Author Archives: admin


Researchers identify mechanisms that allow embryonic stem cells to become any cell in the human body

(Phys.org) -- New research at the Hebrew University of Jerusalem sheds light on pluripotencythe ability of embryonic stem cells to renew themselves indefinitely and to differentiate into all types of mature cells. Solving this problem, which is a major challenge in modern biology, could expedite the use of embryonic stem cells in cell therapy and regenerative medicine. If scientists can replicate the mechanisms that make pluripotency possible, they could create cells in the laboratory which could be implanted in humans to cure diseases characterized by cell death, such as Alzheimer's, Parkinson's, diabetes and other degenerative diseases.

To shed light on these processes, researchers in the lab of Dr. Eran Meshorer, in the Department of Genetics at the Hebrew Universitys Alexander Silberman Institute of Life Sciences, are combining molecular, microscopic and genomic approaches. Meshorer's team is focusing on epigenetic pathwayswhich cause biological changes without a corresponding change in the DNA sequencethat are specific to embryonic stem cells.

The molecular basis for epigenetic mechanisms is chromatin, which is comprised of a cell's DNA and structural and regulatory proteins. In groundbreaking research performed by Shai Melcer, a PhD student in the Meshorer lab, the mechanisms which support an open chromatin conformation in embryonic stem cells were examined. The researchers found that chromatin is less condensed in embryonic stem cells, allowing them the flexibility or "functional plasticity" to turn into any kind of cell.

A distinct pattern of chemical modifications of chromatin structural proteins (referred to as the acetylation and methylation of histones) enables a looser chromatin configuration in embryonic stem cells. During the early stages of differentiation, this pattern changes to facilitate chromatin compaction.

But even more interestingly, the authors found that a nuclear lamina protein, lamin A, is also a part of the secret. In all differentiated cell types, lamin A binds compacted domains of chromatin and anchors them to the cells nuclear envelope. Lamin A is absent from embryonic stem cells and this may enable the freer, more dynamic chromatin state in the cell nucleus. The authors believe that chromatin plasticity is tantamount to functional plasticity since chromatin is made up of DNA that includes all genes and codes for all proteins in any living cell. Understanding the mechanisms that regulate chromatin function will enable intelligent manipulations of embryonic stem cells in the future.

"If we can apply this new understanding about the mechanisms that give embryonic stem cells their plasticity, then we can increase or decrease the dynamics of the proteins that bind DNA and thereby increase or decrease the cells differentiation potential," concludes Dr. Meshorer. This could expedite the use of embryonic stem cells in cell therapy and regenerative medicine, by enabling the creation of cells in the laboratory which could be implanted in humans to cure diseases characterized by cell death, such as Alzheimer's, Parkinson's, diabetes and other degenerative diseases.

More information: The research appears in the journal Nature Communications as Melcer et al., Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. go.nature.com/9B33Ue

Journal reference: Nature Communications

Provided by Hebrew University of Jerusalem

See the original post here:
Researchers identify mechanisms that allow embryonic stem cells to become any cell in the human body

Cytomedix Announces Collaboration With Duke University on Phase I Clinical Study of ALD-451 in Malignant Glioma

GAITHERSBURG, MD--(Marketwire -07/18/12)- Cytomedix, Inc. (CMXI) (the "Company"), a regenerative therapies company commercializing and developing innovative platelet and adult stem cell technologies, announces the initiation of a Phase I clinical study with ALD-451 in brain cancer patients in collaboration with Duke University Medical Center.

The open-label study will enroll up to 12 patients and is intended to demonstrate the feasibility and safety of ALD-451 when administered intravenously in World Health Organization ("WHO") grade IV malignant glioma patients following surgery, radiation therapy and treatment with temozolomide. The trial also will obtain an initial description of the effects of ALD-451 on neuro-cognition. The clinical study is open for enrollment having received Investigational New Drug clearance from the U.S. Food and Drug Administration and Investigational Review Board clearance from Duke University Medical Center(ClinicalTrials.gov Identifier: NCT01639612).

