Author Archives: admin


"Leading Edge" Set to Produce New Content Featuring Stem Cell Therapy, with Host Jimmy Johnson

(PRWEB) December 21, 2013

Stem cell therapy has a tremendous potential to cure various illnesses and injuries. Recent news items have highlighted possibilities that it could treat damaged spinal cords or revitalize hip joints. Scientists are working on stem cell remedies for dementia, heart disease and diabetes. Doctors in some countries have begun using this therapy to grow replacement body tissue and treat leukemia.

However, stem cell treatments remain controversial. Some people object to them on ethical or religious grounds. Others express concern about the safety of these newfound cures. Animal testing has revealed that minor mistakes can result in impurities that cause cells to produce tumors and other ill effects. Some patients have died after receiving experimental therapies that weren't adequately tested.

The producers of the "Leading Edge" TV series plan to release a new segment that examines this fascinating yet contentious health topic. Presenter Jimmy Johnson will offer an update on important facts and recent developments in the world of stem cell research. Viewers can benefit from the program's concise and unbiased perspective on an issue that many people have yet to learn about.

"Leading Edge" is independently distributed to local public TV broadcasters across the U.S. The national Public Broadcasting Service does not act as its distributor. To learn more about this informational series, please browse http://www.leadingedgeseries.com or send an email message to the program's producers. They can be reached at info(at)leadingedgeseries(dot)com.

Here is the original post:
"Leading Edge" Set to Produce New Content Featuring Stem Cell Therapy, with Host Jimmy Johnson

Adult Stem Cell Therapy – Regenocyte

Adult stem cells circulate throughout our bodies and act as natural healers. These cells have vast potential and limitless capabilities. For more than 40 years, adult stem cells have been used to treat cancer patients. Recent advancements in stem cell therapy have been astounding. Cells from an ill patient are being used as part of the treatment. There is no possibility of the body rejecting the new tissue formed, making stem cell treatment safe and effective in achieving positive medical outcomes. It is important to note that adult stem cell therapy is not controversial because it involves the use of a patients owntissues and NOT derived from embryos. Clinical results from cardiac, pulmonary, neurological and vascular procedures have shown that the adult stem cell procedures are as safe as traditional procedures and are complimentary to current medical practice.

Adult stem cells are extracted from the patientsbone marrow and fat(adipose). At Intercellular Sciences, the naturally occurring stem cells in the blood are cultivated into millions of RegenocyteAdult Stem Cells. The Regenocyte Stem Cells areproduced inour international treatment center and are administered into the area of need for the patient. Once injected, they stimulate tissue re-growth and greater blood flow to the affected areas. The goal of the treatment is to replace damaged cells and to promote the growth of new blood vessels and tissues in order to help the target organ function at a greater capacity. There is no risk of rejection since the Adult Stem Cells received are directly from the patient.

Regenocyte Adult Stem Cell Therapy is safe, highly effective and presents minimal risk.

To find out more today, click here or call us at (866) 216-5710

Excerpt from:
Adult Stem Cell Therapy - Regenocyte

Stem Cell Research Could Lead To A Cure For Baldness, And More

December 20, 2013

redOrbit Staff & Wire Reports Your Universe Online

Regenerative medicine research conducted throughout this year at the University of Southern California (USC) could lead to new ways to counter baldness and receding hairlines using stem cells.

USC Assistant Professor of Pathology Dr. Krzysztof Kobielak and his colleagues have published a trio of papers in the journals Stem Cells and the Proceedings of the National Academy of Sciences (PNAS) describing some of the biological factors responsible for when hair starts growing, when it stops, and when it falls out.

According to USC, the three studies focused on stem cells that are located in adult hair follicles. Those cells, known as hfSCs, can regenerate both hair follicles and skin, and are governed by bone morphogenetic proteins (BMPs) and the Wnt signaling pathways groups of molecules that work together in order to control the cycles of hair growth and other cellular functions.

The most recent paper, published in the journal Stem Cells in November 2013, focuses on how the gene Wnt7b activates hair growth. Without Wnt7b, hair is much shorter, the team said. Kobielaks team originally proposed Wnt7bs role in a study published this January in PNAS. That paper identified a complex network of genes, including the Wnt and BMP signaling pathways, which controls the cycles of hair growth.

