Author Archives: admin


Beverly Hills Institute for Cellular Therapy Now Offering Revolutionary Stem Cell Face Lift Procedure at Special New …

Beverly Hills, California (PRWEB) January 06, 2014

The top stem cell clinic in Beverly Hills and Los Angeles, Beverly Hills Institute of Cellular Therapy, is now offering revolutionary stem cell facelift procedures with a New Years pricing special. The procedure involves a nonoperative technique with amniotic stem cells performed by licensed providers. No incisions are necessary, and the outpatient procedures are being offered at 20% off regular price. Call (424) 253-5577 for more information and scheduling.

Traditional facelift procedures involve anesthesia, incisions and significant healing time. A stem cell facelift procedure is performed as an outpatient with no incisions or systemic anesthesia necessary. The Beverly Hills Institute utilizes amniotic stem cells, which are processed at an FDA regulated lab and have been used over 10,000 times without adverse events.

Stem cells have the capability to eliminate wrinkles and provide the skin with a more youthful, glowing appearance. The procedure allows patients to avoid the risks of infection and no stitches are necessary. It costs considerably less than a traditional facelift and now at 20% off is a great option for those desiring to look younger without going through separate procedures for each facial area.

As individuals age, the skin tone in the facial area and texture begin to decline. Stem cells are able to rejuvenate collagen deficient areas and have the capability to change into all types of cells in a procedure that is natural, affordable and safe.

Amniotic fluid is extremely rich in stem cells, growth factors, hyaluronic acid and anti-inflammatory cells. The combination works extremely well for the stem cell facial procedure, with results that are often noticeable quickly and long lasting.

This new technology is performed by licensed aestheticians, nurses and Double Board Certified physicians at the Institute. The procedure takes less than an hour to complete. In addition to the stem cell facelift, the Institute also offers stem cell injections for numerous musculoskeletal conditions including tendon and ligament injury along with degenerative arthritis. This includes stem cell therapy for knees, shoulders and hips.

For more information and scheduling to discuss options with stem cell procedures for looking and feeling younger while avoiding surgery, call the Beverly Hills Institue for Cellular Therapy at (424) 253-5577.

Read this article:
Beverly Hills Institute for Cellular Therapy Now Offering Revolutionary Stem Cell Face Lift Procedure at Special New ...

Stem cell transplant complication gains attention at UW Health

After Susan Derse Phillips had chemotherapy for leukemia, she received a stem cell transplant, getting blood-forming cells from a donor to restore her immune system and attack any remaining leukemia cells.

The procedure apparently cured her leukemia, a type of blood cancer. But her skin turned red, her mouth and eyes became dry and she developed diarrhea, fatigue, bronchitis and pneumonia.

She had graft-versus-host disease, or GVHD, a life-threatening complication of the transplant. Her donors cells the graft werent attacking just her leukemia. They were attacking her skin, her gut, her lungs and other organs essentially, her body, the host.

It got pretty scary pretty quickly, said Phillips, 66, of Madison, who continues to struggle with the condition two years after the transplant.

More than half of patients who get donor stem cell transplants develop GVHD, and at least 20 percent of them die from it, said Dr. Mark Juckett, a hematologist at UW Health. But the complication, which likely is under-reported, receives relatively little attention.

Phillips, former president and CEO of Agrace HospiceCare in Fitchburg, set out to change that in Wisconsin. With $500,000 from two donors as seed money, she persuaded UW Health to launch a program to focus on the condition.

UW Carbone Cancer Centers new GVHD program aims to provide better treatment for the 250 or so UW Health patients with the condition and up to 1,000 such patients in Wisconsin and parts of neighboring states, said Juckett, one of the programs two leaders. The program will also study ways to prevent GVHD.

Too often, when doctors give donor stem cell transplants, were trading one disease for another, said Juckett, Phillips doctor. Theres been a lot of focus on how best to do the transplant ... but theres never been a real recognition of dealing with GHVD as a real problem.

Nationwide, about 18,500 stem cell or bone marrow transplants were performed in 2011, according to the Center for International Blood and Marrow Transplant Research in Milwaukee.

At UW Hospital, about 150 patients receive the transplants each year. Roughly 100 of them get infusions of their own stem cells, after high-dose chemotherapy or radiation, for conditions such as multiple myeloma and non-Hodgkins lymphoma. They are not at risk for GVHD.

View post:
Stem cell transplant complication gains attention at UW Health

Gene Patent Case Fuels U.S. Court Test of Stem Cell Right

As scientists get closer to using embryonic stem cells in new treatments for blindness, spinal cord injuries and heart disease, a U.S. legal debate could determine who profits from that research.