The study's principal investigator is Dr. Annick Desjardins, Assistant Professor of Medicine at The Preston Robert Tisch Brain Tumor Center at Duke University Medical Center. Co-investigators are Dr. Henry S. Friedman, Deputy Director, The Preston Robert Tisch Brain Tumor Center and Dr. Joanne Kurtzberg, Chief Scientific Officer and Medical Director, Robertson Clinical & Translational Cell Therapy Program. Cytomedix will be responsible for manufacturing ALD-451 for the clinical trial. Duke University Medical Center, through the Robertson Clinical & Translational Cell Therapy Program, will fund the trial and be responsible for all other aspects of the study.

"We are excited to initiate patient recruitment in this study and to explore the use of this cellular therapy to treat the neuro-cognitive side effects of treating these devastating cancers," said Dr. Desjardins.

Martin P. Rosendale, Chief Executive Officer of Cytomedix, stated, "We are delighted to be working on this important trial with leading clinicians at Duke University Medical Center, one of the world's leading brain cancer centers for both treatment and research. Malignant glioma patients who undergo surgery, radiation therapy and temozolomide treatment oftentimes experience deterioration of neuro-cognition and have poor patient-reported outcomes. Earlier studies suggest that ALDH bright cells may repair neural brain damage. We expect this study to corroborate those results and look forward to advancing the development of this very promising product candidate."

About Malignant Glioma Primary central nervous system ("CNS") tumors represent about 1.35% of all cancers and 2.2% of all cancer-related deaths. Glial neoplasms represent about 40% of all primary CNS tumors and about 75% are malignant. Malignant gliomas include WHO grade III: anaplastic astrocytoma, anaplastic oligodendroglioma and anaplastic oligoastrocytoma, and WHO grade IV: glioblastoma and gliosarcoma. Because of their extensive infiltrative and invasive nature, malignant gliomas present unique challenges. This infiltrative nature, combined with their proximity to critical intracranial structures as well as operative difficulty distinguishing between normal and neoplastic cells, significantly reduces the efficacy of surgical resection. Radiation therapy and systemic chemotherapy are necessary adjuncts to treatment. Children and adults who receive radiation therapy involving the brain frequently experience a progressive cognitive decline, significantly affecting their quality of life.

About ALD-451ALD-451 is the population of autologous pluri-potent ALDHbr stem cells isolated from the patients' bone marrow using Cytomedix' proprietary technology. These adult stem cells express high levels of the enzyme ALDH, an indicator of biological activity in heterogenous early stage stem cells. Preclinical research with ALD-451 bright cells suggests that they may promote the repair of tissue damage. Recently, preliminary data presented at the 2012 International Society of Cell Therapy showed that ALDHbr bright cells reduced severity of intracranial inflammation after brain irradiation in an animal model. Investigators have also completed preclinical research that showed improvements in motor function, improvements in the slowing of decrease in brain volume, the reversal of decline in stroke-induced cell viability and improved blood flow, or perfusion, in the brain.

About Cytomedix, Inc. Cytomedix, Inc. is an autologous regenerative therapies company commercializing innovative platelet technologies for orthopedics and wound care with a pipeline of adult stem cell therapies for tissue repair. The Company markets the AutoloGel System, a device for the production of autologous platelet rich plasma ("PRP") gel for use on a variety of exuding wounds and the Angel Whole Blood Separation System, a blood processing device and disposable products used for the separation of whole blood into red cells, platelet poor plasma ("PPP") and PRP in surgical settings. On February 8, 2012 Cytomedix closed the acquisition of Aldagen, a biopharmaceutical company developing regenerative cell therapies based on its proprietary ALDH bright cell ("ALDHbr") technology, currently in a Phase 2 trial for the treatment of ischemic stroke. For additional information please visit http://www.cytomedix.com

