Author Archives: admin


Pro-lifers eye Kansas for top study of stem cells; no embryo use at …

Long clouded by ethical concerns, medical treatments and research based on stem cells taken from adults or the umbilical cords of newborns but not human embryos are getting renewed support from lawmakers and religious leaders.

In the deep-red state of Kansas, lawmakers are waiting to see whether Gov. Sam Brownback, a Republican, will sign a bill making the University of Kansas Medical Center a hub for adult stem cell research and therapies in the region.

Mr. Brownback, a social conservative who promised to build a culture of life in the state, has signaled support for such a center. The bill passed the Legislature on Friday but has not reached his office, an aide said Wednesday.

If enacted, the new Midwest Stem Cell Therapy Center would focus on research and therapies exclusively using stem cells from human adults and cord blood and tissue. Stem cells harvested from human embryos or tissues from aborted fetuses would be specifically prohibited.

Treatments exploiting the unique qualities of stem cells biological cells with the ability to reproduce and develop into specialized cells used throughout the body have been used for decades to cure some diseases, and researchers say the approach has exciting potential to treat or cure maladies such as diabetes, multiple sclerosis, cancer, cardiovascular disease, spinal cord injuries, Parkinsons disease and autoimmune diseases.

However, political, legal and cultural battles have abounded since scientists discovered in the 1990s that they could use human embryos as sources for harvesting stem cells. Pro-life and Catholic groups denounced the process because it destroys the embryos, but scientists said such research can be carried out ethically, especially when the benefits are so promising.

The center is being proposed after seven years of efforts to create partnerships around the adult stem cell approach, said Kathy Ostrowski, legislative director of Kansans for Life, sidestepping the moral minefield that has held back research in the United States.

The University of Kansas Medical Center is active in adult stem cell clinical trials and research, and this first-of-its-kind center would be an economic engine in this strategic field as well as a gold mine for treatments and cures, Ms. Ostrowski said.

The proposed Midwest Stem Cell Therapy Center which would partner with the Blood and Marrow Transplant Center of Kansas would produce clinical-grade stem cells and conduct clinical trials with adult stem cell therapies, creating opportunities for people with diseases or injuries to participate in such trials.

During legislative hearings on the proposed stem cell center, no one testified against the idea. However, critics noted that while Kansas lawmakers established a way for donations to come to the new center, they didnt authorize any state money for it.

Read more:
Pro-lifers eye Kansas for top study of stem cells; no embryo use at ...

Dr. Vincent Giampapa to Present at The Vatican Adult Stem Cell Conference on Adult Stem Cell Solutions to the Global …

CellHealth Institute founder to discuss new frontiers of cellular research.

Montclair, NJ (PRWEB) April 10, 2013

The invitation came directly from the Vaticans Pontifical Council for Culture, NeoStem, The Stem for Life Foundation and STOQ International as these organizations continue to promote their charter of raising global awareness on adult stem cell usage.

Dr. Vincent Giampapa will present during the third day, moderated by Dr. Max Gomez from WCBS-TV. Dr. Giampapa is a board-certified anti-aging physician and author of the first and only medical textbook on anti-aging medicine for medical doctors. He will present his research on reprogramming the function of older human stem cells at the University of Medicine and Dentistry New Jersey (UMDNJ).

The advancements being made in regenerative medicine and adult stem cell research are a reason for the global health care community to be extremely excited, said Dr. Vincent Giampapa, chief medical officer of CellHealth Institute. New ideas on how we age at the cellular level, particularly stem cells, are changing our approach to the aging process in general. The opportunity provided by The Vaticans Pontifical Council for Culture, NeoStem, The Stem for Life Foundation and STOQ International is a wonderful global platform for this discussion, and I am personally honored to play a part.

For more information, visit CellHealth.net.

About CellHealth Institute

CellHealth Institute (CHI) is a biotechnology company focused on cellular health that integrates breakthrough products and services with holistic lifestyle education. CHI collaborates with top-tier research universities and publicly traded biotech companies to offer fully integrated personalized health programs paired with scientific biomarker evaluations, as well as medical-grade supplements, including everycell, and advanced treatment through stem cell therapies. The organization is headquartered in New Jersey with an international regenerative medicine destination in Costa Rica set to open in 2014. CHI services and products allow people to take control of their own health at the most basic level their cells.

Jamie Vodden CellHealth Institute (480) 275-1203 Email Information

Originally posted here:
Dr. Vincent Giampapa to Present at The Vatican Adult Stem Cell Conference on Adult Stem Cell Solutions to the Global ...

