for future use on behalf of the newborn. Cord cells can also be used by the mother, the father or others. The more distant the relationship, the more likely it is that the cells will be rejected by the immune system's antibodies. However, there are a number of common cell types just as there are common blood types so matching is always possible especially where there are numerous donors. The donation and storage process is similar to blood banking. Donation of umbilical cells is highly encouraged. Compared to adult cells and embryonic cells, the umbilical cord is by far the richest source of stem cells, and cells can be stored up in advance so they are available when needed. Further, even where there is not an exact DNA match between donor and recipient, scientists have developed methods to increase transferability and reduce risk.

Pros and Cons of Stem Cell Research - Embryonic Cells The pros and cons of stem cell research come to the surface when we examine the third source of stem cells - embryonic cells. Embryonic stem cells are extracted directly from an embryo before the embryo's cells begin to differentiate. At this stage the embryo is referred to as a "blastocyst." There are about 100 cells in a blastocyst, a very large percentage of which are stem cells, which can be kept alive indefinitely, grown in cultures, where the stem cells continue to double in number every 2-3 days. A replicating set of stem cells from a single blastocyst is called a "stem cell line" because the genetic material all comes from the same fertilized human egg that started it. President Bush authorized federal funding for research on the 15 stem cell lines available in August 2001. Other stem cell lines are also available for research but without the coveted assistance of federal funding.

So what is the controversy all about? Those who value human life from the point of conception, oppose embryonic stem cell research because the extraction of stem cells from this type of an embryo requires its destruction. In other words, it requires that a human life be killed. Some believe this to be the same as murder. Against this, embryonic research advocates argue that the tiny blastocyst has no human features. Further, new stem cell lines already exist due to the common practice of in vitro fertilization. Research advocates conclude that many fertilized human cells have already been banked, but are not being made available for research. Advocates of embryonic stem cell research claim new human lives will not be created for the sole purpose of experimentation.

Others argue against such research on medical grounds. Mice treated for Parkinson's with embryonic stem cells have died from brain tumors in as much as 20% of cases.1 Embryonic stem cells stored over time have been shown to create the type of chromosomal anomalies that create cancer cells.2 Looking at it from a more pragmatic standpoint, funds devoted to embryonic stem cell research are funds being taken away from the other two more promising and less controversial types of stem cell research mentioned above.

Learn More Now!

Footnotes 1 The Real Promise of Stem Cell Research Dr. David Prentice, HealthNewsDigest.com 2 Derivation of Human Stem-Cell Lines from Human Blastocysts, C. A. Cowan and others. March 25, 2004, New England Journal of Medicine, p.1355 with secondary reference to footnotes 13-17 p.1356.

Like this information? Help us by sharing it with others using the social media buttons below. What is this?

Follow this link:
Pros And Cons Of Stem Cell Research - AllAboutPopularIssues.org

‘Blazin’ a trail’

Four-year-old Rikky Foresman is having a lot of firsts.

Last week, Rikky, his parents and three older siblings traveled to a women and children's hospital in Tijuana, Mexico, for stem cell therapy to treat his spina bifida myelomeningocele.

"This hospital has this 'beacon factor,' " said Rikky's father, Rik Foresman, of Old Lycoming Township, as he described the process to a room full of friends and family at the DuBoistown VFW Sunday at a homecoming for the youngster.

RASHELLE CAREY/Sun-Gazette Rikky Foresman, 4, of Old Lycoming Township, recently underwent stem cell therapy for spina bifida myelomeningocele and almost immediately displayed improvements to his feet and legs.

RASHELLE CAREY/Sun-Gazette Rikky Foresman and his party guests watch videos and photos on a computer screen on Sunday.

At the hospital, Foresman said, a doctor injects the beacon factor into the cells that need repaired. The beacon factor acts as a red flag, making the cells "yell for help."

Doctors then inject stem cells from the umbilical cords and placenta of healthy babies, which quickly target the cells yelling for help and begin treating them, Foresman said.

The entire procedure takes 30 to 45 minutes. The Tijuana facility is the only hospital with the capability to do the procedure, Foresman said.

Rikky suffers from spina bifida myelomeningocele. The condition has caused him to have no control over his bladder or bowels and he has no feeling from the knees down.

When doctors asked his parents which areas the stem cells should focus on, they listed, in order, his bladder, then his bowel, his hip and then his legs.

Continued here:
'Blazin' a trail'

Quitting top medical researcher lambasted by authorities

Both the Catalan and central governments have vigorously defended their commitment to the Barcelona Regenerative Medicine Center (CMRB) in the wake of the decision of its director, Juan Carlos Izpisa, to resign.

Izpisa, one of the worlds pre-eminent stem cell researchers, handed in his notice due to government cutbacks in the sciences - the CMRB has lost 16.8 percent of its budget in the last four years. But the Catalonia regional economy chief, Andreu Mas-Colell, told EL PAS that the budget, which is 1.7 million euros annually, will be maintained in 2014 and for the foreseeable future.

Both administrations coincided in accusing Izpisa of lacking dedication to the CMRB in favor of his post at the Salk Institute in California, where all the researchers patents are held.

Government lawyers have been mobilized to examine the intellectual property of the CMRB. Izpisa intends to take 18 of the 21 projects running at the CMRB with him to California, as he considers them his own ideas and initiatives. The administrations will play all their legal cards to prevent this emptying of the Barcelona center, which will, in any case, remain open.

Mas-Colell, who was one of the prime movers in setting up the CMRB, admitted that Izpisa was a great scientist and a key figure in the beginnings of regenerative medicine in Spain. But he underlined two reasons that led the board to withdraw its support. It is not quite correct to say that Spain has lost a great scientist, because the truth is he wasnt in Spain very much; Izipisa first link was with the Salk and the Barcelona center was a research group linked to the Salk.

In the current circumstances a research center in Spain requires a commitment of 100 percent from the director, with both feet rooted in the center, he continued.

The board has chosen ngel Raya, a former postdoctoral researcher for Izpisa, to replace the outgoing director. Raya is a notable researcher in the field [and] he is going to fulfill the condition we require, Mas-Colell said.

The second issue concerns the intellectual property rights relating to the investigations. The mere fact that Izipisa is going to take 18 of the 21 research projects at the CMRB reveals what I said before: that this was not a strong center for Spanish science.

Regarding the patents, Izipisa said: They insinuated that I was benefiting the Salk, but it was more like the other way around, since the Salk had to do all the administration work and pay for the management and the application for the patents, and even like that it shares them with the CMRB in proportion to the scientific contribution of each center. So where is the benefit for the Salk?

Go here to read the rest:
Quitting top medical researcher lambasted by authorities