Consumer Watchdog, a nonprofit advocacy group, wants an appeals court to invalidate a University of Wisconsin-Madisons patentfor stem cells derived from human embryos, saying its too similar to earlier research. The Santa Monica, California, group also says the U.S. Supreme Courts June ruling limiting ownership rights of human genes should apply to stem cells, a potentially lucrative field for medical breakthroughs.

The challenge to Wisconsin Alumni Research Foundation, the universitys licensing arm, is about whether patents help or hinder U.S. stem-cell research, which has been stymied by political debate. The consumer group says it drives up the cost of research by requiring companies and some academics to pay a licensing fee to the university.

What were asking the government to do is say WARF has no right to the patent, said Dan Ravicher, executive director Public Patent Foundation in New York, which is handling the challenge for Consumer Watchdog. Its like the government sent a check to WARF they didnt deserve.

Consumer Watchdog lost a challenge at the U.S. Patent and Trademark Office in January 2013. It wants the Court of Appeals for the Federal Circuit in Washington to review that decision and consider new arguments based on the Supreme Courts finding that genes -- like stem cells -- are a natural material that cant be patented. Beyond the science question, the case has become a flashpoint over how far members of the public can go to invalidate patents on policy grounds.

While the patent expires in April 2015 and the university has other stem-cell-related patents, Consumer Watchdog is continuing a six-year battle to invalidate it because stem-cell research is starting to get some traction into therapeutic uses, Ravicher said.

The promise of embryonic stem cells is to create or repair tissues and organs using material taken from eggs fertilized in the laboratory. The cells created can be replicated indefinitely, and with the right biological cues, may aid in treating damaged heart tissue and spinal cords, or generate therapies for diabetes and cancer. Companies like StemCells Inc. (STEM) and Advanced Cell Technology Inc. are testing therapies to treat macular degeneration, a cause of blindness.

The next paradigm shift in medicine will be advances in cell therapy -- its under way, said Jason Kolbert, senior biotechnology analyst with Maxim Group LLC in New York. He said pharmaceutical makers such as Teva Pharmaceutical Industries Ltd. (TEVA) of Petach Tikva, Israel, and Pfizer (PFE) Inc. of New York are working with stem-cell researchers on new therapies.

Stem-cell science in the U.S. was curbed in 2001 when then-President George W. Bush issued an executive order limiting research to existing cell lines amid controversy over human embryo destruction, even though they were never in a womans uterus. President Barack Obama reversed that order in 2009.

Some scientists have avoided the public debate by using adult cells to find the unlimited potential they have in embryonic cells.

More here:
Gene Patent Case Fuels U.S. Court Test of Stem Cell Right

West Coast Stem Cell Clinic, TeleHealth, Now Offering Stem Cell Injections for Ligament Sprains

Orange County, CA (PRWEB) January 06, 2014

Top West Coast Stem Cell Clinic, TeleHealth, is now offering stem cell injections for ligament sprains. This includes injuries of the ankle, knee, wrist and other extremity joints. Board Certified doctors administer the outpatient injections which can help patients heal quicker than conventional treatments. For more information and scheduling, call (888) 828-4575.

In adults, ligament sprains can take months to heal due to limited blood supply and healing potential. This can keep athletes off the field and inhibit the ability of even recreational athletes to walk and run without pain.

Conventional pain relief treatments are able to provide pain relief. This may include steroid injections or anti-inflammatories by mouth. However, these treatments do not alter the course of the healing.

With the advent of regenerative medicine treatments, the potential exists for quicker healing. These treatments include fat or bone marrow derived stem cell injections along with platelet rich plasma therapy.

Platelet rich plasma therapy, known as PRP therapy, involves a simple blood draw from the patient. The blood is spun in a centrifuge, which concentrates the platelets and growth factors. These are then injected into the area of ligament injury.

With the fat or bone marrow derived stem cells, the material is harvested in an outpatient procedure from the patient. It is processed immediately to concentrate the patient's stem cells and then injected right away into the injured region.

Small published studies have shown the treatment to be very effective for healing the injuries faster than with conventional treatments. There is low risk involved, the treatments are outpatient and performed by highly experienced Board Certified doctors who have over twenty years combined experience in regenerative medicine treatments.

Along with the injections for ligament injury, stem cell injections are also offered for degenerative arthritis, rotator cuff injury, back and neck pain, achilles tendonitis, plantar fasciitis and more.

TeleHealth has two offices for treatment, one in Orange and a second in Upland, CA. Call (888) 828-4575 for more information and scheduling.