Reduced BMP signaling and increased Wnt signaling activate hair growth, while increased BMP signaling and decreased Wnt signaling keeps the hfSCs in a resting state, the researchers explained. The third paper, published in Stem Cells in September, sheds new light on the BMP signaling pathway. It looked at the function of the proteins Smad1 and Smad 5, which send and receive signals that regulate hair-related stem cells during growth periods.

Collectively, these new discoveries advance basic science and, more importantly, might translate into novel therapeutics for various human diseases, Kobielak explained. Since BMP signaling has a key regulatory role in maintaining the stability of different types of adult stem cell populations, the implication for future therapies might be potentially much broader than baldness and could include skin regeneration for burn patients and skin cancer.

Other USC researchers involved in the studies include postdoctoral fellow Eve Kandyba, Yvonne Leung, Yi-Bu Chen, Randall Widelitz, Cheng-Ming Chuong, Virginia M. Hazen, Agnieszka Kobielak, and Samantha J. Butler. Funding for the research was provided by the Donald E. and Delia B. Baxter Foundation Award and National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (NIH).

Source: redOrbit Staff & Wire Reports - Your Universe Online

Read the original:
Stem Cell Research Could Lead To A Cure For Baldness, And More

Stem cell technology

Stem cell technology is a rapidly developing field that combines the efforts of cell biologists, geneticists, and clinicians and offers hope of effective treatment for a variety of malignant and non-malignant diseases. Stem cells are defined as totipotent progenitor cells capable of self renewal and multilineage differentiation.1 Stem cells survive well and show stable division in culture, making them ideal targets for in vitro manipulation. Although early research has focused on haematopoietic stem cells, stem cells have also been recognised in other sites. Research into solid tissue stem cells has not made the same progress as that on haematopoietic stem cells. This is due to the difficulty of reproducing the necessary and precise three dimensional arrangements and tight cell-cell and cell-extracellular matrix interactions that exist in solid organs. However, the ability of tissue stem cells to integrate into the tissue cytoarchitecture under the control of the host microenvironment and developmental cues, makes them ideal for cell replacement therapy. In this overview, we briefly discuss the current research and the clinical status of treatments based on haematopoietic and tissue stem cells.

Stem cells are progenitor cells that are capable of self renewal and differentiation into many different cell lineages

Stem cells have potential for treatment of many malignant and non-malignant diseases

Peripheral blood stem cells are used routinely in autologous and allogeneic bone marrow transplantation

Gene transfer into haematopoetic stem cells may allow treatment of genetic or acquired diseases

Embryonic stem cells may eventually be grown in vitro to produce complex organs

Neuronal stem cells are being used for neurone replacement in neurovegetative disorders such as Parkinson's and Huntingdon's diseases

Haematopoietic stem cells are a somatic cell population with highly specific homing properties and are capable of self renewal and differentiation into multiple cell lineages.2 Human haematopoietic progenitor cells, like stromal cell precursors in bone marrow, express the CD34 antigen, a transmembrane cell surface glycoprotein identified by the My10 monoclonal antibody.3 However, pluripotent stem cells constitute only a small fraction of the whole CD34+ population, which is by itself rather heterogeneous regarding phenotype and function. The best way to define haematopoietic stem cells is from their functional biology. They are known to restore multilineage, long term haematopoietic cell differentiation, and maturation in lethally cytoablated hosts.4 Haematopoietic stem cells can be obtained from bone marrow, peripheral blood,5 umbilical cord blood,6 and fetal liver.7

The use of peripheral blood stem cells in both autologous and allogeneic transplantation has become routine as they can be collected on an outpatient basis and also promote a consistent acceleration in haematopoietic reconstitution after engraftment.8 Umbilical cord blood stem cells have been used progressively in paediatric patients, from both related and unrelated HLA-matched donors. In recipients with severe T cell immunodeficiency disorders, fast engraftment is required together with a low risk of graft versus host disease and a low viral transmission rate.9 Since umbilical cord blood stem cells can be expanded in vitro or frozen for storage in cell banks10 they have been used in clinical trials for both autologous and allogeneic haematopoietic stem cell transplantation.11

The bone marrow is a mesenchyme derived tissue consisting of a complex haematopoietic cellular component supported by a microenvironment composed of stromal cells embedded in a complex extracellular matrix.12 This extracellular matrix has an important role in the facilitation of cell-to-cell interaction, in addition to a more complex role in the binding and presentation of cytokines to the haematopoietic progenitor cells.13 The cytokine milieu and extracellular matrix interaction provides the road map for maturation and differentiation of stem cells,14 which should be instrumental for their in vitro manipulation before therapeutic use. For example, haematopoietic stem cells can be manipulated in vitro to generate dendritic cells, the most potent antigen presenting cells.

