Author Archives: admin


Stem cell market to reach $322 million by 2017

2011 saw the stem cell market earn revenues of $148.4 million in 2011 and this is forecast to reach $322 million by 2017. The segments covered include: bio-imaging and microscopy, cell biology tools, immunochemical, molecular biology tools, and protein biochemistry tools.

The US is one of the major stem cell markets in the world, and the country has been witnessing a significant level of positive growth over the past few years. The US stem cell market was estimated to reach around $830 Million in 2010, up from $500 Million in 2009.

This market growth can be attributed to a number of supporting factors, such as huge investment, strong demand, and rising disease incidences. Forecasters have predicted that these factors will lead to the US stem cell market generating revenues of $3 billion by 2013.

A key step forward for the market has been the stem cell regulations in a few countries allowing the use of certain cell lines. In some countries such as France, for instance, stem cell regulations are being renewed for the procurement and use of stem cells.

Standardised research guidelines are needed to control and encourage the development of gene therapy and stem cell treatments. Regenerative medicine is seen as an area with high future potential, as countries need ways to cope with the burden of an aging population.

Stem cell research is very dynamic with research trends, focus, and approaches evolving extremely rapidly. The tool market has to quickly adapt to these challenges and develop innovative tools that address and accelerate research accomplishments.

Organisations such as the International Society for Stem Cell Research (ISSCR) publish recommended guidelines on working with stem cells, but these are not binding. Governments must therefore come together to determine a standardised framework for innovative medical research, in order that positive results and long-term follow-up data can be produced to solidify the reputation and investment potential of the regenerative medicine market.

For more information on the stem cell market, see the latest research: Stem Cell Market Report

Follow us on Twitter @CandMResearch

About: Companiesandmarkets.com is a UK based organisation, home to one of the worlds largest databases of market research reports and company profiles from leading global publishers and industry analysts. Multinational brands across major industries rely daily on companiesandmarkets.com for strategic market research and incisive company profiles. Call +44 (0)203 086 8600.

View post:
Stem cell market to reach $322 million by 2017

New method generates cardiac muscle patches from stem cells

ScienceDaily (June 19, 2012) A cutting-edge method developed at the University of Michigan Center for Arrhythmia Research successfully uses stem cells to create heart cells capable of mimicking the heart's crucial squeezing action.

The cells displayed activity similar to most people's resting heart rate. At 60 beats per minute, the rhythmic electrical impulse transmission of the engineered cells in the U-M study is 10 times faster than in most other reported stem cell studies.

An image of the electrically stimulated cardiac cells is displayed on the cover of the current issue of Circulation Research, a publication of the American Heart Association.

For those suffering from common, but deadly heart diseases, stem cell biology represents a new medical frontier.

The U-M team of researchers is using stem cells in hopes of helping the 2.5 million people with an arrhythmia, an irregularity in the heart's electrical impulses that can impair the heart's ability to pump blood.

"To date, the majority of studies using induced pluripotent stem cell-derived cardiac muscle cells have focused on single cell functional analysis," says senior author Todd J. Herron, Ph.D., an assistant research professor in the Departments of Internal Medicine and Molecular & Integrative Physiology at the U-M.

"For potential stem cell-based cardiac regeneration therapies for heart disease, however, it is critical to develop multi-cellular tissue like constructs that beat as a single unit," says Herron.

Their objective, working with researchers at the University of Oxford, Imperial College and University of Wisconsin, included developing a bioengineering approach, using stem cells generated from skin biopsies, which can be used to create large numbers of cardiac muscle cells that can transmit uniform electrical impulses and function as a unit.

Furthermore, the team designed a fluorescent imaging platform using light emitting diode (LED) illumination to measure the electrical activity of the cells.

"Action potential and calcium wave impulse propogation trigger each normal heart beat, so it is imperative to record each parameter in bioengineered human cardiac patches," Herron says.

The rest is here:
New method generates cardiac muscle patches from stem cells

Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston

RIO DE JANEIRO--(BUSINESS WIRE)--

Cryopraxis established in 2001 as the pioneer private umbilical cord blood bank in Brazil will be present at Bio 2012 in Boston. Eduardo Cruz, chairman of the board, will be a speaker at the Brazilian break-out session speaking about The Brazilian Biotechnology Sector and showing the results of the company's commitment to R&D. Cryopraxis has already collected and processed more than 25000 cord blood units (CBU) and is actively involved in several R&D projects in Brazil and abroad.