Safe Harbor StatementStatements contained in this press release not relating to historical facts are forward-looking statements that are intended to fall within the safe harbor rule for such statements under the Private Securities Litigation Reform Act of 1995. The information contained in the forward-looking statements is inherently uncertain, and Cytomedix' actual results may differ materially due to a number of factors, many of which are beyond Cytomedix' ability to predict or control, including among many others, risks and uncertainties related to the Company's ability to successfully integrate the Aldagen acquisition, to successfully manage contemplated clinical trials, to manage and address the capital needs, human resource, management, compliance and other challenges of a larger, more complex and integrated business enterprise, viability and effectiveness of the Company's sales approach and overall marketing strategies, commercial success or acceptance by the medical community, competitive responses, the Company's ability to raise additional capital and to continue as a going concern, and Cytomedix's ability to execute on its strategy to market the AutoloGel System as contemplated. To the extent that any statements made here are not historical, these statements are essentially forward-looking. The Company uses words and phrases such as "believes," "forecasted," "projects," "is expected," "remain confident," "will" and/or similar expressions to identify forward-looking statements in this press release. Undue reliance should not be placed on forward-looking information. These forward-looking statements are subject to known and unknown risks and uncertainties that could cause actual events to differ from the forward-looking statements. More information about some of these risks and uncertainties may be found in the reports filed with the Securities and Exchange Commission by Cytomedix, Inc. Cytomedix operates in a highly competitive and rapidly changing business and regulatory environment, thus new or unforeseen risks may arise. Accordingly, investors should not place any reliance on forward-looking statements as a prediction of actual results. Except as is expressly required by the federal securities laws, Cytomedix undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, changed circumstances or future events or for any other reason. Additional risks that could affect our future operating results are more fully described in our U.S. Securities and Exchange Commission filings, including our Annual Report for the year ended December 31, 2011 and other subsequent filings. These filings are available at http://www.sec.gov.

Read the original:
Cytomedix Announces Collaboration With Duke University on Phase I Clinical Study of ALD-451 in Malignant Glioma

Mechanisms that allow embryonic stem cells to become any cell in the human body identified

ScienceDaily (July 18, 2012) New research at the Hebrew University of Jerusalem sheds light on pluripotency -- the ability of embryonic stem cells to renew themselves indefinitely and to differentiate into all types of mature cells. Solving this problem, which is a major challenge in modern biology, could expedite the use of embryonic stem cells in cell therapy and regenerative medicine.

If scientists can replicate the mechanisms that make pluripotency possible, they could create cells in the laboratory which could be implanted in humans to cure diseases characterized by cell death, such as Alzheimer's, Parkinson's, diabetes and other degenerative diseases.

To shed light on these processes, researchers in the lab of Dr. Eran Meshorer, in the Department of Genetics at the Hebrew University's Alexander Silberman Institute of Life Sciences, are combining molecular, microscopic and genomic approaches. Meshorer's team is focusing on epigenetic pathways -- which cause biological changes without a corresponding change in the DNA sequence -- that are specific to embryonic stem cells.

The molecular basis for epigenetic mechanisms is chromatin, which is comprised of a cell's DNA and structural and regulatory proteins. In groundbreaking research performed by Shai Melcer, a PhD student in the Meshorer lab, the mechanisms which support an "open" chromatin conformation in embryonic stem cells were examined. The researchers found that chromatin is less condensed in embryonic stem cells, allowing them the flexibility or "functional plasticity" to turn into any kind of cell.

A distinct pattern of chemical modifications of chromatin structural proteins (referred to as the acetylation and methylation of histones) enables a looser chromatin configuration in embryonic stem cells. During the early stages of differentiation, this pattern changes to facilitate chromatin compaction.

But even more interestingly, the authors found that a nuclear lamina protein, lamin A, is also a part of the secret. In all differentiated cell types, lamin A binds compacted domains of chromatin and anchors them to the cell's nuclear envelope. Lamin A is absent from embryonic stem cells and this may enable the freer, more dynamic chromatin state in the cell nucleus. The authors believe that chromatin plasticity is tantamount to functional plasticity since chromatin is made up of DNA that includes all genes and codes for all proteins in any living cell. Understanding the mechanisms that regulate chromatin function will enable intelligent manipulations of embryonic stem cells in the future.