Mayo Clinic: Cardiopoietic 'smart' stem cells show promise in heart failure patients

Public release date: 10-Apr-2013 [ | E-mail | Share ]

Contact: Traci Klein newsbureau@mayo.edu 507-284-5005 Mayo Clinic

ROCHESTER, Minn. -- Translating a Mayo Clinic stem-cell discovery, an international team has demonstrated that therapy with cardiopoietic (cardiogenically-instructed) or "smart" stem cells can improve heart health for people suffering from heart failure. This is the first application in patients of lineage-guided stem cells for targeted regeneration of a failing organ, paving the way to development of next generation regenerative medicine solutions. Results of the clinical trial appear online of the Journal of the American College of Cardiology.

The multi-center, randomized Cardiopoietic stem cell therapy in heart failure (C-CURE) trial involved heart failure patients from Belgium, Switzerland and Serbia. Patients in the control group received standard care for heart failure in accordance with established guidelines. Patients in the cell therapy arm received, in addition to standard care, cardiopoietic stem cells -- a first-in-class biotherapeutic. In this process, bone marrow was harvested from the top of the patient's hip, and isolated stem cells were treated with a protein cocktail to replicate natural cues of heart development. Derived cardiopoietic stem cells were then injected into the patient's heart.

"The cells underwent an innovative treatment to optimize their repair capacity," says Andre Terzic, M.D., Ph.D., study senior author and director of the Mayo Clinic Center for Regenerative Medicine. "This study helps us move beyond the science fiction notion of stem cell research, providing clinical evidence for a new approach in cardiovascular regenerative medicine."

Every patient in the stem cell treatment group improved. Heart pumping function improved in each patient within six months following cardiopoietic stem cell treatment. In addition, patients experienced improved fitness and were able to walk longer distances than before stem cell therapy. "The benefit to patients who received cardiopoietic stem cell therapy was significant," Dr. Terzic says.

In an accompanying editorial, Charles Murry, M.D., Ph.D., and colleagues at the University of Washington, Seattle, say, "Six months after treatment, the cell therapy group had a 7 percent absolute improvement in EF (ejection fraction) over baseline, versus a non-significant change in the control group. This improvement in EF is dramatic, particularly given the duration between the ischemic injury and cell therapy. It compares favorably with our most potent therapies in heart failure."

The science supporting this trial is a product of a decade-long journey in decoding principles of stem cell-based heart repair. "Discovery of rare stem cells that could inherently promote heart regeneration provided a critical clue. In following this natural blueprint, we further developed the know-how needed to convert patient-derived stem cells into cells that can reliably repair a failing heart," says Dr. Terzic, underscoring the team effort in this endeavor.

Initial discovery led to the identification of hundreds of proteins involved in cardiogenesis, or the heart development process. The research team then identified which proteins are necessary in helping a stem cell become a reparative cell type, leading to development of a protein cocktail-based procedure that orients stem cells for heart repair. Such upgraded stem cells are called cardiopoietic or heart creative.

###

Read the original:
Mayo Clinic: Cardiopoietic 'smart' stem cells show promise in heart failure patients

Results from Cardio3BioSciences C-CURE® Trial Published in the Journal of the American College of Cardiology

MONT-SAINT-GUIBERT, Belgium, April 11, 2013 /PRNewswire/ --

Trial Demonstrates Statistically Significant Improvements in Heart Function and Exercise Tolerance with Cardiopoietic Stem Cell Therapy

Cardio3 BioSciences (C3BS) announces today the advanced publication of C-CURE (Phase II) trial results in the on-line edition of the Journal of the American College of Cardiology (JACC).1

The publication reported:

The publication concluded that the therapy with C3BS-CQR-1 (previously C-Cure) was feasible and safe with signals of benefit in chronic heart failure, meriting further definitive clinical evaluation.

The C-Cure trial was a prospective, multicenter, randomized study to evaluate the feasibility, safety, and efficacy of CQR-1 in the treatment of patients with chronic heart failure secondary to ischemic cardiomyopathy. CQR-1 consists of the patient's own stem cells harvested from the bone marrow and engineered to become progenitors of new functional cardiac cells. Those cells behave identically to the cells lost to heart disease. In the C-Cure trial, all patients received optimal standard-of-care for heart failure, while treated group also received an intra-myocardial injection of CQR-1.

On the basis of these outcomes, C3BS has initiated a Phase III trial for CQR-1, called CHART-1 for Congestive Heart failure Cardiopoietic Regenerative Therapy. This is the first Phase III trial using organ specified cells for the treatment of ischemic heart failure and will recruit approximately 240 patients, with chronic advanced symptomatic heart failure underlining Cardio3 BioSciences' dedication and leadership in bringing regenerative therapies to patients. The primary endpoint of the trial integrates cardiac and clinical endpoints as recommended by the European Medicines Agency.

