Author Archives: admin


Research – Stem Cell Biology and Regenerative Medicine …

Every one of us completely regenerates our own skin every 7 days. A cut heals itself and disappears in a week or two. Every single cell in our skeleton is replaced every 7 years.

The future of medicine lies in understanding how the body creates itself out of a single cell and the mechanisms by which it renews itself throughout life.

When we achieve this goal, we will be able to replace damaged tissues and help the body regenerate itself, potentially curing or easing the suffering of those afflicted by disorders like heart disease, Alzheimers, Parkinsons, diabetes, spinal cord injury and cancer.

Research at the institute leverages Stanfords many strengths in a way that promotes that goal. The institute brings together experts from a wide range of scientific and medical fields to create a fertile, multidisciplinary research environment.

There are four major research areas of emphasis at the institute:

Theres no way to know, beforehand, which particular avenue of stem cell research will most expediently yield a successful treatment or cure. Therefore, we need to vigorously pursue a broad number of promising leads concurrently.

--Philip A. Pizzo, MD Carl and Elizabeth Naumann Professor Dean, Stanford University School of Medicine

View post:
Research - Stem Cell Biology and Regenerative Medicine ...

Discovery of Lung Stem Cell Offers New Hope for COPD Treatment

Contrary to popular scientific belief, human lung stem cells do exist and their discovery may lead to improved treatments for COPD.

Dr. Piero Anversa, director of the Center for Regenerative Medicine at Brigham and Women's Hospital (BWH) in Boston, Massachusetts, and his colleagues believe that they have identified the first human lung stem cell. This discovery has the potential to repair and regenerate lung tissue in people suffering from COPD and other lung diseases. Dr. Anversa states: "The discovery of this stem cell has the potential to offer those who suffer from chronic lung diseases a totally novel treatment option by regenerating or repairing damaged areas of the lung."

How do lung stem cells operate? When placed in a culture medium, the newly discovered lung stem cells divide into new stem cells and also into cells that have the ability to form new lung structures such as alveoli, bronchioles and pulmonary blood vessels. This, my friends, is absolutely incredible!

Over the past several years, I have kept you up to date on stem cell research in the United States and other countries. As many of you may, or may not know, stem cell treatment with manipulation is currently not available here in the United States. It will be interesting to note how this new discovery will influence the decision on whether or not to legalize it, making it available to all who need it.

To read more about stem cell therapy, visit the following links:

Would you undergo stem cell therapy for COPD? If not, what would influence your decision? Please leave your comments and vote in the poll.

Source:

Piero Anversa, et. al. Evidence for Human Lung Stem Cells. New England Journal of Medicine, 2011; 364 (19): 1795-1806 DOI: 10.1056/NEJMoa1101324; published online 12 May 2011.

Sign up for my free newsletter! Follow me on Twitter or Facebook

Original post:
Discovery of Lung Stem Cell Offers New Hope for COPD Treatment

stem cell research – University of Rochester Medical Center …

The University of Rochester Stem Cell and Regenerative Medicine Institute was founded in 2008 in recognition of the tremendous promise that the discipline of stem cell biology offers for our understanding of development, disease and discovery of new treatments for a wide range of afflictions. Much as the discoveries of antibiotics and vaccination revolutionized our abilities to treat disease and reduce suffering, the discoveries of stem cell biology are poised to provide similar benefits

The University of Rochester is home to a rich and diverse stem cell faculty, with more than 40 faculty from 15 different departments, and more than 35 research track faculty and senior research fellows. These laboratories are collectively home to over 200 staff, including multiple Ph.D. students, postdoctoral fellows, M.D./Ph.D. students and technical fellows. Currently committed research awards, center grants, training grants and industry sponsored programs generated by this faculty represent over $60 million in direct cost commitments. Several of the programs at the University of Rochester Medical Center (URMC) are among the top programs both nationally and internationally. For example, there is particular strength in the field of neuromedicine, particularly in the context of the stem and progenitor cells giving rise to the glial cells of the central nervous system, with the faculty at URMC including several of the international leaders in such research. The Center for Musculoskeletal Research is rated as the No. 1 orthopaedics group in the United States in NIH funding. In the newly evolving field of cancer stem cell biology, a team of leading individuals also has been assembled, with drugs discovered through this effort already entering clinical trials. This intellectual environment is associated with large numbers of patent applications and with multiple opportunities for translating discoveries into therapies.

