Author Archives: admin


Jamie Inglis undergoes pioneering stem cell treatment

Jamie Inglis undergoes pioneering stem cell treatment

10:06am Saturday 29th September 2012 in News By Kate Liptrot, kate.liptrot@thepress.co.uk

Jamie Inglis smiles from his hospital bed in Germany

JAMIE INGLIS would love to join the children in the colourful playroom on the other side of the hospital corridor.

He would like to play with his new friend, Ryan, who he has painted a picture for and who has waved at him from the doorway but who wasnt allowed to come in. He would like to spend longer looking for spiders outside.

Instead, to guard against possible infection and to stay near to medical treatment, the seven-year-old spends every day in the sunny bedroom that could belong to any boy if it wasnt for the drip, monitors and medical equipment standing alongside his Batman posters, bright paintings, action models and cuddly toys.

Jamie has a little more freedom than a few weeks ago when, for a month, he was kept in isolation in a sealed room, which his parents had to be disinfected and wear gowns to enter.

Now, as long as he puts on a mask and a hat to protect him from the cold, he is allowed to slowly pad through the hospital corridors on legs weak from not walking, and travel the short distance to the hospital-owned Elternhaus where his parents, Vicky and John, are staying close to the childrens hospital in Tubingen, near Stuttgart.

Jamie is undergoing pioneering treatment that could save his life, but which is unavailable in the UK. The medical trial, led by world expert Professor Peter Lang and his colleagues, has seen Johns stem cells transplanted into his sons system in order to create a new immune system to help his body fight the cancer he was first diagnosed with at the age of three and which returned this year.

There can be fewer more charming children than Jamie, whose beaming smile wins the hearts of everyone he meets, from his nurses to the hospital teacher.

View original post here:
Jamie Inglis undergoes pioneering stem cell treatment

Gazette.Net: Names & Faces

Howard

Osiris Therapeutics of Columbia named Hans Klingemann a director, succeeding Gregory H. Barnhill, who died. Klingemann is director of the bone marrow and stem cell transplant program at Tufts Medical Center in Boston and a professor of medicine at Tufts University Medical School.

Chrysalis Holdings of Fulton named Joseph J. Murin chairman, succeeding Paul Thompson III, who remains on the board. Chrysalis also named Murin president of its NewDay USA. Previously, Murin was president of the Government National Mortgage Association, CEO at National Real Estate Information Services, and co-founder and vice chairman of the Collingwood Group.

The Maryland Association of Realtors named David McIlvaine Sr. its 2012 Realtor of the Year. McIlvaine is an associate broker for Keller Williams Select Realtors in Ellicott City.

CCS Mid-Atlantic of Columbia named Roxann Gardner of Ellicott City an account manager. Previously, Gardner was sales director at Fairfield Inn & Suites and president of Network Referral Group. CCS also named Win Anderson a sales representative for Virginia.

Mount St. Mary's University of Emmitsburg named William E. Davies of Harrisburg, Pa., vice president for business and finance. Previously, Davies was CFO and treasurer at the Milton Hershey School and Hershey Trust, and also worked for Hershey Entertainment & Resorts.

Capital Bank of Rockville named Edward Barry CEO, succeeding Stephen Ashman, who remains chairman. Previously, Barry worked for Capital One Bank, Bank of America and Ernst & Young.

Miller, Miller & Canby of Rockville named Helen Whelan a principal in its estates and trusts practice group. Previously, Whelan practiced with Elville & Associates.

Insurance Associates of Rockville named Lexi Stock marketing manager and William Westner claims consultant. Previously, Westner was a claims adjuster at Banner Life.

Ballard Spahr named Debbie A. Klis of counsel and a member of its business and finance department and its investment management, mergers and acquisitions/private equity, securities and tax groups in its Bethesda office.

View post:
Gazette.Net: Names & Faces

FDA Approves Stemedica IND Application for Stemedyne(TM)-MSC In Cutaneous Photoaging

SAN DIEGO, Calif., Sept. 28, 2012 (GLOBE NEWSWIRE) -- via PRWEB - Stemedica Cell Technologies, Inc., a leader in adult allogeneic stem cell manufacturing, research and development, announced today that the U.S. Food and Drug Administration (FDA) approved its application for an Investigational New Drug (IND) to assess the safety, tolerability and clinical effects of Stemedyne-MSC (Stemedica's human bone marrow-derived ischemia tolerant mesenchymal cells) in subjects with cutaneous photoaging resulting from overexposure to ultraviolet radiation.