Read more:
West Coast Stem Cell Clinic, TeleHealth, Now Offering Stem Cell Injections for Ligament Sprains

Chaitanya Stem Cell Center

Regenerative Therapy has proven to be effective for organs and tissues restoration, and for fight against the incurable and obstinate diseases. We treat patients with various diseases, such as diabetes mellitus, multiple sclerosis, Parkinsons disease, Duchenne muscular dystrophy, and many others, including rare genetic and hereditary diseases. Among our patients there are also people willing to undergo anti-aging treatment. Stem cell treatment allows for achieving effects that are far beyond the capacity of any other modern method our stem cell treatments helped to prolong life and improve life quality to thousands of patients including those suffering from the incurable diseases who lost any hope for recovery.

Chaitanya Stem Cell Centre is dedicated to providing Neurological, Kidney, Liver, Endocrinal disease and many untreatable disease patients with information about Regenerative Therapy at Pune India. We have achieved high success rate up to 80% Patient success rate as per our standardized Protocol.

We have successfully improved more than 600 patients from 14 countries, till todate. Our clinic offers advanced patented methods of stem cell treatment for different diseases and conditions. The fetal stem cells we use are nonspecialized cells able to differentiate (turn) into any other cell types forming different tissues and organs. Fetal stem cells have huge potential for differentiation and proliferation and are not rejected by the recipients body.

Want to find out more about Regenerative Therapy with no obligation? Visit our center and get interacted with many of our satisfied and cured patient. Our Regenerative Therapy is based on many years of research and clinical experience conducted by researchers and clinicians in the India.

Covering over 25 treatable conditions, including Neurological, Kidney, Liver, Endocrinal disease and many untreatable disease provides both Allogenic and Autologous stem cell treatment programs, has a growing body of patient testimonials, updated articles, frequently asked questions and more.

Link:
Chaitanya Stem Cell Center

Public Opinion Generally Supports Stem Cell Research

January 3, 2014

Rebekah Eliason for redOrbit.com Your Universe Online

Early reports indicate that lay opinions regarding stem cell research with stem cells made from skin or other tissues, known as induced pluripotent stem cells (iPSCs), are generally positive, despite several ethical concerns.

Regardless of personal benefit, most patients indicated during focus group discussions that they would be will to participate in iPSC. When considering donating tissue, patients raised concern regarding consent, privacy and transparency. Jeremy Sugarman, senior author and the Harvey M. Meyerhoff Professor of Bioethics and Medicine at the John Hopkins Berman Institute of Bioethics, said, Bioethicists, as well as stem cell researchers and policy-makers, have discussed the ethical issues of induced pluripotent stem cells at length, but we didnt have any systematic information about what patients think about these issues, and that is a huge part of the equation if the potential of this research is to be fully realized.

Somewhat taking the edge off of the controversy is the fact that iPSCs do not require the destruction of a human embryo. Using iPSCs in research is extremely valuable in the development of new drugs, disease study and may help develop medical treatments. Although still far off, Sugarman explained that there is hope that iPSCs could eventually be used in the development of organs for transplantation that the bodys immune system will not attack since they can be formed from the persons own cells.

In all five of the focus groups, consent for iPSC research by the patient was highly important. Several of the patients believed that properly informed consent could alleviate other concerns about privacy, the immortalization of cells, and the commercialization of stem cells.

The report noted a strong desire among participants to have full disclosure of the anticipated uses. Some of the participants expressed a desire to be able to veto some of the uses of their cells. Although the authors recognize the practical difficulties of this request, they hope their study will help to prompt investigation into creative approaches to meeting these desires.

The study exposed an additional side to some patients selfless motivations in research participation in relation to eventual commercialization. One participant from the report is quoted as saying, It wont be just taken to become a money maker and the very people who need it the most will no longer be able to benefit from it and another, it was a donation. Its a humanitarian effort.

Unique characteristics of the small study that could influence results were noted by the authors. For example, since the study was conducted in Baltimore, Maryland with patients who have received care at Johns Hopkins, which is home to the first immortal cell line produced from tumor cells that were taken from cancer patient Henrietta Lacks in 1951, related stem cell issues are at the forefront of various focus groups. The report stated, The idea that donated cells would potentially liveforever was unnerving to some participants. In particular, the story about the creation of the HeLa cell line from Henrietta Lacks cervical cancer tissue, taken without consent, was raised in four out of the five focus groups.

In addition, the report suggested that a patients opinion may be affected by their own health and whether they had any personal experience with a debilitating illness. It seems fair to say that everyone experiences serious illness in their lives, whether themselves or through someone they know and care about, and this influences their opinions of healthcare and research, Sugarman says. This study is a first step in getting crucial information about what values are factored into a decision to participate in iPSC research, and what those participants expect from the experience. This study was reported in the journal Stem Cells.