A spin-off of Cryopraxis, Cellpraxis, has recently finished one of the world's first cell therapy project clinical trials in Brazil: ReACT. ReACT is a stem cell formulation. This regenerative medicine pioneer product aims on treating an orphan disease condition called refractory angina. Refractory angina patients suffer from untreatable severe chest pain and the results of the clinical trial in a 5 years follow up proved ReACT to positively interfere in the course of the pathology. Most of the individuals treated experienced relief in pain and better quality of life. ReACT will be presented at Bio2012 as an example of Brazil's dynamic biotechnology research.

Cryopraxis is accredited by the American Association of Blood Bank since 2009.

According to Tatiana Lima, Technical Director at Cryopraxis, "extensive training and strict adherence to good laboratory practices are basic principles in Cryopraxis' corporate strategy." Janaina Machado, cell lab director describes the company's primary mission: "maximizing safety and efficiency of collection procedures to make sure our clients get what they look for: the highest quality standards."

Cryopraxis is part of Axis Biotec (www.axisbiotec.com.br) and it has the largest biological cryogenic storage facility in Brazil and one of the largest in the World. It is the largest umbilical cord blood bank in Brazil. The company is involved in several research projects in Brazil and abroad.For more information, visitwww.cryopraxis.com.brand http://www.cellpraxis.com

Excerpt from:
Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston

Animal Stem Cell Therapy

BYRON, MN--It's a dream for many in the medical field, to use a person's own stem cells to help them heal. And it's a reality already happening in our area.

But it's not humans who are being treated. In this case, dogs are the ones being treated.

Animal Stem Cell Regenerative Therapy has been performed a few thousand times now across the U.S. Doctors harvest stem cells and re-enter them where the animal is having problems.

Both Marley and Vinnie have bad ligaments in their legs, and like many dogs suffering from arthritis, they are subject to monthly doses of expensive drugs.

That is until today.

Dr. Garren Kelly, D.V.M. at Meadow View Veterinary Clinic just outside Rochester says, "If you'd of asked me 5 years ago if I would be doing anything like this, I would have said no. But then as soon as I saw it i'm like 'Yeah that's for me'. I kind of like staying on the cutting edge of technology and surgeries".

The two are undergoing a first of its kind surgery in minnesota, using regenerative stem cells.

Blood is taken from the dogs, as well as fat tissue.

Then stem cells are separated out from the fat, activated with an led light, and injected back into the affected area. All in the same day.

MediVet America trainer Jordan Smith says, "It's a better quality of life, we're not promising to give them 10 years or 5 years but we are promising that the years that they do have remaining are a lot more enjoyable".

Go here to read the rest:
Animal Stem Cell Therapy

Philip Salvador, kakalabanin ang kaibigang aktor!

TO A great extent, the latest medical breakthrough called stem cell treatment has swept the nation like a typhoon entering the Philippine area of responsibility (or PAR as weather experts would say).

Previously in our column here in Pinoy Parazzi ay iniulat na namin ang lumalakas na pananampalataya in this modern science na bagamat maaaring gawin sa bansa ay mas epektibo kung sasailalim ang pasyente sa prosesong ito sa mismong bansa ang Germany na siyang pinagkukunan ng anti-aging substance extracted from a black mountain sheep.

By now, Boy Abunda must have left for Germany with his Nanay Lising whos suffering dementia (or Alzheimers disease) na karaniwan namang dumadapo sa mga taong may edad na. Also, in a week or two ay tutungo rin si Lolit Solis sa naturang bansa for treatment of her diabetes (pero sagot ni Dra. Vicki Belo ang isang milyong pisong bayad) with her ward Lorna Tolentino na siyang maglilibre naman ng kanilang week-long stay roon.

Minsan nang naipahayag ni Butch Francisco (who openly admits na wala siyang ganoong halaga after he had his condo unit in Greenhills repaired, almost reconstructed) na paano na raw ang mahihirap who cannot afford to avail of stem cell treatment?

Wala man itong relasyon sa showbiz, pero magsilbing panawagan sana ito sa Department of Science and Technology at Department of Health to conduct a thorough research on making affordable to the socially marginalized ang naturang treatment.

Stem cell treatment in Germany? Baka nga ang ilan nating mga kapus-palad na mamamayan, ang alam lang ay German cut na tule, asong German shepherd, processed meat na German sausage at ang the height, ang Master Showman na si German Moreno!

TAONG 2004 nang yakapin ni Philip Salvador ang pagiging isang born again Christian. Since then, Kuya Ipe has been shuttling between Manila and Bulacan (to as far as Bataan) kung saan ibinabahagi raw niya ang kanyang testimonya sa buhay, his past life most specially until he finally knew his Heavenly Master.

See the article here:
Philip Salvador, kakalabanin ang kaibigang aktor!

Step closer to stem cell answer for human diseases

Development of stem cell research for treating human cells damaged through injury, disease or ageing has taken a step forward in Queensland.