Read more:
Stem cell technology

Cell Therapy – Cancer

Other common name(s): cellular therapy, fresh cell therapy, live cell therapy, glandular therapy, xenotransplant therapy

Scientific/medical name(s): none

In cell therapy, processed tissue from the organs, embryos, or fetuses of animals such as sheep or cows is injected into patients. Cell therapy is promoted as an alternative form of cancer treatment.

Available scientific evidence does not support claims that cell therapy is effective in treating cancer or any other disease. Serious side effects can result from cell therapy. It may in fact be lethalseveral deaths have been reported. It is important to distinguish between this alternative method involving animal cells and mainstream cancer treatments that use human cells, such as bone marrow transplantation.

In cell therapy, live or freeze-dried cells or pieces of cells from the healthy organs, fetuses, or embryos of animals such as sheep or cows are injected into patients. This is supposed to repair cellular damage and heal sick or failing organs. Cell therapy is promoted as an alternative therapy for cancer, arthritis, heart disease, Down syndrome, and Parkinson disease.

Cell therapy is also marketed to counter the effects of aging, reverse degenerative diseases, improve general health, increase vitality and stamina, and enhance sexual function. Some practitioners have proposed using cell therapy to treat AIDS patients.

The theory behind cell therapy is that the healthy animal cells injected into the body can find their way to weak or damaged organs of the same type and stimulate the body's own healing process. The choice of the type of cells to use depends on which organ is having the problem. For instance, a patient with a diseased liver may receive injections of animal liver cells. Most cell therapists today use cells taken from taken from the tissue of animal embryos.

Supporters assert that after the cells are injected into the body, they are transported directly to where they are most needed. They claim that embryonic and fetal animal tissue contains therapeutic agents that can repair damage and stimulate the immune system, thereby helping cells in the body heal.

The alternative treatment cell therapy is very different from some forms of proven therapy that use live human cells. Bone marrow transplants infuse blood stem cellsfrom the patient or a carefully matched donorafter the patients own bone marrow cells have been destroyed. Studies have shown that bone marrow transplants are effective in helping to treat several types of cancer. In another accepted procedure, damaged knee cartilage can be repaired by taking cartilage cells from the patient's knee, carefully growing them in the laboratory, and then injecting them back into the joint. Approaches involving transplants of other types of human stem cells are being studied as a possible way to replace damaged nerve or heart muscle cells, but these approaches are still experimental.

First, healthy live cells are harvested from the organs of juvenile or adult live animals, animal embryos, or animal fetuses. These cells may be taken from the brain, pituitary gland, thyroid gland, thymus gland, liver, kidney, pancreas, spleen, heart, ovaries, testicles, or even from whole embryos. Patients might receive one or several types of animal cells. Some cell therapists inject fresh cells into their patients. Others freeze them first, which kills the cells, and they may filter out some of the cell components. Frozen cell extracts have a longer "shelf life" and can be screened for disease. Fresh cells cannot be screened. A course of cell therapy to address a specific disease might require several injections over a short period of time, whereas cell therapy designed to treat the effects of aging and "increase vitality" may involve injections received over many months.

See more here:
Cell Therapy - Cancer

Groundbreaking Stem Cell Clinical Trial

Florida Hospital Pepin Heart Institute is First in West & Central Florida to Perform a Groundbreaking Stem Cell Clinical Trial for Heart Failure Patients

The first patient has been treated as part of The ATHENA Trial, which derives stem cells from the patientsown adipose (fat) tissue and injects extracted cells into damaged parts of the heart.