"If we can apply this new understanding about the mechanisms that give embryonic stem cells their plasticity, then we can increase or decrease the dynamics of the proteins that bind DNA and thereby increase or decrease the cells' differentiation potential," concludes Dr. Meshorer. "This could expedite the use of embryonic stem cells in cell therapy and regenerative medicine, by enabling the creation of cells in the laboratory which could be implanted in humans to cure diseases characterized by cell death, such as Alzheimer's, Parkinson's, diabetes and other degenerative diseases."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

More here:
Mechanisms that allow embryonic stem cells to become any cell in the human body identified

TiGenix Signs Up 4th Major Hospital in the Netherlands for Innovative Cartilage Repair Therapy

LEUVEN, BELGIUM--(Marketwire -07/17/12)- TiGenix (EURONEXT:TIG), the European leader in cell therapy, announced today that after obtaining national reimbursement for ChondroCelect in the Netherlands last month, the company has now contracted with four major hospitals to make its innovative cartilage repair therapy available to their patients on a routine basis: University Medical Center Utrecht, University Hospital Maastricht, Martini Hospital Groningen, and, most recently, the Elisabeth Hospital Tilburg. Discussions with other Cartilage Expert Centers are ongoing. Reimbursement for ChondroCelect in the Netherlands is retroactive per January 1, 2011.

"Our close collaboration with the Dutch hospitals is key to making ChondroCelect available to patients in the Netherlands," said Eduardo Bravo, CEO of TiGenix. "Dutch scientists and clinicians have made important contributions to the development of this innovative cartilage repair therapy. Patients who suffer from cartilage lesions in the knee that cause recurrent pain and can be incapacitating can now be routinely treated and literally find their footing again. We expect to soon expand the number of hospitals in the Netherlands where ChondroCelect is available."

Damage to the articular cartilage in the knee can be caused by sports or professional activities in which the knee is repeatedly and forcefully impacted. It is a condition that predominantly occurs in young adults, who as a result suffer from recurrent pain, locking or limited range of motion, and risk being incapacitated. TiGenix has developed ChondroCelect as a therapy to help patients regain their mobility and fully active lives by effectively repairing the damaged cartilage in the knee.

About ChondroCelect ChondroCelect for cartilage regeneration in the knee is an implantation suspension of characterized viable autologous (from the patient her- or himself) cartilage cells. The product is administered to patients in an autologous chondrocyte implantation procedure known as Characterized Chondrocyte Implantation (CCI), a surgical procedure to treat cartilage defects, in conjunction with debridement (preparation of the defect bed), a physical seal of the lesion (placement of a biological membrane, preferentially a collagen membrane) and rehabilitation.

Cartilage defects of the knee are very common and the spontaneous healing capacity of cartilage is limited. Currently, roughly 2 million cases of articular cartilage defects of the knee are diagnosed worldwide every year. TiGenix estimates that in Europe and the United States around 130,000 patients are eligible for treatment with cartilage regeneration products such as ChondroCelect.

ChondroCelect is the first cell-based product to successfully complete the entire development track from research to clinical development, and was approved by the European Medicines Agency as an Advanced Medicinal Therapy Product in October 2009. ChondroCelect is to date the only EMA approved cartilage repair therapy, and is commercially available in Belgium, the Netherlands, Luxemburg, Germany, the United Kingdom, Finland, and Spain.

About TiGenixTiGenix NV (EURONEXT:TIG) is a leading European cell therapy company with a marketed cell therapy product for cartilage repair, ChondroCelect, and a strong pipeline with clinical stage allogeneic adult stem cell programs for the treatment of autoimmune and inflammatory diseases. TiGenix is based out of Leuven (Belgium) and has operations in Madrid (Spain), and Sittard-Geleen (the Netherlands). For more information please visit http://www.tigenix.com.

Forward-looking informationThis document may contain forward-looking statements and estimates with respect to the anticipated future performance of TiGenix and the market in which it operates. Certain of these statements, forecasts and estimates can be recognized by the use of words such as, without limitation, "believes", "anticipates", "expects", "intends", "plans", "seeks", "estimates", "may", "will" and "continue" and similar expressions. They include all matters that are not historical facts. Such statements, forecasts and estimates are based on various assumptions and assessments of known and unknown risks, uncertainties and other factors, which were deemed reasonable when made but may or may not prove to be correct. Actual events are difficult to predict and may depend upon factors that are beyond TiGenix' control. Therefore, actual results, the financial condition, performance or achievements of TiGenix, or industry results, may turn out to be materially different from any future results, performance or achievements expressed or implied by such statements, forecasts and estimates. Given these uncertainties, no representations are made as to the accuracy or fairness of such forward-looking statements, forecasts and estimates. Furthermore, forward-looking statements, forecasts and estimates only speak as of the date of the publication of this document. TiGenix disclaims any obligation to update any such forward-looking statement, forecast or estimates to reflect any change in TiGenix' expectations with regard thereto, or any change in events, conditions or circumstances on which any such statement, forecast or estimate is based, except to the extent required by Belgian law.

