Author Archives: admin


Generating dopamine via cell therapy for Parkinson's disease

Public release date: 2-Jul-2012 [ | E-mail | Share ]

Contact: Sarah Jackson press_releases@the-jci.org Journal of Clinical Investigation

In Parkinson's disease, the loss of dopamine-producing cells in the midbrain causes well-characterized motor symptoms. Though embryonic stem cells could potentially be used to replace dopaminergic (DA) neurons in Parkinson's disease patients, such cell therapy options must still overcome technical obstacles before the approach is ready for the clinic. Embryonic stem cell-based transplantation regimens carry a risk of introducing inappropriate cells or even cancer-prone cells. To develop cell purification strategies to minimize these risks, Dr. Lorenza Studer and colleagues at Memorial Sloan Kettering Cancer Center in New York developed three different mouse lines to fluorescently label dopaminergic neurons at early, mid, and late stages of differentiation. Their data suggest that mouse embryonic stem cells induced to the mid stage of neuronal differentiation are best suited for transplantation to replace dopaminergic neurons. Further, their work identified new genes associated with each stage of neuronal differentiation. Their results in the mouse model system help define the differentiation stage and specific attributes of embryonic stem cell-derived, dopamine-generating cells that hold promise for cell therapy applications.

###

TITLE:

Identification of embryonic stem cellderived midbrain dopaminergic neurons for engraftment

AUTHOR CONTACT:

Lorenz Studer

Memorial Sloan Kettering Cancer Center, New York, NY, USA

Phone: 212.639.6126; E-mail: studerl@mskcc.org

Visit link:
Generating dopamine via cell therapy for Parkinson's disease

Researchers Block Pathway to Cancer Cell Replication

NOTCH1 Signaling Promotes T-Cell Acute Lymphoblastic Leukemia-Initiating Cell Regeneration

Newswise Research suggests that patients with leukemia sometimes relapse because standard chemotherapy fails to kill the self-renewing leukemia initiating cells, often referred to as cancer stem cells. In such cancers, the cells lie dormant for a time, only to later begin cloning, resulting in a return and metastasis of the disease.

One such type of cancer is called pediatric T cell acute lymphoblastic leukemia, or T-ALL, often found in children, who have few treatment options beyond chemotherapy.

A team of researchers led by Catriona H. M. Jamieson, MD, PhD, associate professor of medicine at the University of California, San Diego School of Medicine and Director of Stem Cell Research at UC San Diego Moores Cancer Center studied these cells in mouse models that had been transplanted with human leukemia cells. They discovered that the leukemia initiating cells which clone, or replicate, themselves most robustly activate the NOTCH1 pathway, usually in the context of a mutation.

Earlier studies showed that as many as half of patients with T-ALL have mutations in the NOTCH1 pathway an evolutionarily conserved developmental pathway used during differentiation of many cell and tissue types. The new study shows that when NOTCH1 activation was inhibited in animal models using a monoclonal antibody, the leukemia initiating cells did not survive. In addition, the antibody treatment significantly reduced a subset of these cancer stem cells (identified by the presence of specific markers, CD2 and CD7, on the cell surface.)

We were able to substantially reduce the potential of these cancer stem cells to self-renew, said Jamieson. So were not just getting rid of cancerous cells: were getting to the root of their resistance to treatment leukemic stem cells that lie dormant.

The study results suggest that such therapy would also be effective in other types of cancer stem cells, such as those that cause breast cancer, that also rely on NOTCH1 for self-renewal.

Therapies based on monoclonal antibodies that inhibit NOTCH 1 are much more selective than using gamma-secretase inhibitors, which also block other essential cellular functions in addition to the NOTCH1 signaling pathway, said contributor A. Thomas Look, MD of Dana-Farber/Children Hospital Cancer Center in Boston. We are excited about the promise of NOTCH1-specific antibodies to counter resistance to therapy in T-ALL and possibly additional types of cancer.

In investigating the role of NOTCH1 activation in cancer cell cloning, the researchers showed that leukemia initiating cells possess enhanced survival and self-renewal potential in specific blood-cell, or hematopoietic, niches: the microenvironment of the body in which the cells live and self-renew.

The scientists studied the molecular characterization of CD34+ cells a protein that shows expression in early hematopoietic cells and that facilitates cell migration from a dozen T-ALL patient samples.

Go here to read the rest:
Researchers Block Pathway to Cancer Cell Replication

Stem-cell research leaders to meet in NUIG

The Irish Times - Monday, July 2, 2012

LORNA SIGGINS

WORLD leaders in stem-cell technology are due to exchange knowledge of potential treatments at a conference opening in NUI Galway today.