TAMPA, Florida (December 20, 2013) Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute announced the first patient, a 59 year old Clearwater man, has been treated as part of the ATHENA clinical trial. The trial, sponsored by San Diego-based Cytori Therapeutics, derives stem cells from the patients own fat tissue and injects extracted cells into damaged parts of the heart. The ATHENA trial is a treatment for chronic heart failure due to coronary heart disease. Dr. Charles Lambert, Medical Director of Florida Hospital Pepin Heart Institute, is leading the way for the first U.S. FDA approved clinical trial using adipose-derived regenerative cells, known as ADRCs, in chronic heart failure patients. I am pleased to report that all procedures went well. The patient is doing well, he was released and is recovering at home. We look forward to following his progress over the coming months, said Dr. Charles Lambert. Heart failure (HF) can occur when the muscles of the heart become weakened and cannot pump blood sufficiently throughout the body. The injury is most often caused by inadequate blood flow to the heart resulting from chronic or acute cardiovascular disease, including heart attacks. The ATHENA clinical trial procedure is a three step process. First, the trial involves the collection of fat from the patients body by liposuction. Then the fat sample is filtered through a machine that extracts out the stem cells. Finally, the stem cells are injected into the damaged part of the patients heart. During this first case at Florida Hospital Pepin Heart Institute, Dr. Paul Smith performed the liposuction to obtain the fat sample, a team at the Dr. Kiran C. Patel Research Institute isolated stem cells from the fat sample and then Dr. Charles Lambert performed the cell therapy by direct injection into the patients heart. Pepin Heart and Dr. Kiran C. Patel Research Institute is exploring and conducting leading-edge research to develop break-through treatments long before they are even available in other facilities. Stem cells have the unique ability to develop into many different cell types, and in many tissues serve as an internal repair system, dividing essentially without limit to replenish other cells, said Dr. Lambert.

The Pepin Heart Institute has a history of cardiovascular stem cell research as part of the NIH sponsored Cardiac Cell Therapy Research Network (CCTRN) as well as other active cell therapy trials. The trial is a double blind, randomized, placebo controlled study designed to study the use of a patients own Adipose-Derived Regenerative Cells (ADRCs) to treat chronic heart failure from coronary heart disease in patients who are on maximal therapy and still have heart failure symptoms. All trial participants undergo a minor liposuction procedure to remove fat (adipose) tissue. Following the liposuction, trial participants may have their tissue processed with Cytoris proprietary Celution System to separate and concentrate cells, and prepare them for therapeutic use. Trial participants will then have either their own cells or a placebo injected back into their damaged heart tissue. To test whether ADRCs will improve heart function, several measurements will be made, including peak oxygen consumption (VO2max), which measures how much physical exercise (gentle walking on a treadmill) a patient can perform, blood flow to the heart (perfusion), the amount of blood in the left ventricle at the end of contraction and relaxation (end-systolic and end-diastolic volumes), and the fraction of blood that is pumped during each contraction (ejection fraction). After the injection procedure, patients are seen in the clinic for follow-up visits over the first 12 months; they are then contacted by phone once a year for up to five years after the procedure.

There are approximately 5.1 million Americans currently living with heart failure, according to the American Heart Association. Chronic heart failure due to coronary heart disease is a severe, debilitating condition caused by restriction of blood flow to the heart muscle, reducing the hearts oxygen supply and limiting its pumping function. Individuals interested in participating in the ATHENA clinical research trial or learning more can visit http://www.theathenatrial.com or call Brian Nordgren, Florida Hospital Pepin Heart Institute Physician Assistant & Stem Cell Program Lead at (813) 615-7527.

About Florida Hospital Tampa Florida Hospital Tampa is a not-for-profit 475-bed tertiary hospital specializing in cardiovascular medicine, neuroscience, orthopaedics, womens services, pediatrics, oncology, endocrinology, bariatrics, wound healing, sleep medicine and general surgery including minimally invasive and robotic-assisted procedures. Also located at Florida Hospital Tampa is the renowned Florida Hospital Pepin Heart Institute, a recognized leader in cardiovascular disease prevention, diagnosis, treatment and leading-edge research. Part of the Adventist Health System, Florida Hospital is a leading health network comprised of 22 hospitals throughout the state. For more information, visit http://www.FHTampa.org.