Curt M. Littler, M.D., F.A.A.D., dermatologist at Sharp Rees-Stealy Medical Group, Inc., is the principal investigator of the study. Dr. Littler commented, "This study is an important step forward in the field of dermatology. Photoaging is a universal condition. Damage from the sun's rays alters the skin's underlying structures, such as collagen, elastin, and blood vessels, and contributes to the creation of abnormal epidermal cells, which can become precancerous. By administering stem cells systemically, this study has the potential to target skin damage throughout the body and promises to pave the way for new treatment approaches for photoaged skin."

The IND approval allows Stemedica to initiate a clinical trial at medical centers within the United States. The clinical trial will be a Phase I/IIa multi-center open-label study involving 30-35 subjects with significant cutaneous photodamage.

"The FDA's approval of Stemedica's IND for the treatment of photoaging with our Stemedyne-MSCs is a significant milestone not only for Stemedica, but for the whole skin healthcare industry," said Nikolai Tankovich, M.D., Ph.D., Stemedica's President and Chief Medical Officer. "This is the first clinical trial approved for the systemic treatment of aging skin utilizing intravenous administration of stem cells. " Dr. Tankovich added "Our internal organ health is reflected in the appearance of our skin. In this clinical trial, we will be following systemic indicators such as liver panel and kidney function. We are encouraged that the FDA acknowledges cutaneous photoaging as a medical indication and that potential treatments should be regulated as a drug."

Lev Verkh, Ph.D., Stemedica's Chief Regulatory and Clinical Development Officer, commented, "With photoaging, we lose certain proteins that affect the health and appearance of our skin. For the first time in a clinical trial we can address the underlying biological changes of the skin to slow down this process and repair the changes of aging."

Stemedyne-MSC is one of the three adult allogeneic adult stem cell products developed by the Company. Other products include Stemedyne-NSC neural human stem cells and Stemedyne-RPE retinal progenitor epithelial cells available in early 2013. All Stemedica products are unique in their ability to tolerate ischemic conditions.

About Stemedica Cell Technologies, Inc.

Stemedica Cell Technologies, Inc. is a specialty bio-pharmaceutical company that is committed to the manufacturing and development of best-in-class allogeneic adult stem cells and stem cell factors for use by approved research institutions and hospitals for pre-clinical and clinical (human) trials. The company is a government licensed manufacturer of clinical grade stem cells and is approved by the FDA for its clinical trial for ischemic stroke. Stemedica is currently developing regulatory pathways for a number of medical indications using adult allogeneic stem cells. The company is headquartered in San Diego, California.

For more information regarding Stemedica Cell Technologies, Inc., contact Dave McGuigan at dmcguigan (at) Stemedica.com.

This article was originally distributed on PRWeb. For the original version including any supplementary images or video, visit http://www.prweb.com/releases/Stemedica-FDA-IND/stemedyne-photoaging/prweb9954537.htm

Read the original post:
FDA Approves Stemedica IND Application for Stemedyne(TM)-MSC In Cutaneous Photoaging

Purging Stem Cells To Make Therapy Safer

Featured Article Academic Journal Main Category: Stem Cell Research Also Included In: Biology / Biochemistry Article Date: 28 Sep 2012 - 1:00 PDT

Current ratings for: Purging Stem Cells To Make Therapy Safer

4.67 (3 votes)

5 (1 votes)

The study appears in a 27 September issue of the journal Stem Cells Translational Medicine.

iPS cells have properties similar to embryonic stem cells, which are "master cells" with an unlimited capacity to differentiate into any type of tissue in the body, such as brain, lung, skin, heart, and liver. Thus their potential in regenerative medicine, where damaged or diseased tissue can be repaired or replaced by growing new tissue, is huge, as senior author Timothy Nelson explains in a press release:

"Pluripotent stem cells show great promise in the field of regenerative medicine; however, the risk of uncontrolled cell growth will continue to prevent their use as a therapeutic treatment."

Nelson is Assistant Professor of Medicine and Pharmacology and works in the General Internal Medicine department and the Transplant Center at the Mayo.

The idea of using iPS cells is for doctors to be able to take some adult tissue, for example skin cells, from the patient who needs the treatment, and then turn the cells from that tissue into iPS cells.