Link:
Public Opinion Generally Supports Stem Cell Research

Stem cell therapy breakthrough

Human embryonic stem cells have the capacity to differentiate into a variety of cell types, making them a valuable source of transplantable tissue for the treatment of numerous diseases, such as Parkinson's disease and diabetes.

But theres one major issue: Embryonic stem cells are often rejected by the human immune system.

Now, researchers from the University of California San Diego may have found an effective way to prevent this rejection in humans. Utilizing a novel humanized mouse model, the scientists have revealed a unique combination of immune suppressing molecules that stop the immune system from attacking the injected stem cells without shutting the system down completely.

This discovery could ultimately help resolve some of the major problems currently limiting the use of embryonic stem cells for certain conditions, paving the way for the development of more effective human stem cell therapies.

This is a generic way of immune suppression, so it could potentially be applied not just for stem cells therapies, but for organ transplants as well, Yang Xu, a professor of biology at UC San Diego and lead author of the study, told FoxNews.com. It can be very broad.

Embryonic stem cells are different from the other cells in a patients body, making them allogenic. This means the immune system will recognize them as foreign agents and attack them.

One way of overcoming this rejection problem is to give patients immunosuppressant drugs, which suppress the entire immune system. While short term use of immunosuppressants has been successful for many organ transplants, embryonic stem cell therapies for chronic diseases require long term use of these drugs which can often be very toxic and increase the risk of cancer.

In order for the patient to really use this therapy, they have to decide: Do they want a lifelong use of immunosuppressant drugs, or are they willing to live with the symptoms of their disease, Xu said.

To figure out a way of bypassing this issue, researchers needed a relevant model that could closely mimic the human immune systems response to embryonic stem cell transplantation. To do this, they took immune deficient lab mice and grafted them with human fetal thymus tissues and hematopoietic stem cells derived from the fetal liver.

Essentially, this created a highly specialized mouse model with very robust T cells capable of effectively rejecting foreign embryonic stem cells just like human T cells.

Read the original post:
Stem cell therapy breakthrough

A miracle and a clarion call for more

A Vietnamese girl adopted by a Swiss family underwent a stem cell transplant last Friday, months after she was diagnosed with acute lymphoblastic leukemia.

Joon Gremillet, 18, is under special care at the Geneva General Hospital with visits restricted to protect her from infections, given that her immune system drops close to zero, according to a post on the blog site Help Joon, which was opened to look for a matching donor by her adoptive father Patrick Gremillet, a senior program coordinator at the United Nations Development Program.

Patrick received Joon from a maternity hospital in Hai Phong in northern Vietnam and she has grown up with the family, traveling through Laos, Thailand, US, Austria and France.

Joon, who started her university studies last year in Geneva, was diagnosed with leukemia last May.

She was hospitalized immediately and received chemotherapy before the search began for a bone marrow donor that considerably increases chances of survival.

The father said a donor was a stressful issue as Joon was adopted and there was little chance of finding a matching donor in her current community.

He said there are also few Asians, and Vietnamese in particular, who are enrolled in the international stem cell donor registry.

Fortunately, a compatible donor was found in November, although details are being kept confidential.

Patrick said the donors stem cells were infused into his daughter in a process that lasted nearly two hours.

He said Joon will have to wait for between ten to 30 days before the transplanted cells begin to circulate in her bones and gradually resume production of bone marrow and blood cells. If things go well, she can regain immunity after three months.

Original post:
A miracle and a clarion call for more

Biologists discover solution to problem limiting development of human stem cell therapies

PUBLIC RELEASE DATE:

2-Jan-2014

Contact: Kim McDonald kmcdonald@ucsd.edu 858-534-7572 University of California - San Diego

Biologists at UC San Diego have discovered an effective strategy that could prevent the human immune system from rejecting the grafts derived from human embryonic stem cells, a major problem now limiting the development of human stem cell therapies. Their discovery may also provide scientists with a better understanding of how tumors evade the human immune system when they spread throughout the body.

The achievement, published in a paper in this week's early online edition of the journal Cell Stem Cell by a collaboration that included scientists from China, was enabled by the development of "humanized" laboratory mice that contained a functional human immune system capable of mounting a vigorous immune rejection of foreign cells derived from human embryonic stem cells.

Because human embryonic stem cells are different from our own body's cells, or "allogenic," a normally functioning human immune system will attack these foreign cells. One way to reduce the body's "allogenic immune response" is to suppress the immune system with immunosuppressant drugs.