Dr Jozef Bartunek, Principal Investigator, said: "The Phase II trial demonstrates that cardiopoietic stem cell therapy is feasible, safe and with strong signals of efficacy. These results highlight the promise of such novel technology for optimized regenerative intervention in heart failure, bringing next generation therapies to patients. With Cardio3 BioSciences having started the follow-up Phase III trial, the cardiopoietic approach is at the forefront of this exciting field."

Dr Christian Homsy, CEO of Cardio3 BioSciences, added: "Publication of the C-Cure trial results in a journal as prestigious as JACC highlights the quality of the science underlying our lead product, CQR-1. We look forward to confirming the promising Phase II results, in our Phase III trial. Worldwide, this is the first pivotal Phase III study assessing such advanced regenerative product for the treatment of heart failure. We believe that the innovative science behind our product has the potential to revolutionize the treatment of this debilitating disease."

Prof. Dr. Andr Terzic, lead regenerative medicine specialist at Mayo Clinic in Rochester (MN), USA and Co-Principal Investigator of the C-Cure Clinical Trial, commented: "Heart failure is a major global challenge with the aging of the population and the shortage of donor organs. By introducing lineage guidance into the cell therapy protocol, the C-CURE trial provides initial clinical evidence for a new approach in cardiovascular regenerative medicine. Clinical translation of cardiopoietic stem cell therapy indicates favorable impact on myocardial remodeling, left ventricular ejection fraction, and global wellness. The C-CURE trial thus advances the paradigm of stem cell therapy, providing a rationale for further clinical validation."

Go here to read the rest:
Results from Cardio3BioSciences C-CURE® Trial Published in the Journal of the American College of Cardiology

Spring cleaning in your brain's stem cells?

Apr. 10, 2013 Deep inside your brain, a legion of stem cells lies ready to turn into new brain and nerve cells whenever and wherever you need them most. While they wait, they keep themselves in a state of perpetual readiness -- poised to become any type of nerve cell you might need as your cells age or get damaged.

Now, new research from scientists at the University of Michigan Medical School reveals a key way they do this: through a type of internal "spring cleaning" that both clears out garbage within the cells, and keeps them in their stem-cell state.

In a paper published online in Nature Neuroscience, the U-M team shows that a particular protein, called FIP200, governs this cleaning process in neural stem cells in mice. Without FIP200, these crucial stem cells suffer damage from their own waste products -- and their ability to turn into other types of cells diminishes.

It is the first time that this cellular self-cleaning process, called autophagy, has been shown to be important to neural stem cells.

The findings may help explain why aging brains and nervous systems are more prone to disease or permanent damage, as a slowing rate of self-cleaning autophagy hampers the body's ability to deploy stem cells to replace damaged or diseased cells. If the findings translate from mice to humans, the research could open up new avenues to prevention or treatment of neurological conditions.

In a related review article just published online in the journal Autophagy, the lead U-M scientist and colleagues from around the world discuss the growing evidence that autophagy is crucial to many types of tissue stem cells and embryonic stem cells as well as cancer stem cells.

As stem cell-based treatments continue to develop, the authors say, it will be increasingly important to understand the role of autophagy in preserving stem cells' health and ability to become different types of cells.

"The process of generating new neurons from neural stem cells, and the importance of that process, is pretty well understood, but the mechanism at the molecular level has not been clear," says Jun-Lin Guan, Ph.D., the senior author of the FIP200 paper and the organizing author of the autophagy and stem cells review article. "Here, we show that autophagy is crucial for maintenance of neural stem cells and differentiation, and show the mechanism by which it happens."

Through autophagy, he says, neural stem cells can regulate levels of reactive oxygen species -- sometimes known as free radicals -- that can build up in the low-oxygen environment of the brain regions where neural stem cells reside. Abnormally higher levels of ROS can cause neural stem cells to start differentiating.

Guan is a professor in the Molecular Medicine & Genetics division of the U-M Department of Internal Medicine, and in the Department of Cell & Developmental Biology.

See the original post here:
Spring cleaning in your brain's stem cells?

Stem Cell Therapy Treatment for Limb Girdle Muscular Dystrophy by Dr Alok Sharma, Mumbai, India. – Video


Stem Cell Therapy Treatment for Limb Girdle Muscular Dystrophy by Dr Alok Sharma, Mumbai, India.
Stem Cell Therapy Treatment for Limb Girdle Muscular Dystrophy by Dr Alok Sharma, Mumbai, India. After Stem Cell Therapy 1. Power and movements in the finger...