Then, those iPS cells are coaxed to turn into the target type of cell, for instance lung cells. As a result of the coaxing the iPS cells turn into (differentiate) the target tissue type.

Link:
Purging Stem Cells To Make Therapy Safer

The great stem cell dilemma

By Jeffrey M. O'Brien, contributor

Stem cells stored in liquid nitrogen at Advanced Cell Technology in Marlborough, Mass.

FORTUNE -- Imagine yourself the proud but rueful owner of an ancient Jaguar. Every day you dread the uncertainty that comes with trying to get from here to there -- there, more often than not, being the shop. No sooner does one ailment find repair than another appears. At best, it's a slow, uncomfortable ride. Lonely too. There's really no one around who fully understands your plight.

That is how Patricia Riley describes life in a 95-year-old body. Riley, who reached that milestone birthday last St. Patrick's Day, lives alone in the same 1,100-square-foot house in Plainfield, Conn., that she's called home for 64 years, having survived her husband (heart disease), a daughter (breast cancer), and every friend she ever had. "All the people I knew have all gone, Jeffrey," she says in a quivering voice laced with melancholy. "They've all died. I go to church and I never see people my age." Her remaining family includes two daughters, five grandchildren, and eight great-grandchildren, including my two young sons. In a nod to her French-Canadian heritage, we call her Mme.

Mme attributes her longevity to good genes, but she clearly owes a debt to modern medicine. Over the years she's had a cholecystectomy, a hysterectomy, esophageal surgery, a stroke, and ulcerative colitis. Lately she relies on a cane and a walker, and her daily regimen includes pain pills for arthritis, two inhalers for asthma, high-blood-pressure meds, a statin, vitamins, digestion aids, and an anti-anxiety drug that she calls "my nerve pill." Her vision also comes courtesy of medical science. Three years ago Mme was diagnosed with a form of age-related macular degeneration, or AMD, a disease of the back of the retina that is the leading cause of vision loss in the developed world. The ophthalmologist gave her a choice: a needle into her eyeballs every six weeks, or blindness. Mme opted for the injections and now receives shots of an off-label cancer drug called Avastin, which has demonstrated efficacy in halting the progress of her type of AMD. Holding the ailment at bay is all she can hope for. "I'll have to go for as long as I live," she says. "It's just a treatment -- it's not a cure."

Treatments, not cures. This, in a nutshell, is the MO of our health care system, and it's precisely the reason that regenerative medicine -- and stem cell therapy in particular -- has been the subject of so much hope and hype over the past decade or so. Stem cell therapies promise to empower a body to fight ailments by enabling it to build new parts. Think about growing new neurons or heart tissue. Think about the difference between perpetually slathering that old Jag with Bondo and having it heal itself overnight in the garage.

MORE:Stem cell dollars: California leads the way

While stem cells have ignited plenty of religious outrage and political grandstanding, behind the headlines the underlying science has been advancing the way science often does -- by turns slowly and dramatically. To be clear, the earliest stem cell therapies are almost certainly years from distribution. But so much progress has been made at venerable research institutions that it now seems possible to honestly discuss the possibility of a new medical paradigm emerging within a generation. Working primarily with rodents in preclinical trials, MDs and Ph.D.s are making the paralyzed walk and the impotent virile. A stem cell therapy for two types of macular degeneration recently restored the vision of two women. Once they were blind. Now they see! Some experts assert that AMD could be eradicated within a decade. Other scientists are heralding a drug-free fix for HIV/AIDS. Various forms of cancer, Parkinson's, diabetes, heart disease, stroke, and ALS have already been eradicated in mice. If such work translates to humans, it will represent the type of platform advancement that comes along in medicine only once in a lifetime or two. The effect on the economy would be substantial. Champions of stem cell research say it would be on the order of the Internet or even the transistor.

The obstacles along the road from lab rat to human patients are many, of course, but the biggest by far is money. With the dramatic events in the lab, you might think that a gold rush would be under way. That's far from true. Long time horizons, regulatory hurdles, huge R&D costs, public sentiment, and political headwinds have all scared financiers. Wall Street isn't interested in financing this particular dream. Most stem cell companies that have dared go public are trading down 90% or more from their IPOs. Sand Hill Road is AWOL. The National Venture Capital Association doesn't even have a category to track stem cell investments.