Researchers from NUIG, University College Cork and NUI Maynooth will participate in the event, which has been billed as the first major conference on stem-cell therapy in Ireland.

Prof Anthony Hollander of the University of Bristol, England who was one of a team which successful created and then transplanted the first tissue-engineered trachea or windpipe is among a number of international speakers presenting findings.

The gathering will focus on the realities of stem-cell treatment, Prof Frank Barry, director of NUIGs National Centre for Biomedical Engineering Science has said.

The therapy is complex and controversial, and sometimes exaggerated claims are made, he said.

The researchers are specialists in Mesenchymal, or adult, stem cells, and will be concentrating on what is likely in the future, he added.

The list of conditions which could be treated successfully by stem cells is small, but growing, Prof Barry said.

Leukaemia and other diseases of the blood appear to respond best.

Continue reading here:
Stem-cell research leaders to meet in NUIG

Brain Cells Derived From Skin Cells For Huntington's Research

Editor's Choice Main Category: Huntingtons Disease Also Included In: Stem Cell Research;Neurology / Neuroscience Article Date: 29 Jun 2012 - 14:00 PDT

Current ratings for: Brain Cells Derived From Skin Cells For Huntington's Research

3 (1 votes)

At present, there is no cure for the disease and no treatments are available. These findings open up the possibility of testing treatments for the deadly disorder in a petri dish.

The study is the work of a Huntington's Disease iPSC Consortium, including researchers from the Johns Hopkins University School of Medicine in Baltimore, Cedars-Sinai Medical Center in Los Angeles and the University of California, Irvine, and six other groups.

Huntington's disease is an inherited, deadly neurodegenerative disorder. The onset of HD generally occurs during midlife, although it can also strike in childhood - as in the patient who donated the material for the cells generated in this study. The disease causes jerky, twitch-like movements, lack of muscle control, psychiatric disorders and dementia, and ultimately death.

Christopher A. Ross, M.D., Ph.D., a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine and one of the lead researchers of the study, explained:

The team are currently testing small molecules for the ability to block HP iPSC degeneration. According to the researchers, these molecules could potentially be developed into new drugs for Huntington's disease.

Furthermore, the teams ability to create "HD in a dish" may also have implications for similar research in other diseases such as Parkinson's and Alzheimer's.

In the study, the team took a skin biopsy from a 7-year-old patient with very early onset of severe HD. In the laboratory of Hongjun Song, Ph.D., a professor at Johns Hopkins' Institute for Cell Engineering, the skin cells were grown in culture and then created into pluripotent stem cells. In addition, a second cell line was created in the same way in Dr. Ross's lab from an individuals without HD.Simultaneously, other HD and control iPS cell lines were generated as part of the NINDS funded HD iPS cell consortium.

Read the original:
Brain Cells Derived From Skin Cells For Huntington's Research

Cell Press journals continue to deliver high impact

Public release date: 29-Jun-2012 [ | E-mail | Share ]

Contact: Elisabeth (Lisa) Lyons elyons@cell.com 617-386-2121 Cell Press

Latest annual citation reports confirm Cell Press delivers highly valued, highly cited research and reviews to the scientific community it serves

We are delighted to report that the new impact factors align with community perception and confirm that Cell Press continues to publish the highest impact research and reviews in the biomedical sciences, according to the latest Journal Citation Reports published by Thomas Reuters.

Cell Press's flagship journal Cell received an impressive impact factor of 32.403. Showing strong and steady growth, Cell's impact factor has increased by 9% since 2005, maintaining its status as the premier research journal in its field. Cell is currently ranked the number one research journal in the 'Cell Biology' and 'Biochemistry & Molecular Biology' categories.

Over 70% of journals within the Trends review journal series increased in impact factor this year, with significant growth across several life science disciplines. Top performers include Trends in Cognitive Science, which increased by 30% to 12.586, Trends in Immunology, which grew 9% to 10.403, and Trends in Ecology and Evolution, which rose 9% to 15.748. Published by Cell Press since 2007, Trends journals offer the unparalleled level of in-house editorial expertise that exists within all of the Cell Press journals, with the support of committed and enthusiastic editorial boards and an extensive range of fair and knowledgeable reviewers.

The substantial increase for Trends in Cognitive Sciences is also reflected in the other Cell Press neuroscience journals. Neuron, which has been publishing leading neuroscience research and reviews since 1988, increased by 5% to 14.736, and Trends in Neurosciences is up from 13.320 to 14.235.