Read more:
TiGenix Signs Up 4th Major Hospital in the Netherlands for Innovative Cartilage Repair Therapy

Stem cell research aids understanding of cancer

(Phys.org) -- An international team of researchers led by renowned stem cell scientist Professor Martin Pera has discovered a novel marker that plays an important role in our understanding of how cancer develops in the liver, pancreas and oesophagus.

The study, published in the journal Stem Cell, adds to our understanding of the role of stem and next stage progenitor cells in tissue regeneration and in the diagnosis and treatment of cancer.

While stem cells are known to reside in organs such as the liver and pancreas, they are difficult to isolate. The new findings show that an antibody developed by the team can be used to capture the stem cells.

Professor Pera, program leader for Stem Cells Australia and Chair of Stem Cell Sciences at the University of Melbourne, said the antibody was able to detect progenitor cells in disease states such as cirrhosis of the liver, and in cancers such as pancreatic adenocarcinoma and oesophageal carcinoma.

By being able to identify these cells, we hope to be able to learn more about their role in tissue regeneration and in cancer especially in the diagnosis and treatment of pancreatic cancer, he said.

Cancers of the liver, pancreas and oesophagus are often very difficult to detect and challenging to treat.

The large collaboration of scientists from around the world working on this study evolved over many years with research undertaken in Professor Peras laboratories at the then Australian Stem Cell Centre and at the University of Southern California

Professor Pera and one of the co-authors on the paper, Dr Kouichi Hasegawa, were recently awarded an Australia-India Strategic Research Fund grant to continue their search for novel markers for liver, pancreatic and gut stem cells. Dr Hasegawa, who recently undertook a three month sabbatical at Stem Cells Australia, holds positions at Kyoto Universitys Institute for Integrated Cell-Materials Sciences and at the Institute for Stem Cell Biology and Regenerative Medicine at the National Centre for Biological Sciences in Bangalore, India.

This funding will support us to develop more antibodies that can be used to assist in the identification and prospective isolation of stem and progenitor cells in these tissues and lead to the development of novel diagnostic and therapeutic reagents, said Professor Pera.

Provided by University of Melbourne

Go here to see the original:
Stem cell research aids understanding of cancer

Stem-cell discovery: reversing Alzheimer's?

Human neural stem cells. Courtesy UC Irvine radiation oncology professor Charles Limoli.

Human neural stem cells restored memory in mice with brain symptoms similar to Alzheimers disease, UC Irvine scientists reported Tuesday, opening the door to eventual treatment for human sufferers.

The announcement, made at an Alzheimers science conference in Vancouver, involves versatile though still largely mysterious neural stem cells grown in the lab by StemCells Inc., of Newark, Ca.

The cells, researchers at UCI and elsewhere have shown, can become many types of cells once injected into the body restoring limb movement in mice with crushed spines, halting blindness in rats and, now, improving memory and brain function in mice bred to exhibit the kinds of impairment seen in Alzheimers.

Youve probably heard about the God particle scientists have been working on, said Martin McGlynn, president and CEO of StemCells Inc. This isnt quite the God cell, but its an incredibly fascinating biological agent.

Over the past 12 to 18 months, scientists including Frank LaFerla, director of UCI MIND, worked on a treatment involving injection of the human neural stem cells into the brains of two kinds of mouse models those bred to model the effects of Alzheimers, and those bred to model the loss of neurons in a part of the brain known as the hippocampus.

Both animal models reported improvement in memory function, in a statistical way, McGlynn said.

Matthew Blurton-Jones, an assistant professor of neurobiology and behavior at UCI, presented the results of the Alzheimers work Tuesday at the Alzheimers Association International Conference.