Big Pharma would seem to be the most obvious benefactor. The drug companies understand the complexities (and billion-dollar outlays) involved in bringing therapies to market. A few drug companies have kicked the tires on stem cells over the years, but waiting for them to undo the current model is akin to banking on Big Oil to rethink energy. They may do it, but it's unlikely to be by choice. Which leaves stem cell researchers begging for state and federal grants at a time scientific funding is under siege.

Read more:
The great stem cell dilemma

Cytori’s Stem Cell Therapy for Burns Wins U.S. Contract

By Ryan Flinn - 2012-09-28T20:12:41Z

Cytori Therapeutics Inc. (CYTX), a biotechnology company with $10 million in annual revenue, rose the most in about a year after the company won a $4.7 million U.S. government contract to develop a stem cell therapy to treat burns caused by thermal or radioactive bombs.

Cytori jumped 14 percent to $4.41 at the close in New York, the biggest single-day increase since October 2011. The shares of the San Diego-based company have doubled this year.

Were seeing a lot of momentum, Chief Executive Officer Christopher Calhoun said today in an interview with Bloomberg Television. This contract is one more major thing that we are delivering on, and there is more to come.

The two-year contract with the Department of Health and Human Services Biomedical Advanced Research and Development Authority may be worth $106 million over five years if certain milestones are met, Cytori said today in a statement. The company had a net loss last year of $32 million, according to data compiled by Bloomberg.

Cytoris experimental therapy takes adipose tissue, or body fat, from a patient and through its device separates the adult stem and regenerative cells before transferring them to a burn wound. Money from the contract will be used to develop the device and take it through the U.S. regulatory approval process with the Food and Drug Administration, Calhoun said.

These cells help to facilitate the healing of the injury, he said in a telephone interview earlier this week. They release growth factors that stimulate new blood flow.

Testing the technology in a clinical trial and getting approval may take five years, Calhoun said. The company is currently testing its therapy for other soft tissue damage, as well as cardiovascular disease.

Once approved, the device will be deployed in hospitals across the country, and can be used for routine burns as well as a treatment for patients in wake of a mass casualty event that could injure 10,000 people, Cytori said in the statement.

To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net

Follow this link:
Cytori’s Stem Cell Therapy for Burns Wins U.S. Contract

StemCells, Inc. Achieves Spinal Cord Injury Milestone With First Neural Stem Cell Transplant Into Patient With Sensory …

NEWARK, Calif., Sept. 27, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (STEM) today announced that the first patient with an incomplete spinal cord injury has been enrolled in the Company's Phase I/II clinical trial in chronic spinal cord injury and transplanted with the Company's proprietary HuCNS-SC(R) neural stem cells. The patient, a Canadian man who suffered a thoracic spinal cord injury from a sports-related accident, was administered the cells yesterday at Balgrist University Hospital, University of Zurich, a world leading medical center for spinal cord injury and rehabilitation. This is the first patient in the second cohort of the trial, which will be comprised of four patients who retain some sensory function below the level of trauma and are therefore considered to have an incomplete injury.

"This is an important milestone for StemCells and the spinal cord injury community as it is the first time anyone has ever transplanted neural stem cells into a patient with an incomplete injury," said Stephen Huhn, MD, FACS, FAAP, Vice President and Head of the CNS Program at StemCells, Inc. "Given the encouraging interim data from the most severely injured patient cohort that we reported earlier this month, testing patients with less severe injury should afford us an even better opportunity to continue to test safety and to detect and assess clinical changes. Unlike the patients in the first cohort, patients with incomplete injuries have retained a degree of spinal cord function that might be even further augmented by transplantation with neural stem cells."

Earlier this month, the Company reported that interim six-month data from the first patient cohort in the Phase I/II clinical trial continued to demonstrate a favorable safety profile, and showed considerable gains in sensory function in two of the three patients compared to pre-transplant baselines. Patients in the first cohort all suffered a complete injury to their spinal cord, leaving them with no neurological function below the level of injury. Following transplantation with HuCNS-SC cells, there were no abnormal clinical, electrophysiological or radiological responses to the cells, and all the patients were neurologically stable through the first six months after transplantation. Changes in sensitivity to touch, heat and electrical stimuli were observed in well-defined and consistent areas below the level of injury in two of the patients, while the third patient remained stable. Importantly, the changes in sensory function were confirmed objectively by measures of electrical impulse transmission across the site of injury, each of which correlated with the clinical examination.