About Florida Hospital Pepin Heart Institute and Dr. Kiran C. Patel Research Institute Florida Hospital Pepin Heart Institute is a free-standing cardiovascular institute providing comprehensive cardiovascular care with over 76,000 angioplasty procedures and 11,000 open-heart surgeries in the Tampa Bay region. Leading the way with the first accredited chest pain emergency room in Tampa Bay, the institute is among an elite few in the state of Florida chosen to perform the ground breaking Transcatheter Aortic Valve Replacement (TAVR) procedure. It is also a HeartCaring designated provider and a Larry King Cardiac Foundation Hospital. Florida Hospital Pepin Heart Institute and the Dr. Kiran C. Patel Research Institute, affiliated with the University of South Florida (USF), are exploring and conducting leading-edge research to develop break-through treatments long before they are available in most other hospitals. To learn more, visit http://www.FHPepin.org.

ends

Scoop Media

Read the original here:
Groundbreaking Stem Cell Clinical Trial

Researcher sending stem cells into space to observe rate of growth

A drawback for the use of stem cells in medical treatment is their limited supply due to slow rate of growth in conventional laboratories. Dr Abba Zubair of the Cell Therapy Laboratory at Mayo Clinic in Florida believes this problem could be overcome and stem cell generation sped up by conducting the process in space. He will now have the opportunity to put his hypothesis to the test, courtesy of a US$30,000 grant that will see Zubair send human stem cells to the International Space Station (ISS) to observe whether they do in fact grow at a greater rate than on terra firma.

According to the Mayo Clinic, experiments conducted on Earth using microgravity (replication of gravitational field about 250 miles (402.3 km) from Earths surface) have shown that these conditions are more conducive to stem cell growth than conventional laboratories.

On Earth, we face many challenges in trying to grow enough stem cells to treat patients, says Zubair. It now takes a month to generate enough cells for a few patients. A clinical grade laboratory in space could provide the answer we have all been seeking for regenerative medicine.

In his laboratory in Florida, Zubair currently grows cells that induce the regeneration of neurons and blood vessels in sufferers of hemorrhagic strokes. He believes that if these cells were generated in space instead, their population would increase rapidly, allowing for treatment of a wide variety of conditions.

If you have a ready supply of these cells, you can treat almost any condition, and theoretically regenerate entire organs using a scaffold, says Zubair.

The next step for Zubair is to work with engineers at the University of Colorado to build a specialized cell bioreactor, which they hope will be taken to the ISS within a year to begin the experiment.

Dr. Zubair outlines his plans in the video below.

Source: Mayo Clinic

Read more here:
Researcher sending stem cells into space to observe rate of growth

Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth

Abba Zubair, medical and scientific director of the Cell Therapy Laboratory at the Mayo Clinic in Jacksonville, wants to test the feasibility of growing stem cells in outer space, cells that could be used to generate new tissue and even new organs in human beings.

There are reasons to believe that stem cells, which are hard to grow in the great quantity they are needed on Earth, will grow much more rapidly in the microgravity environment in space, Zubair thinks. Now the Center for the Advancement in Science in Space has given Zubair a $300,000 grant to test that by placing stem cells in a specialized cell bioreactor in the International Space Station.

It now takes a month to generate enough cells for a few patients, Zubair said. A clinical laboratory in space could provide the answer we all have been seeking for regenerative medicine. ... If you have a ready supply of these cells, you can treat almost any condition and can theoretically regenerate entire organs using a scaffold. Additionally, they dont need to come from individual patients. Anyone can use them without rejection.

The stem cells he plans to grow in space will be stem cells that can induce regeneration of neurons and blood vessels in patients who have suffered hemorrhagic strokes caused by blood clots.

I have a special personal interest in stroke, Zubair said. Thats what killed my mom years ago. I really would like to conquer and treat stroke.

The first step in growing stem cells in space is happening at the University of Colorado where engineers are building the cell bioreactor Zubair will use on the space station. Within a year, Zubair hopes to transport the bioreactor and stem cells to the space station, perhaps aboard a flight by SpaceX, a company expected to begin commercial flights to the space station soon.