"We are very pleased to see the scientific community's response to the work published in Cell Press journals. We are grateful to the authors who entrust their best work to us and to the reviewers who provide invaluable advice and guidance," said Emilie Marcus, Editor-in-Chief and CEO of Cell Press. "Cell Press editors work hard to maintain the high editorial standards expected of them by our authors and readers, and understand the importance of engaging with, and being accessible to, the life science research community which we are all proud to be a part of."

Cell Press's more recent journal launches, aimed at expanding our scope into translational biomedical areas, continue to maintain their influence within the scientific community. Launched in 2007, Cell Stem Cell has an impact factor of 25.421 and has been named a "Rising Star" in the field of Clinical Medicine by Thomson Reuters. This means that, in 2011, Cell Stem Cell had the highest percentage growth in citations in its field. Celebrating a decade of high impact publication in 2012, Cancer Cell has a well established impact factor of 26.566.

The 2011 Journal Citation Reports ranks the Cell Press journals' impact factors as follows:

See more here:
Cell Press journals continue to deliver high impact

Former Auburn coach getting stem cell treatments for Lou Gehrig's disease

MOBILE, Alabama -- The Baldwin County doctor that treated former Alabama football players with adult stem cells also has treated at least two people diagnosed with amyotrophic lateral sclerosis, also known as Lou Gehrigs disease.

One of the ALS patients, former NFL football player and college coach Frank Orgel, recently underwent a new stem cell reprogramming technique performed by Dr. Jason R. Williams at Precision StemCell in Gulf Shores.

Before the injections, Orgels health had declined. He could not move his left arm or leg. He couldnt walk or stand on his own, he said.

Within a few days of having the stem cell treatment, Orgels constant muscle twitching diminished, said Bob Hubbard, director of stem cell therapy at the practice. Within weeks, he was able to walk in a pool of water and stand unassisted.

I think its helped me, said Orgel, who was a defensive coordinator at Auburn under former head coach Pat Dye. Im walking in the pool and I used to drag my feet. Now my left leg is picking up.

ALS is a progressive neuro-degenerative disease that affects nerve cells in the brain and the spinal cord. The progressive degeneration of the motor neurons in ALS eventually leads to death, according to the ALS Association.

Stem cells, sometimes called the bodys master cells, are precursor cells that develop into blood, bones and organs, according to the U.S. Food and Drug Administration, which regulates their use. Their promise in medicine, according to many scientists and doctors, is that the cells have the potential to help and regenerate other cells.

While Williams treatments are considered investigational, he has said, they meet FDA guidelines because the stem cells are collected from a patients fat tissue and administered back to that patient during the same procedure.

Orgel, 74, said Williams told him it would take between eight months to a year for his nerves to regrow. He is traveling to Gulf Shores from his home in Albany, Ga., this weekend for another stem cell treatment, Orgel said: I need to get to where I can walk.

In recent years, Orgel has gone to Mexico at least three times for different types of treatments, not sanctioned in the U.S. At least once, he said, he had placenta cells injected into his body. That didnt work, Orgel said. I didnt feel any better.

Read more here:
Former Auburn coach getting stem cell treatments for Lou Gehrig's disease

Stem cell bank, age 4, to be closed

BOSTON The University of Massachusetts Medical School and the Massachusetts Life Sciences Center have agreed to phase out operation of the embryonic stem cell bank in Shrewsbury, saying the facility, which is 4 years old, has largely outlived its usefulness.

The stem cell bank, slated for closure at the end of the year, was established at the medical school alongside a stem cell registry that collects stem cell research data, to store embryonic stem cell lines from an array of research centers and make them available to scientists around the world.

It was set up at a time when the federal government had banned use of federal funds for research using embryonic stem cells. That ban put in place by President George W. Bush was withdrawn by President Barack Obama after he took office in 2009.

State funding for the bank came as part of a larger state effort to expand life science research across Massachusetts using targeted state grants, tax benefits and by supporting facilities such as the stem cell bank.

Angus G. McQuilken, spokesman for the Life Sciences Center that awarded the project $8.6 million to open and operate, said yesterday that the school and Life Sciences officials have agreed to wind down the bank's operations by the end of this year.

He said the stem cell registry, which received $1.7 million in startup and operational funding from the Life Sciences Center, remains a valued center for compilation of stem cell research and will remain in operation and continue receiving funds from the Life Science Center.