About the Spinal Cord Injury Clinical Trial

The Phase I/II clinical trial of StemCells, Inc.'s HuCNS-SC(R) purified human adult neural stem cells is designed to assess both safety and preliminary efficacy. Twelve patients with thoracic (chest-level) neurological injuries at the T2-T11 level are planned for enrollment, and their injuries must have occurred within three to twelve months prior to transplantation of the cells. In addition to assessing safety, the trial will assess preliminary efficacy based on defined clinical endpoints, such as changes in sensation, motor function and bowel/bladder function. The Company has dosed the first patient cohort, all of whom have injuries classified as AIS A according to the American Spinal Injury Association Impairment Scale (AIS). In AIS A injuries, there is no neurological function below the injury level. The second cohort will be patients classified as AIS B, in which there is some preservation of sensory or motor function below the injury level. The third cohort will be patients classified as AIS C, in which there is some preservation of both sensory and motor function.

All patients will receive HuCNS-SC cells through direct transplantation into the spinal cord and will be temporarily immunosuppressed. Patients will be evaluated regularly in the post-transplant period in order to monitor and assess the safety of the HuCNS-SC cells, the surgery and the immunosuppression, as well as to measure any recovery of neurological function below the injury site. The Company intends to follow the effects of this therapy long-term, and each of the patients will be invited to enroll into a separate four year observational study after completing the Phase I/II study.

The trial is being conducted at Balgrist University Hospital, University of Zurich, a world leading medical center for spinal cord injury and rehabilitation, and is open for enrollment to patients in Europe, Canada and the United States. Enrollment for the second cohort is now underway. If you believe you may qualify and are interested in participating in the study, please contact the study nurse either by phone at +41 44 386 39 01 or by email at stemcells.pz@balgrist.ch.

Additional information about the Company's spinal cord injury program can be found on the StemCells, Inc. website at http://www.stemcellsinc.com/Therapeutic-Programs/Clinical-Trials.htm and at http://www.stemcellsinc.com/Therapeutic-Programs/Spinal-Cord-Injury.htm, including video interviews with Company executives and independent collaborators.

About Balgrist University Hospital

Balgrist University Hospital, University of Zurich is recognized worldwide as a highly specialized center of excellence providing examination, treatment and rehabilitation opportunities to patients with serious musculoskeletal conditions. The clinic owes its leading international reputation to its unique combination of specialized medical services. The hospital's carefully-balanced, interdisciplinary network brings together under one roof medical specialties including orthopedics, paraplegiology, radiology, anesthesiology, rheumatology, and physical medicine. More information about Balgrist University Hospital is available at http://www.balgrist.ch.

Read more from the original source:
StemCells, Inc. Achieves Spinal Cord Injury Milestone With First Neural Stem Cell Transplant Into Patient With Sensory ...

Mayo Clinic finds way to weed out problem stem cells, making therapy safer

Public release date: 27-Sep-2012 [ | E-mail | Share ]

Contact: Jennifer Schutz newsbureau@mayo.edu 507-284-5005 Mayo Clinic

ROCHESTER, Minn. -- Mayo Clinic researchers have found a way to detect and eliminate potentially troublemaking stem cells to make stem cell therapy safer. Induced Pluripotent Stem cells, also known as iPS cells, are bioengineered from adult tissues to have properties of embryonic stem cells, which have the unlimited capacity to differentiate and grow into any desired types of cells, such as skin, brain, lung and heart cells. However, during the differentiation process, some residual pluripotent or embryonic-like cells may remain and cause them to grow into tumors.

"Pluripotent stem cells show great promise in the field of regenerative medicine; however, the risk of uncontrolled cell growth will continue to prevent their use as a therapeutic treatment," says Timothy Nelson, Ph.D., M.D., lead author on the study, which appears in the October issue of STEM CELLS Translational Medicine.

Using mouse models, Mayo scientists overcame this drawback by pretreated stem cells with a chemotherapeutic agent that selectively damages the DNA of the stem cells, efficiently killing the tumor-forming cells. The contaminated cells died off, and the chemotherapy didn't affect the healthy cells, Dr. Nelson says.

"The goal of creating new therapies is twofold: to improve disease outcome with stem cell-based regenerative medicine while also ensuring safety. This research outlines a strategy to make stem cell therapies safer for our patients while preserving their therapeutic efficacy, thereby removing a barrier to translation of these treatments to the clinic," says co-author Alyson Smith, Ph.D.