The research interests of faculty associated with University of Rochesters Stem Cell and Regenerative Medicine Institute range from model organisms to treatment of neurological disease, from investigations on the origins of red blood cells to the developing approaches to the treatment of fractures and osteroporosis, from studies on how to protect the body from the toxic effects of current cancer treatments to the development of new treatments that target cancer cells while sparing the normal cells of the body.

The following are recent news and events from our Institute:

Read more from the original source:
stem cell research - University of Rochester Medical Center ...

Type of Treatment – Stem Cell Transplantation | MD Anderson …

Stem cells are immature cells that eventually develop into the various types of mature blood cells:

A stem cell transplant replaces defective or damaged cells in patients whose normal blood cells have been crowded out by cancerous cells. Transplants can also be used to treat hereditary disorders such as sickle cell anemia, or to help patients recover from or better tolerate cancer treatment.

Stem cells for transplant come from the following sources:

Autologous transplant: cells are taken from the patient's own bone marrow before chemotherapy and are then replaced after cancer treatment.

Allogeneic transplant: stem cells come from a donor whose tissue most closely matches the patient.

Umbilical cord blood from newborn infants is extracted from the placenta after birth and saved in special cord blood banks for future use. MDAnderson's Cord Blood Bank actively seeks donations of umbilical cords.

Human leukocyte antigen, or HLA, typing is the method by which stem cell transplant patients are matched with eligible donors. HLA are proteins that exist on the surface of most cells in the body. HLA markers help the body distinguish normal cells from foreign cells, such as cancer cells.

The closest possible match between the HLA markers of the donor and the patient reduces the risk of graft versus host disease (GVHD). This condition occurs after transplant when your immune cells attack the donor cells, or when the donor cells attack your cells.

The best match is usually a first degree relative (children, siblings or parents). However, about 75% of patients do not have a suitable donor in their family and require cells from matched unrelated donors (MUD). These donors are found through registries such as the National Marrow Donor Program.

HLA typing is done with a blood sample taken from the patient, which is then compared with samples from a family member or a donor registry.

See the article here:
Type of Treatment - Stem Cell Transplantation | MD Anderson ...

Adult Stem Cell Therapy | Orthopedic Stem Cell Institute

Our state-of- the- art Orthopedic Stem Cell Institute, at the base of the breathtaking Rocky Mountains, in Johnstown, Colorado, uses our own developing research to provide adult stem cell therapies promoting natural healing. We offer two revolutionary non-invasive treatments, Stem Cell therapy and Platelet Rich Plasma (PRP), which are transforming the lives of athletes and everyday people suffering with Spine and Orthopedic injuries caused by aging and degeneration. Dr. Kenneth Pettine, a world renowned spine surgeon and a pioneer in spinal stem cell therapy opened OSCI for patients seeking possible alternatives to surgery. Pettine and his staff treat patients from around the world, using the newest and most advanced technology to treat a number of conditions, including:knees, hips, spine, shoulders, feet and ankles, and other joints. Our adult stem cell therapyprocedureuses adult mesenchymal, multipotent stem cells taken from a patients own bone marrow and then injected back into the same patient into the injured, damaged, or painful area. For patients in Colorado or anywhere in the United States, we can help.About Adult Stem Cell Therapy

More here:
Adult Stem Cell Therapy | Orthopedic Stem Cell Institute

Terry discusses his bone marrow stem cell treatment from Dr Harry Adelson for spine pain – Video


Terry discusses his bone marrow stem cell treatment from Dr Harry Adelson for spine pain
Terry discusses his bone marrow stem cell treatment from Dr Harry Adelson for spine pain. After 30 years of low back pain, one treatment from Dr Adelson with...

By: Harry Adelson

Read more here:
Terry discusses his bone marrow stem cell treatment from Dr Harry Adelson for spine pain - Video

West Coast Stem Cell Clinic, TeleHealth, Now Offering PRP Therapy for Hip Arthritis Treatment

Orange County, California (PRWEB) December 23, 2013

The top stem cell therapy clinic in California, TeleHealth, is now offering PRP therapy for hip arthritis. The treatments are often able to delay or avoid the need for joint replacement, and are administered by Board Certified doctors at two clinic locations. Call (888) 828-4575 for more information and scheduling.