Part of the scientists aim was to learn whether human neural cells placed in mice functioned as well as mouse neural cells.

That is one of the fascinating things about this, McGlynn said. They look like, smell like, walk like, dance like a human neural stem cell, (but) theyre fully regulated and submissive to the mouse, to the host.

Read this article:
Stem-cell discovery: reversing Alzheimer's?

NeoStem's Subsidiary, Progenitor Cell Therapy, and SOTIO Enter Into a Phase 3 Manufacturing Services Agreement

ALLENDALE, N.J. and WILMINGTON, Del., July 16, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE MKT:NBS) and its subsidiary, Progenitor Cell Therapy, LLC ("PCT"), an internationally recognized Contract Development and Manufacturing Organization (CDMO), and SOTIO, LLC, a Delaware limited liability company that is responsible for organizing the U.S. part of a global pivotal Phase 3 clinical trial of SOTIO, LLC's affiliate, SOTIO a.s. ("SOTIO"), announced today that SOTIO, LLC has retained the services of PCT to manufacture clinical products for SOTIO's U.S. part of a global pivotal Phase 3 clinical trial. SOTIO, LLC is an affiliate of a Czech Republic-based biotechnology company developing new therapies based on activated dendritic cells, focusing on the treatment of cancer and autoimmune diseases. SOTIO, LLC will use the services of PCT to transfer and qualify at PCT's Allendale, New Jersey facility, SOTIO's GMP manufacturing process for the U.S. part of a global pivotal Phase 3 clinical trial for SOTIO's autologous dendritic cell vaccine expected to launch in early 2013, subject to FDA approval.

As part of this agreement, PCT will complete a technology transfer of SOTIO's current product manufacturing and analytical procedures into PCT's ongoing CDMO operations. PCT will then implement and perform process qualification at the Allendale facility, and manufacture, store, and release the product for SOTIO's U.S. part of its global pivotal Phase 3 trial. The U.S. part of this double-blinded, randomized trial will enroll up to 250 patients and will be SOTIO's first trial in the U.S.

"We are very excited to enter into this agreement to continue and to expand on our relationship with SOTIO, LLC, an innovator for cellular immunotherapies to treat prostate cancer," said Robert A. Preti, PhD, President and Chief Scientific Officer of PCT. "Given our best in class capabilities in the manufacture and distribution of cell-based immunotherapies, we are pleased to work with SOTIO, LLC to assist with bringing this exciting therapy and its potential to the U.S. PCT will offer SOTIO, LLC the same expertise and dedicated service it has offered past clients like the Dendreon Corporation (DNDN), for whom we were the primary manufacturer for PROVENGE(R) for more than seven years during its clinical trials."

"This agreement with PCT represents a major risk mitigation step in conducting the U.S. part of our global pivotal Phase 3 clinical trial," said Karel Nohejl, Chairman and CEO of SOTIO. "PCT has significant experience in manufacturing patient-specific products and capabilities to provide the scale-up needed for late-stage clinical trials. PCT's competencies in process and product implementation, quality assurance, and GMP manufacturing make it ideally suited as a manufacturing partner for SOTIO, LLC as we look forward to launching this trial in anticipation of entering the U.S. market."

"PCT offers cell therapy companies around the world a cost-effective method to transfer product candidate development to the U.S. and launch their products commercially," said Dr. Robin L. Smith, Chairman and CEO of NeoStem. "PCT's track record, experience with technology transfer, and U.S. footprint including its East and West Coast (Mountain View, California) facilities, make it an excellent partner for companies like SOTIO, LLC. Manufacturing contracts for cell therapy products can generate millions of dollars of revenue for the manufacturing partner over the span of a late stage clinical trial. We foresee meaningful client base growth as therapeutic development companies from Europe and Asia seek access to the American market and look for a U.S. contract development and manufacturing partner."