Stem cell therapies continue to be refined and improved. Researchers are finding that stem cells may be more versatile than originally thought, which means they may be able to treat a wider variety of diseases, injuries and congenital anomalies. Stem cell therapy is an emerging regenerative strategy being studied at Mayo Clinic.

"By harnessing the potential of regenerative medicine, we'll be able to provide more definitive solutions to patients," says Andre Terzic, M.D., Ph.D., co-author and director of Mayo Clinic's Center for Regenerative Medicine.

###

Other members of the Mayo research team included Clifford Folmes, Ph.D., Katherine Hartjes, Natalie Nelson and Saji Oommen, Ph.D. The research was supported by the Todd and Karen Wanek Family Program for Hypoplastic Left Heart Syndrome, National Institutes of Health New Innovator Award OD007015-01, and a Mayo Clinic Center for Regenerative Medicine accelerated research grant.

Read the rest here:
Mayo Clinic finds way to weed out problem stem cells, making therapy safer

Deadly complication of stem cell transplants reduced in mice

ScienceDaily (Sep. 27, 2012) Studying leukemia in mice, researchers at Washington University School of Medicine in St. Louis have reduced a life-threatening complication of stem cell transplants, the only curative treatment when leukemia returns.

About 50 percent of leukemia patients who receive stem cells from another person develop graft-versus-host disease, a condition where donor immune cells attack the patient's own body. The main organs affected are the skin, liver and gut. Now, the scientists have shown they can redirect donor immune cells away from these vital organs. Steering immune cells away from healthy tissue also leaves more of them available for their intended purpose -- killing cancer cells.

"This is the first example of reducing graft-versus-host disease not by killing the T- cells, but simply by altering how they circulate and traffic," says John F. DiPersio, MD, PhD, the Virginia E. and Sam J. Golman Professor of Medicine. "Donor T-cells do good things in terms of eliminating the recipient's leukemia, but they can also attack normal tissues leading to death in a number of patients. The goal is to minimize graft-versus-host disease, while maintaining the therapeutic graft-versus-leukemia effect."

The study is now available online in Blood.

Working with mice, Jaebok Choi, PhD, research assistant professor of medicine, showed that eliminating or blocking a particular protein -- the interferon gamma receptor -- on donor T-cells makes them unable to migrate to critical organs such as the intestines but still leaves them completely capable of killing leukemia cells.

"The fact that blocking the interferon gamma receptor can redirect donor T-cells away from the gastrointestinal tract, at least in mice, is very exciting because graft-versus-host disease in the gut results in most of the deaths after stem cell transplant," DiPersio says. "People can tolerate graft-versus-host disease of the skin. But in the GI tract, it causes relentless diarrhea and severe infections due to gut bacteria leaking into the blood, which can result in severe toxicity, reduction in the quality of life or even death in some patients."

Long known to be involved in inflammation, the roles of interferon gamma, its receptor and their downstream signaling molecules are just beginning to be described in the context of graft-versus-host disease, says DiPersio, who treats patients at Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

The cascade begins when interferon gamma activates its receptor. The interferon gamma receptor then activates molecules known as JAK kinases, followed by STAT, and finally CXCR3. CXCR3 mediates the trafficking of donor T-cells to the GI tract and other target organs.

Since deleting the interferon gamma receptor from donor T-cells directs them away from target organs, the researchers asked whether they could produce the same beneficial effects by inhibiting some of the receptor's downstream signaling molecules. Indeed, Choi also found that knocking out CXCR3 reduces graft-versus- host disease, but not completely.

"There are probably additional downstream targets of interferon gamma receptor signaling other than JAKs, STATs and CXCR3 that are responsible for T-cell trafficking to the GI tract and other target organs," DiPersio says. "We're trying to figure out what those are."

Follow this link:
Deadly complication of stem cell transplants reduced in mice

Study Shows Stem Cells May Prevent And Cure Alzheimer's

SEOUL, South Korea, Sept. 26, 2012 /PRNewswire/ --In the first study of its kind, researchers at Korea's leading university and the RNL Bio Stem Cell Technology Institute announced this week the results of a study that suggests an astounding possibility: adult stem cells may not only have a positive effect on those suffering from Alzheimer's disease, theycanprevent the disease.Using fat-derived adultstem cells from humans [scientific term:adMSCs, orhuman, adipose-derived mesenchymal stem cells], researchers were able to cause Alzheimer's disease brains in animal models to regenerate. The researchers, for the first time in history, used stem cells toidentify the mechanism that is key to treatment of Alzheimer's disease, and demonstrated how to achieve efficacy as well as prevention of the symptoms of Alzheimer's with adult stem cells, a "holy grail" of biomedical scientists for decades.