When this investment was made in 2007 it filled an important gap, Mr. McQuilken said, referring to the restrictions on federal support for embryonic stem cell research. Stem cell lines are now more readily available from multiple sources.

Future investment by the state in stem cell research will move in a different direction. The university is building the $400 million Albert Sherman Center, a major new genetic research facility at its Worcester campus.

While it may have quickly outlived its usefulness, the initial investment in the stem cell bank was an important one that made an important statement about the state's commitment to stem cell research, Mr. McQuilken said.

A medical school spokesman said closing the stem cell bank is expected to eliminate about nine jobs. Those displaced will be encouraged to seek other positions at the medical school, officials said.

View post:
Stem cell bank, age 4, to be closed

Skin Cells Create Stem Cells In Huntington Disease Study

June 29, 2012

Connie K. Ho for redOrbit.com Your Universe Online

In 1993, the autosomal dominant gene mutation responsible for Huntingtons Disease (HD) was discovered. However, no treatments are known to slow its progression. New research may pave the way to better understanding of the disease. Researchers at Johns Hopkins recently announced that they were able to produce stem cells from skin cells from a person who had severe, early-onset form of HD; the cells were then changed into neurons that degenerated like the cells affected by HD.

The research was recently published in the journal Cell Stem Cell. The investigators worked with an international consortium in creating HD in a dish. The group was made up of scientists from Johns Hopkins University School of Medicine, Cedars-Sinai Medical Center, the University of California at Irvine, as well as six other groups. The team looked at many other HD cell lines and control cell lines to verify that the results were consistent and reproducible in other labs. The investigators believe that the findings allow them to better understand and eliminate cells in people in with HD. They hope to study the effects of possible drug treatments on cells that would be otherwise found deep in the brain.

Having these cells will allow us to screen for therapeutics in a way we havent been able to before in Huntingtons disease, remarked lead researcher Dr. Christopher A. Ross, a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine, in a prepared statement. For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic.

The team of researchers is studying small molecules for the ability to block HD iPSC degeneration to see if they can be developed into new drugs for HD. As well, the ability to produce from stem cells the same neurons found in HD may have effects for similar research in other neurodegenerative diseases like Alzheimers and Parkinsons. In the experiment, Ross took a skin biopsy from a patient with very early onset HD. The patient was seven years old at the time, with a severe form of disease and a mutation that caused it. By using cells from a patient who had quickly progressing HD, Ross team were able to mimic HD in a way that could be used by patients who had different forms of HD.

The skin cells were grown in culture and reprogrammed to induce stem cells that were pluripotent. Then, another cell line was created in the same way from someone who didnt have HD. The other HD and control iPS cells were produced as part of the NINDS funded HD iPS cell consortium. Investigators from Johns Hopkins and the other consortium labs changed the cells into typical neurons and then into medium spiny neurons. The process took a total of three months and the scientists found the medium spiny neurons from the HD cells acted how the medium spiny neurons form an HD patient would. The cells demonstrated quick degeneration when cultured in the lab with a basic culture medium that didnt include extensive supporting nutrients. On the other hand, control cell lines didnt demonstrate neuronal degeneration.

These HD cells acted just as we were hoping, says Ross, director of the Baltimore Huntingtons Disease Center. A lot of people said, Youll never be able to get a model in a dish of a human neurodegenerative disease like this. Now, we have them where we can really study and manipulate them, and try to cure them of this horrible disease. The fact that we are able to do this at all still amazes us.

Source: Connie K. Ho for redOrbit.com Your Universe Online

Read more:
Skin Cells Create Stem Cells In Huntington Disease Study

Stem Cell Therapy – Healthier Looking Skin ,Promote Younger, Reduce Wrinkles – Video

28-06-2012 09:19 Stem Cell Therapy More Info: Stem Cell Therapy -- Reduce Wrinkles,Promote Younger, Healthier Looking Skin * Increase production of new skin cells by 57% * Re-activate stem cells to stimulate fresh, new skin cell production * Increase natural collagen production by 80% * Decrease wrinkle appearance 56% in 30 days * Increase elastin synthesis by 61% Stem Cell Therapy, Stem Cell Skin Cream, Stem Cell Therapy BioLogic Solutions, Wrinkle Reducer, Decrease Wrinkles,Vanish Wrinkles Feel Younger, Aging Cream, Younger Looking Skin, No More Botox,antiaging,antiaging cream,botox alternative,

Read more:
Stem Cell Therapy - Healthier Looking Skin ,Promote Younger, Reduce Wrinkles - Video