Once the bioreactor and stem cells are aboard the space station, it will take about a month to grow them, Zubair said. The results will then be analyzed by the astronauts on the space station and by researches back in Zubairs Jacksonville laboratories.

We will be trying to determine if our notion that stem cells grow faster in microgravity is true, Zubair said. We also want to know how feasible it is to produce clinical grade cells in space that can be used in humans.

Hes optimistic his study will show that growing stem cells in space is a viable way to create stem cells in quantity.

Were quite excited, he said. I really think the future is full of promise. We just have to take the opportunity to make that a reality.

See more here:
Mayo cell therapy researcher plans to grow stem cells in space, where he thinks they will grow faster than on Earth

HEXIM1 regulatory protein induces human pluripotent stem cells to adopt more specialized cell fate

5 hours ago Human pluripotent stem cells, such as human embryonic stem cells (above), can differentiate into specific cell types under appropriate conditions; the HEXIM1 protein helps with this differentiation. Credit: DAJ/amana images/Thinkstock

A lot of optimism and promise surrounds the use of human pluripotent stem cells (hPSCs)for applications in regenerative medicine and drug discovery. However, technical challenges still hamper the culturing and differentiation of these cells, which include the cell types known as human embryonic stem cells (hESCs) and their reprogrammed equivalents, induced pluripotent stem cells (iPSCs).

A team of A*STAR scientists has now discovered a regulatory protein that helps to coax human pluripotent stem cells to form more specialized types of cells. "Our finding could help to develop a new protocol to induce differentiation of human pluripotent stem cells," says Sheng-Hao Chao from the A*STAR Bioprocessing Technology Institute (BTI) in Singapore, who led the study.

Chao and his co-workers at the BTI's Expression Engineering Group have been studying a protein called hexamethylene bisacetamide-inducible protein 1 (HEXIM1) for many years. HEXIM1 is known to inhibit a protein complex called positive transcription elongation factor b (P-TEFb), which is involved in gene expression. Chao's team previously linked HEXIM1 with a specific pathway involved in cancer development. This led the researchers to suspect an additional role for HEXIM1 in regulating stem cells.

Chao's group teamed up with Andre Choo and his colleagues in the Stem Cell Group at the BTI to further explore this possibility. They first treated hESCs with a differentiation-inducing compound called LY294002 and saw a marked increase in HEXIM1 levels compared to untreated cells.

Further tests showed that HEXIM1 played a role in driving cellular differentiation. For example, the hESCs differentiated when the researchers incubated the cells with hexamethylene bisacetamide (HMBA), a HEXIM1 inducing reagent, or when they generated and cultured a cell line with elevated expression of HEXIM1. The researchers rule out P-TEFb inhibition as an explanation for the effect, however, because in another experiment, hESCs treated with flavopiridola drug that blocks P-TEFb activityremained in a pluripotent state.

"We discovered a novel function of HEXIM1 in regulating the early-stage differentiation of human pluripotent stem cells through a P-TEFb-independent pathway," says Chao. More work is still needed to investigate in detail the molecular mechanism by which HEXIM1 drives hPSC differentiation.

Eventually, HEXIM1 could become a useful tool in generating new tissues for cell-replacement therapies. "In combination with other transcription factors or chemicals, it is possible that HEXIM1 and its inducing reagent HMBA could be utilized to direct the differentiation of human pluripotent stem cellsinto specific cell types," Chao says.

Explore further: Scientists engineer human stem cells

More information: Ding, V., Lew, Q. J., Chu, K. L., Natarajan, S., Rajasegaran, V. et al. "HEXIM1 induces differentiation of human pluripotent stem cells." PLoS ONE 8, e72823 (2013). dx.doi.org/10.1371/journal.pone.0072823

Read the original:
HEXIM1 regulatory protein induces human pluripotent stem cells to adopt more specialized cell fate

Stem Cell Therapy – Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner – NSPC – Video


Stem Cell Therapy - Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner - NSPC
How to know if the cause of your back or neck pain is Facet Syndrome. Discover how biologic regenerative treatments are able to pick up where traditional tre...

By: StemCell Arts

Link:
Stem Cell Therapy - Facet Syndrome Patients Relieve Back and Neck Pain Dr Robert Wagner - NSPC - Video