By: neurogenbsi

The rest is here:
Stem Cell Therapy Treatment for Limb Girdle Muscular Dystrophy by Dr Alok Sharma, Mumbai, India. - Video

OncoMed Presents New Data in Six Anti-Cancer Stem Cell Programs at AACR

REDWOOD CITY, Calif.--(BUSINESS WIRE)--

OncoMed Pharmaceuticals, Inc., a clinical-stage company developing novel therapeutics that target cancer stem cells (CSCs), or tumor-initiating cells, today summarized new data highlighting the progress of OncoMeds pipeline of anti-cancer biologics presented this week in an oral presentation and five posters at the Annual Meeting of the American Association of Cancer Research in Washington, DC.

As part of the New Drugs on the Horizon Special Session, Timothy Hoey, PhD, OncoMeds Senior Vice President of Cancer Biology, gave an oral presentation titled, Development of FZD8-Fc (OMP-54F28), a Wnt signaling antagonist that inhibits tumor growth and reduces tumor initiating cell frequency. Dr. Hoey said that FZD8-Fc was shown to be a potent blocker of the Wnt pathway and have anti-tumor activity in multiple tumor types, particularly in pancreatic cancer. FZD8-Fc induced differentiation of tumor cells, reduced tumorigenicity, and promoted sensitivity to multiple chemotherapeutic agents. FZD8-Fc is currently in Phase 1 clinical testing in patients with advanced solid tumors and is part of OncoMeds collaboration with Bayer HealthCare.

Austin Gurney, PhD, Senior Vice President of Molecular and Cellular Biology at OncoMed, presented poster #218, R-Spondin (RSPO) signaling drives the growth of multiple human tumor types, in the Tumor Biology 2 Poster Session. This work indicated that specific blockade of RSPO-LGR signaling with novel anti-RSPO antibodies inhibited tumor growth in various patient derived tumors, including ovarian, lung and pancreatic cancers. RSPO blockade promoted tumor cell differentiation and reduced the frequency of tumor initiating cells. These data highlight the potential for therapeutic intervention targeting this recently characterized stem cell signaling pathway. The RSPO program is one of OncoMeds advanced research programs.

Poster #3725, Anti-DLL4 (demcizumab) Inhibits Tumor Growth and Reduces Cancer Stem Cell Frequency in Patient-Derived Ovarian Cancer Xenografts, was presented by Wan-Ching Yen, PhD, Senior Scientist at OncoMed, in the Tumor Biology 35 Poster Session. Anti-DLL4 was found to have broad activity in ovarian cancer xenografts to profoundly reduce CSC frequency in ovarian tumors. Demcizumab is currently in Phase 1b clinical testing in non-small cell lung and pancreatic cancers. OncoMed is also initiating a Phase 1b/2 clinical trial of demcizumab in combination with paclitaxel in recurrent ovarian cancer patients in collaboration with investigators at the MD Anderson Cancer Center of Houston, TX.

Poster #213, Novel NOTCH3 activating mutations identified in tumors sensitive to OMP-59R5, a monoclonal antibody targeting the Notch2 and Notch3 receptors, was presented by Breanna Wallace, PhD, Post-doctoral Research Fellow at OncoMed, in the Cancer Stem Targeting Therapies Poster Session. This research described the discovery of oncogenic Notch3 mutations in breast and colon cancer. Tumors harboring these mutations were found to be highly sensitive to OMP-59R5 (anti-Notch2/3) treatment. OMP-59R5 is a fully human IgG2 monoclonal antibody originally identified by binding to Notch2. It inhibits the signaling of both Notch2 and Notch3 receptors. OncoMed has completed a Phase 1a single agent clinical trial of this agent in solid tumor patients and has now advanced this clinical program to later stage development by initiating a Phase 1b/2 clinical trial called ALPINE of anti-Notch2/3 in combination with gemcitabine and abraxane in first-line pancreatic cancer. Anti-Notch2/3 is part of OncoMeds collaboration with GlaxoSmithKline (GSK).

Poster #3728, Anti-Notch1 antibody (OMP-52M51) impedes tumor growth and cancer stem cell frequency (CSC) in a chemo-refractory breast cancer xenograft model with an activating Notch1 mutation and screening for activated Notch1 across multiple solid tumor types, was presented by Belinda Cancilla, PhD, Associate Director of Translational Medicine at OncoMed, in the Tumor Biology 35 Poster Session. This work reported the discovery of an oncogenic Notch1 mutation in a chemorefractory breast cancer patient. Notch1 activation was detected in a range of epithelial tumor types and was particularly high in chemorefractory breast cancer patients. Anti-Notch1 is currently in two Phase 1a clinical trials in hematologic (lymphoid) malignancies and in solid tumors and is part of OncoMeds collaboration with GlaxoSmithKline (GSK).