Tens of millions of Americans suffer from hip arthritis, and hundreds of thousands of hip replacements are performed every year. Nonoperative treatments prior to joint replacement often consist of steroid injections for pain relief. While the joint replacement typically has excellent pain relief outcomes, there are risks involved and sometimes the eventual need for a revision procedure.

Therefore, a procedure that offers pain relief while offering the potential for joint repair is a welcome option in hip arthritis management. TeleHealth is now offering platelet rich plasma therapy, known as PRP therapy for short, to provide pain relief and potential joint regeneration. The procedure involves a simple blood draw at the office, with the blood then being spun down in a centrifuge to obtain a solution of concentrated platelets and growth factors.

The PRP is then injected into the symptomatic hip, providing an immense amount of regenerative medicine to the arthritic joint. The material then calls in the body's stem cells as well. Published studies on PRP for joint arthritis have so far shown excellent results for pain relief.

Often times, PRP therapy at TeleHealth is covered by insurance. Verification by the clinic is able to check prior to the procedure. Patients are seen from all over Southern California for treatment of hip, knee and shoulder arthritis along with tendonitis and ligament injury. This often includes athletes, weekend warriors, executives, senior citizens and more.

To receive further information on stem cell and PRP therapy for joint arthritis or soft tissue injury, call (888) 828-4575.

Read more:
West Coast Stem Cell Clinic, TeleHealth, Now Offering PRP Therapy for Hip Arthritis Treatment

Stemcell Technologies – Official Site

Product Type Please Select Specialized cell culture media Cell isolation products Antibodies Primary cells Mammalian cloning products Small molecules Contract Services Cytokines Other cell culture media, reagents & supplies Software Stem cell detection kits Training & education Proficiency testing T-shirts

Cell Type Please Select B cells Brain tumor stem cells Bronchial epithelial cells CHO cells Dendritic cells Embryonic stem cells & iPS cells (Human) Embryonic stem cells & iPS cells (Mouse) Granulocytes & subsets Hematopoietic stem & progenitor cells Hybridomas Lymphocytes Mammary epithelial cells Mesenchymal stem cells Monocytes Myeloid cells Neural stem & progenitor cells Neurons Natural killer (NK) cells Other cells Prostate epithelial cells Regulatory T cells T cells

Your area of interest Please Select Cancer Cell line development Chimerism analysis Cord blood banking Embryonic stem cell & induced pluripotent stem cell research Endothelial & angiogenic cell research Hematologic malignancies Hematopoietic stem cell research HIV HLA Hybridoma generation Immunology Immunology (Mouse) Mammary cell research Mesenchymal stem cell research Neuroscience Pharmacology, toxicology & drug discovery Prostate cell research Respiratory research Semi-solid cloning Stem cell biology Transplantation

Popular product lines Please Select AggreWell ALDECOUNT ALDEFLUOR CFU-Hill Medium ClonaCell CollagenCult EasySep EpiCult EPO-ELISA ES-Cult MammoCult MegaCult MesenCult MethoCult mFreSR mTeSR1 & TeSR2 MyeloCult NeuroCult PneumaCult-ALI Primary cells ProstaCult RoboSep RosetteSep SepMate StemAdhere STEMdiff StemSep StemSpan STEMvision TeSR-E8

The rest is here:
Stemcell Technologies - Official Site

Information on Stem Cell Research: National Institute of …

Introduction Stem Cells are unique in that they have the potential to develop into many different cell types in the body, including brain cells, but they also retain the ability to produce more stem cells, a process termed self renewal. There are multiple types of stem cell, such as embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, and adult or somatic stem cells. While various stem cells can share similar properties there are differences as well. For example, ES cells are able to differentiate into any type of cell, whereas adult stem cells are more restricted in their potential. The promise of all stem cells for use in future therapies is exciting, but significant technical hurdles remain that will only be overcome through years of intensive research.

The NINDS supports a diverse array of research on almost all stem cells, from studies of the basic biology of stem cells in the developing and adult mammalian brain to studies focusing on nervous system disorders such as ALS or spinal cord injury. For example, investigators are looking at how ES cells can be used to derive dopamine-producing neurons that might alleviate symptoms in patients with Parkinsons disease or how somatic stem cells can generate myelin producing oligodendrocytes for remyelination following acute and chronic brain injury. Although there is much promise for using stem cells to treat neurological diseases in humans, there is much work to be done before stem cell-based therapies are ready for the clinic.