About SOTIO Group

SOTIO Group is a biotechnology group developing new therapies based on activated dendritic cells, focusing on the treatment of cancer and autoimmune diseases. Its mission is to develop new medical therapies using SOTIO's proprietary cell-based technologies to treat highly unmet medical conditions using SOTIO's immunotherapy platform. World renowned scientists are working at SOTIO's research facilities in Prague using state-of-the art technologies to understand the role of dendritic cells in the therapeutic activation of the body's immune response. SOTIO plans to start a global pivotal Phase 3 clinical trial which will enroll U.S. as well as E.U. patients under the supervision of FDA and EMA. SOTIO, LLC is an affiliate of SOTIO and is responsible for organizing SOTIO Group's activities in the United States.

For more information on SOTIO, please visit http://www.sotio.com

About NeoStem, Inc.

NeoStem, Inc. ("we," "NeoStem" or the "Company") continues to develop and build on its core capabilities in cell therapy to capitalize on the paradigm shift that we see occurring in medicine. In particular, we anticipate that cell therapy will have a large role in the fight against chronic disease and in lessening the economic burden that these diseases pose to modern society. Our January 2011 acquisition of Progenitor Cell Therapy, LLC ("PCT") provides NeoStem with a foundation in both manufacturing and regulatory affairs expertise. We believe this expertise, coupled with our existing research capabilities and collaborations, will allow us to achieve our mission of becoming a premier cell therapy company. Our PCT subsidiary's manufacturing base is one of the few current Good Manufacturing Practices ("cGMP") facilities available for contracting in the burgeoning cell therapy industry. Amorcyte, LLC ("Amorcyte"), which we acquired in October 2011, is developing a cell therapy for the treatment of cardiovascular disease. Amorcyte's lead compound, AMR-001, represents NeoStem's most clinically advanced therapeutic and Amorcyte is enrolling patients for a Phase 2 trial to investigate AMR-001's efficacy in preserving heart function after a heart attack. We also expect to begin a Phase 1 clinical trial by 2012/2013 to investigate AMR-001's utility in arresting the progression of congestive heart failure and the associated comorbidities of that disease. Athelos Corporation ("Athelos"), which is approximately 80%-owned by our subsidiary, PCT, is engaged in collaboration with Becton-Dickinson that is exploring the earlier stage clinical development of a T-cell therapy for autoimmune conditions. In addition, our pre-clinical assets include our VSELTM Technology platform as well as our MSC (mesenchymal stem cells) product candidate for regenerative medicine.

Read more here:
NeoStem's Subsidiary, Progenitor Cell Therapy, and SOTIO Enter Into a Phase 3 Manufacturing Services Agreement

Stem cell discovery important for cancer

THE discovery of a unique marker on stem cells from the gut, liver and pancreas could eventually allow scientists to diagnose cancer earlier and develop new treatments, a Melbourne scientist says.

Professor Martin Pera from Stem Cells Australia and an international team developed an antibody that identifies and isolates the marker, which sits on the outer surface of stem cells and another type of cell called a progenitor.

These cells are particularly hard to find in the pancreas and liver.

By identifying the markers, the cells can be isolated and extracted for study in the laboratory, where scientists can observe what happens to the cells during the disease process and in repair and regeneration.

Prof Pera, who is also chair of Stem Cell Sciences at the University of Melbourne, said the number of cells with the marker expanded during pancreatic and esophageal cancer, and liver cirrhosis.

"It may well be that they are precursors of the cancers," Prof Pera told AAP.

He said if the marker could be found in the blood of cancer patients, it could allow sufferers to be diagnosed earlier and provide new approaches to treatment, which could involve developing drugs to target the marker on cancer cells.

"Cancers of the liver, pancreas and oesophagus are often very difficult to detect and challenging to treat," Prof Pera said.

He will continue his investigations into liver, pancreatic and gut stem cells with Dr Kouichi Hasegawa, who conducts stem cell research in Japan and India.

The research was published in the journal Stem Cell.

See the article here:
Stem cell discovery important for cancer

New York Stem Cell Foundation scientists featured for new model of Alzheimer's disease

Public release date: 16-Jul-2012 [ | E-mail | Share ]

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (July 16, 2012) A team of scientists at The New York Stem Cell Foundation (NYSCF) Laboratory led by Scott Noggle, PhD, NYSCFCharles Evans Senior Research Fellow for Alzheimer's Disease, has developed the first cell-based model of Alzheimer's disease (AD) by reprogramming skin cells of Alzheimer's patients to become brain cells that are affected in Alzheimer's. This will allow researchers to work directly on living brain cells suffering from Alzheimer's, which until now had not been possible. Andrew Sproul, PhD, a postdoctoral associate in Dr. Noggle's laboratory, will present this work on Thursday, July 19 at the Alzheimer's Association International Conference (AAIC) held in Vancouver.