Poster #4330, In vivo evaluation of anti-tumor activity by an anti-VEGF and anti-DLL4 bispecific antibody in a humanized skin graft model, was presented by Ann Kapoun, PhD, OncoMeds Vice President of Translational Medicine, in the Experimental and Molecular Therapeutics 28 Poster Session. This poster described the activity of OncoMeds novel bispecific antibody targeting DLL4 and VEGF. This antibody was created using OncoMeds proprietary bispecific antibody technology. This antibody has improved anti-angiogenic activity through simultaneous inhibition of VEGF and DLL4 and retains anti-CSC activity through Notch pathway inhibition mediated by the anti-DLL4 arm. The bispecific antibody is currently in late stage preclinical development and is wholly owned by OncoMed.

Paul Hastings, CEO of OncoMed commented: This is an exciting AACR meeting for OncoMed. Cutting-edge research was presented from four of our five clinical programs, as well as from two of our exciting new later-stage research programs. The data presented illustrates the comprehensive directions that OncoMed is taking to target cancer stem cells for therapeutic purpose as we strive to be on the leading edge of this new therapeutic approach in the treatment of cancer.

About Cancer Stem Cells

More:
OncoMed Presents New Data in Six Anti-Cancer Stem Cell Programs at AACR

New separation process advances stem cell therapies

Apr. 7, 2013 A new separation process that depends on an easily-distinguished physical difference in adhesive forces among cells could help expand production of stem cells generated through cell reprogramming. By facilitating new research, the separation process could also lead to improvements in the reprogramming technique itself and help scientists model certain disease processes.

The reprogramming technique allows a small percentage of cells -- often taken from the skin or blood -- to become human induced pluripotent stem cells (hiPSCs) capable of producing a wide range of other cell types. Using cells taken from a patient's own body, the reprogramming technique might one day enable regenerative therapies that could, for example, provide new heart cells for treating cardiovascular disorders or new neurons for treating Alzheimer's disease or Parkinson's disease.

But the cell reprogramming technique is inefficient, generating mixtures in which the cells of interest make up just a small percentage of the total volume. Separating out the pluripotent stem cells is now time-consuming and requires a level of skill that could limit use of the technique -- and hold back the potential therapies.

To address the problem, researchers at the Georgia Institute of Technology have demonstrated a tunable process that separates cells according to the degree to which they adhere to a substrate inside a tiny microfluidic device. The adhesion properties of the hiPSCs differ significantly from those of the cells with which they are mixed, allowing the potentially-therapeutic cells to be separated to as much as 99 percent purity.

The high-throughput separation process, which takes less than 10 minutes to perform, does not rely on labeling technologies such as antibodies. Because it allows separation of intact cell colonies, it avoids damaging the cells, allowing a cell survival rate greater than 80 percent. The resulting cells retain normal transcriptional profiles, differentiation potential and karyotype.

"The principle of the separation is based on the physical phenomenon of adhesion strength, which is controlled by the underlying biology," said Andrs Garca, the study's principal investigator and a professor in Georgia Tech's Woodruff School of Mechanical Engineering and the Petit Institute for Bioengineering and Bioscience. "This is a very powerful platform technology because it is easy to implement and easy to scale up."

The separation process was described April 7 in the advance online publication of the journal Nature Methods. The research was supported by the National Institutes of Health (NIH) and the National Science Foundation (NSF), supplemented by funds from the American Recovery and Reinvestment Act (ARRA).

"The scientists applied their new understanding of the adhesive properties of human pluripotent stem cells to develop a quick, efficient method for isolating these medically important cells," said Paula Flicker, of the National Institutes of Health's National Institute of General Medical Sciences, which partly funded the research. "Their work represents an innovative conversion of basic biological findings into a strategy with therapeutic potential."

An improved separation technique is essential for converting the human induced pluripotent stem cells produced by reprogramming into viable therapies, said Todd McDevitt, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, and director of Georgia Tech's Stem Cell Engineering Center.

"For research purposes, depending on labeling reagents for separation is not a major problem," said McDevitt, one of the paper's co-authors. "But when we move into commercialization and manufacturing of cell therapies for humans, we need a technology approach that is unbiased and able to be scaled up."

See the article here:
New separation process advances stem cell therapies