Alzheimer's disease, the most common form of dementia (loss of brain function), is the 6th leading cause of death, and affects 1 in 8 people -- more than breast cancer. As of 2010, there were 35.6 million people with Alzheimer's disease in the world, but this number is expected to double every 20 years. It is estimated that the total cost of Alzheimer's is US $604 billion worldwide, with 70% of this cost in the US and Europe. To put that in perspective, Alzheimer's care costs more than the revenues of Wal-Mart (US$414 billion) and Exxon Mobil (US$311 billion), according to the British World Alzheimer's Report of ADI. The cost of Alzheimer's is at the top of health economists' list of the disorders of aging that could topple nations' entire economies, and that regularly ruin not only the lives of patients but of their relatives.

According to the results of this first major study, Alzheimer's may soon be a preventable disease, or even a thing of the past. Equally important, the safety human administration of the kind of adult stem cells used in this experiment has been established in multiple articles and government-approved clinical trials.

THE RESEARCH:

The study was jointly led by Seoul National University Professor Yoo-Hun Suh and RNL Bio Stem Cell Technology Institute (SCTI) director Dr. Jeong-Chan Ra.

The researchers and their teams injected stem cells into mice genetically designed to have the core symptoms and physiology of Alzheimer's disease. They were able to identify that these human stem cells, derived from adipose tissue, behave in a very special way when injected into the tail vein of mice subjects. The cells migrated through the blood brain barrier, thought by many to be impossible for adult stem cells to cross, and went into the brain. In fact,fluorescent labeled cells were monitored for distribution in subjects and the team identified that the infused cells migrated throughout the bodiesincluding brainexcept the olfactory organ, and therefore confirmed that IV infused stem cell can reach to the brain across the blood brain barrier.

The team infused human adipose stem cells intravenously in Alzheimer model mice multiple times two weeks apart from three month to 10 month.Once there, the mice who received cells improved in every relevant way: ability to learn, ability to remember, and neuropathological signs. More important, for the first time ever, Alzheimer model mice showed the mediation of IL-10, which is known for anti-inflammation and neurological protection.

The team also found that stem cell restored special learning ability from Alzheimer model subjects with great reduction of neuropathy lesions.This was found using tests used for Alzheimer's disease: behavioral assessment. In assessment it was found, amazingly, that stem cells' therapeutic effect on Alzheimer's disease was tremendous. This was also found in pathological analysis. The key though was prevention: the scientists showed that stem cells, when infused into Alzheimer's mice, decreased beta amyloid and APP-CT, known to cause brain cell destruction, leading to dementia and Alzheimer's disease. In the lab it was clear that stem cells increased neprilysin, which hydrolyzes toxic proteins. No other compound or treatment has ever suggested so strongly the potential to prevent, as well as stop, this epidemic of incurable dementia sweeping across suffering patients and their families.

Stopping Alzheimer's disease, let alone preventing it, is the focus of thousands of researchers worldwide. Speaking of their breakthrough discovery,Professor Yoo-Hun Suh, who led the study, said, "It is a ground breaking discovery that such a simple method as IV injection of the safest autologous adipose stem cells, without causing any immune rejection, or any ethical issues, opened a new door to conquering Alzheimer's disease, one of the most horrible, expensive and incurablediseases of our time." Joining him, leader of the RNL Bio Stem Cell Technology InstituteDr. Jeong-Chan Ra said, "It has never been more clear that it is an ethical imperative for governments to provide patients with incurable diseases with their right to participate not only in studies like this but in therapies with such obvious potential, once they have been tested as many times for safety as has our technology." Both scientists stressed that the real breakthrough in their complex research is the prevention of the onset of symptoms.

Specifically, stem cells grafted in the brain, in another part of the study, were identified to induce cell division and neuro differentiation of endogenous neuro progenitor cells around the hippocampus and its surrounding cells and increase in great deal the stability of dendrites and synapses. Stem cell also contributed various anti-inflammatory and neuro growth factors, especially increased the expression of IL-10. This again suppressed apoptosis of brain neurons, the prevention effect against Alzheimer's disease.

Read more:
Study Shows Stem Cells May Prevent And Cure Alzheimer's