"For organ transplantation to save patients with terminal diseases that has been quite successful," says Yang Xu, a professor of biology who headed the team of researchers that included Ananda Goldrath, an associate biology professor at UC San Diego. "But for stem cell therapies, the long term use of toxic immunosuppressant drugs for patients who are being treated for chronic diseases like Parkinson's disease or diabetes pose serious health problems."

Researchers had long been searching for a human immunity relevant model that would allow them to develop strategies to implant allogenic cells derived from embryonic stem cells safely. "The problem is that we only had data from mouse immune system and those are not usually translatable in humans, because human and mouse immune systems are quite different," explains Xu. "So what we decided to do was to optimize the humanized mouse that carries a functional human immune system."

To do that, the biologists took immune deficient laboratory mice and grafted into their bodies human fetal thymus tissues and hematopoietic stem cells derived from fetal liver of the same human donor. "That reconstituted in these mice a normally functioning human immune system that effectively rejects cells derived human embryonic stem cells," says Xu. With these "humanized" mouse models, the biologists then tested a variety of immune suppressing molecules alone or in combination and discovered one combination that worked perfectly to protect cells derived from human embryonic stem cells from immune rejection.

That combination was CTLA4-lg, an FDA-approved drug for treating rheumatoid arthritis that suppresses T-cells responsible for immune rejection, and a protein called PD-L1 known to be important for inducing immune tolerance in tumors. The researchers discovered that the combination of these two molecules allowed the allogeneic cells to survive in humanized mice without triggering an immune rejection.

More:
Biologists discover solution to problem limiting development of human stem cell therapies

Solution to problem limiting stem cell therapies

Biologists at UC San Diego have discovered an effective strategy that could prevent the human immune system from rejecting the grafts derived from human embryonic stem cells, a major problem now limiting the development of human stem cell therapies. Their discovery may also provide scientists with a better understanding of how tumors evade the human immune system when they spread throughout the body.

The achievement, published in a paper in this week's early online edition of the journal Cell Stem Cell by a collaboration that included scientists from China, was enabled by the development of "humanized" laboratory mice that contained a functional human immune system capable of mounting a vigorous immune rejection of foreign cells derived from human embryonic stem cells.

Because human embryonic stem cells are different from our own body's cells, or "allogenic," a normally functioning human immune system will attack these foreign cells. One way to reduce the body's "allogenic immune response" is to suppress the immune system with immunosuppressant drugs.

"For organ transplantation to save patients with terminal diseases that has been quite successful," says Yang Xu, a professor of biology who headed the team of researchers that included Ananda Goldrath, an associate biology professor at UC San Diego. "But for stem cell therapies, the long term use of toxic immunosuppressant drugs for patients who are being treated for chronic diseases like Parkinson's disease or diabetes pose serious health problems."

Researchers had long been searching for a human immunity relevant model that would allow them to develop strategies to implant allogenic cells derived from embryonic stem cells safely. "The problem is that we only had data from mouse immune system and those are not usually translatable in humans, because human and mouse immune systems are quite different," explains Xu. "So what we decided to do was to optimize the humanized mouse that carries a functional human immune system."

To do that, the biologists took immune deficient laboratory mice and grafted into their bodies human fetal thymus tissues and hematopoietic stem cells derived from fetal liver of the same human donor. "That reconstituted in these mice a normally functioning human immune system that effectively rejects cells derived human embryonic stem cells," says Xu. With these "humanized" mouse models, the biologists then tested a variety of immune suppressing molecules alone or in combination and discovered one combination that worked perfectly to protect cells derived from human embryonic stem cells from immune rejection.

That combination was CTLA4-lg, an FDA-approved drug for treating rheumatoid arthritis that suppresses T-cells responsible for immune rejection, and a protein called PD-L1 known to be important for inducing immune tolerance in tumors. The researchers discovered that the combination of these two molecules allowed the allogeneic cells to survive in humanized mice without triggering an immune rejection.

"If we express both molecules in cells derived from human embryonic cells, we can protect these cells from the allogenic immune rejection," says Xu. "If you have only one such molecule expressed, there is absolutely no impact. We still don't know exactly how these pathways work together to suppress immune rejection, but now we've got an ideal system to study this."

He and his team of researchers also believe their discovery and the development of their humanized mouse models may offer the much needed tools to develop ways to activate immune response to tumors, because these molecules are known to be important in allowing tumors to evade the human immune system.

"You're dealing with the same exact pathways that protect tumors from our immune system," says Xu. "If we can develop strategies to disrupt or silence these pathways in tumors, we might be able to activate immunity to tumors. The humanized mouse system is really a powerful model with which to study human tumor immunity."

See the original post:
Solution to problem limiting stem cell therapies