The NIH Stem Cell Information Web page provides additional information about stem cell research at NIH. Also, see MedlinePlus for more health information regarding stem cells.

To learn more about investigational therapies, including stem cells, one can search the National Institutes of Health (NIH) online clinical trials database, which has information about federally and privately funded clinical research studies on a wide range of diseases and conditions. You can access this database at ClinicalTrials.gov to learn about the location of research studies in need of participants, as well as their purpose and criteria for patient participation. The NIH also maintains a clinical research website that has additional information and can be found here: NIH Clinical Research Trials and You

NINDS Repository The NINDS also supports a repository that offers human induced pluripotent stem cell (iPSC) lines for research on neurological disorders. A list of available cell lines can be found here: Human Induced Pluripotent Stem Cells

NINDS Stem Cell Research on CampusThe Intramural Research Program of NINDS is one of the largest neuroscience research centers in the world. Investigators in the NINDS intramural program conduct research in the basic, translational, and clinical neurosciences. Their specific interests cover a broad range of neuroscience research including stem cell biology. Listings of NINDS intramural researchers by laboratory affiliation and research areas are available online.

NIH Policy and ImplementationThe Director of the NINDS, Dr. Story Landis is the Chair of the NIH Stem Cell Task Force, which was created to enable and accelerate the pace of stem cell research and to seek the advice of scientific leaders in stem cell research. For comprehensive information on NIH policies related to stem cell research, visit the NIH Stem Cell Information web page.

NIH Center for Regenerative Medicine (NIH CRM)NIH CRM is a community resource that works to provide the infrastructure to support and accelerate the clinical translation of stem cell-based technologies, and to develop widely available resources to be used as standards in stem cell research. The Center provides services and information to both the intramural and extramural NIH communities that facilitate the use of stem cell technologies for therapeutic purposes and for screening efforts. Further information about NIH CRM can be found here: NIH Center for Regenerative Medicine

Funding OpportunitiesNINDS supports a wide array of stem cell research, both basic and disease-related. Funding mechanisms supported by NINDS can be found here: Funding Mechanisms

Additionally, those interested in targeted funding solicitations can search the NIH Guide for Grants and Contracts. One can do key word searches for entries such as neurological disease and stem cell or regenerative medicine. A link to the NIH Guide can be found here: NIH Guide for Grants and Contracts

See original here:
Information on Stem Cell Research: National Institute of ...

Adult stem cells suppress cancer while dormant

Los Angeles, Dec 21 : Researchers at UCLA's (University of California, Los Angeles') Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered a mechanism by which certain adult stem cells suppress their ability to initiate skin cancer during their dormant phase an understanding that could be exploited for better cancer-prevention strategies.

The study, which was led by UCLA postdoctoral fellow Andrew White and William Lowry, an associate professor of molecular, cell and developmental biology who holds the Maria Rowena Ross Term Chair in Cell Biology in the UCLA College of Letters and Science, was published online Dec. 15 in the journal Nature Cell Biology.

Hair follicle stem cells, the tissue-specific adult stem cells that generate the hair follicles, are also the cells of origin for cutaneous squamous cell carcinoma, a common skin cancer. These stem cells cycle between periods of activation (during which they can grow) and quiescence (when they remain dormant).

Using mouse models, White and Lowry applied known cancer-causing genes to hair follicle stem cells and found that during their dormant phase, the cells could not be made to initiate skin cancer. Once they were in their active period, however, they began growing cancer.

"We found that this tumor suppression via adult stem cell quiescence was mediated by PTEN, a gene important in regulating the cell's response to signaling pathways," White said.

"Therefore, stem cell quiescence is a novel form of tumor suppression in hair follicle stem cells, and PTEN must be present for the suppression to work."

Understanding cancer suppression through quiescence could better inform preventative strategies for certain patients, such as organ transplant recipients, who are particularly susceptible to squamous cell carcinoma, and for those taking the drug vemurafenib for melanoma, another type of skin cancer.

The study also may reveal parallels between squamous cell carcinoma and other cancers in which stem cells have a quiescent phase.

The research was supported by the California Institute of Regenerative Medicine, the University of California Cancer Research Coordinating Committee and the National Institutes of Health.

--IBNS (Posted on 21-12-2013)

Read more:
Adult stem cells suppress cancer while dormant