Dr. Noggle and his team reprogrammed skin cell samples taken from twelve patients diagnosed with early-onset Alzheimer's and from healthy, genetically related individuals into induced pluripotent stem (iPS) cells, which can differentiate into any cell type. The team of scientists used these iPS cells to create cholinergic basal forebrain neurons, the brain cells that are affected in Alzheimer's. These cells recapitulate the features and cellular-level functions of patients suffering from Alzheimer's, a devastating disease that affects millions of people globally but for which there is currently no effective treatment.

NYSCF has pioneered the creation of disease models based on the derivation of human cells. Four years ago, a NYSCF-funded team created a cell-based model for ALS, or motor neuron disease, the first patient-specific stem cells created for any disease. The cell-based model for Alzheimer's builds on this earlier work.

"Patient derived AD cells will prove invaluable for future research advances, as they already have with patient-derived ALS cells," said NYSCF CEO Susan Solomon. "They will be a critical tool in the drug discovery process, as potential drugs could be tested directly on these cells. Although research on animals has provided valuable insight into AD, we aren't mice, and animals don't properly reflect the features of the disease we are trying to cure. As we work to find new drugs and treatments our research should focus on actual human sufferers of Alzheimer's disease," emphasized Ms. Solomon

This cell-based model has already led to important findings. Preliminary results of this NYSCF research, done in collaboration with Sam Gandy, MD, PhD, an international expert in the pathology of Alzheimer's at Mount Sinai School of Medicine, demonstrated differences in cellular function in Alzheimer's patients. Specifically, Alzheimer's neurons produce more of the toxic form of beta amyloid, the protein fragment that makes up amyloid plaques, than in disease-free neurons.

"iPS cell technology, along with whole genome sequencing, provide our best chance at unravelling the causes of common forms of Alzheimer's disease," noted Dr. Gandy.

"This collaboration is a great example of how NYSCF is bringing together experts in stem cell technology and clinicians to save and enhance lives by finding better treatments," Ms. Solomon explained.

The research to be reported at the AAIC by Andrew Sproul focused on stem cell models of individuals with presenilin-1 (PSEN1) mutations, a genetic cause of AD. As Dr. Sproul has said, this cell-based model could "revolutionize how we discover drugs to potentially cure Alzheimer's disease."

Follow this link:
New York Stem Cell Foundation scientists featured for new model of Alzheimer's disease

Man blinded after attack to undergo stem cell treatment

Man blinded after attack to undergo stem cell treatment

By Jimmy Woulfe, Mid-West Correspondent

Tuesday, July 17, 2012

A blind and paralysed Limerick man flies to China today hoping a revolutionary stem cell treatment can restore the life he had three years ago.

Brian Hogan, 35, suffered brain damage after an unprovoked attack in Nottingham when he was assaulted by a British national. During the incident, Brian, from Ballykeeffe, hit his head on a pavement and subsequently spent three months in a coma at Queens Hospital in the city.

After months of rehabilitation, he relearned how to talk, but has been left blind and must use a wheelchair.

Brian said the treatment he will undergo in China has attracted controversy but anybody in his position would try everything to get their life back on track.

He will receive stem cell infusions once every two days over a three-week period, as well as other therapies.

His sister Nevis said: "This is finally happening. Were all very excited, but were also sick with nerves. We know it may or may not work but we have to try for Brians sake. Anyone in our position would do the same. Its a medical trial, not conventional medicine, and it could take up to six months before we see the full results. We would ask people to keep him in their thoughts over the next few weeks. Hes very positive and always tries to keep the bright side out. He still enjoys life."

Two anonymous donors have given 10,000 towards the treatment costs, which total 40,000.

Read the original here:
Man blinded after attack to undergo stem cell treatment