Stem Cells Ltd, based at the Australian Institute for Bioengineering and Nanotechnology at The University of Queensland, is set to receive $470,000 in Queensland Government science funding.

The funding will ensure the growth of stem cell research in Queensland, taking the state's leaders closer to developing cell-based therapies for a host of diseases.

Stem Cells Ltd Queensland manager Victoria Turner said her team would work with stem cell scientists to advance research into diseases such as schizophrenia, Down syndrome, Parkinson's disease and heart disease.

Ms Turner said Stem Cells Ltd would ensure Queensland remained at the forefront of cutting-edge stem cell research.

Stem cell research is an exciting and rapidly expanding field that is vital for basic research and understanding of diseases, she said.

Most importantly, stem cells are set to have a major impact on healthcare and innovation, offering novel scientific insights that can be used to direct the treatment of a multitude of diseases and, ultimately in the future development of cell-based therapies when cells become damaged by illness or injury.

Stem Cells Ltd is a not-for-profit company established to grow the capacity of stem cell research in Australia, providing researchers in the field with highly specialised stem cell products, services and training.

This enables scientists to access valuable stem cell strategies for modeling human diseases, which in many cases represents the only option for gaining a better understanding in order to direct treatment.

Stem Cells Ltd is also expected to break down the barriers for new stem cell scientists to enter the field, providing them with the specialist technical expertise they need for stem cell culture and keeping up with the pace of development.

More here:
Step closer to stem cell answer for human diseases

Sixteenth Patient Dosed In Neuralstem ALS Stem Cell Trial

ROCKVILLE, Md., June 19, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE MKT: CUR) announced that the first patient to receive stem cell transplantation in both regions of the spinal cord has been treated in the ongoing Phase I trial of its spinal cord neural stem cells in amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). This is also the 16th patient to be treated in the trial altogether and the first patient returning to the trial for a second treatment. In this treatment, the patient received five injections in the cervical (upper back) region of the spinal cord, in addition to the ten he received previously in the lumbar (lower back) region of the spine, for a total of 15 injections. This is the highest number of injections in the trial so far. Patient 16 is also the first patient in the world to receive stem cell transplants in both the lumbar and cervical regions of the spinal cord in an FDA-approved trial. Two additional previously-treated patients are expected to return to the trial this summer in this cohort, provided they continue to meet the inclusion requirements. The trial is taking place at Emory University Hospital in Atlanta, Georgia.

(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )

"Transplanting the first of the returning patients represents a major milestone in the trial," said Dr. Karl Johe, PhD, Neuralstem's Chairman and Chief Scientific Officer. "The ability to safely administer multiple dosings to these patients is a key enabling step in administering the maximum safe dose. Not only are we dosing patients for a second time in this cohort, we are now dosing in both the lumbar and cervical regions of the spinal cord for the first time, where the stem cell therapy could support both walking and breathing."

About the Trial

The Phase I trial to assess the safety of Neuralstem's spinal cord neural stem cells and intraspinal transplantation method in ALS patients has been underway since January 2010. The trial is designed to enroll up to 18 patients. The first 12 patients were each transplanted in the lumbar (lower back) region of the spine, beginning with non-ambulatory and advancing to ambulatory cohorts.

The trial then advanced to transplantation in the cervical (upper back) region of the spine. The first cohort of three was treated in the cervical region only. The current cohort of three will receive injections in both the cervical and lumbar regions of the spinal cord. In an amendment to the trial design, The Food and Drug Administration (FDA) approved the return of previously-treated patients to this cohort. The first of these returning patients was just treated. The entire 18-patient trial concludes six months after the final surgery.

About Neuralstem

Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem is in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.

In addition to ALS, the company is also targeting major central nervous system conditions with its cell therapy platform, including spinal cord injury, ischemic spastic paraplegia and chronic stroke. The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in chronic spinal cord injury.

Neuralstem also has the ability to generate stable human neural stem cell lines suitable for the systematic screening of large chemical libraries. Through this proprietary screening technology, Neuralstem has discovered and patented compounds that may stimulate the brain's capacity to generate new neurons, possibly reversing the pathologies of some central nervous system conditions. The company has received approval from the FDA to conduct a Phase Ib safety trial evaluating NSI-189, its first neurogenic small molecule compound, for the treatment of major depressive disorder (MDD). Additional indications could include CTE (chronic traumatic encephalopathy), Alzheimer's disease, anxiety, and memory disorders.

See the original post here:
Sixteenth Patient Dosed In Neuralstem ALS Stem Cell Trial

Metformin treatment caused cancer stem cell death in pancreatic cancer cell lines

Public release date: 19-Jun-2012 [ | E-mail | Share ]

Contact: Jeremy Moore jeremy.moore@aacr.org 215-446-7109 American Association for Cancer Research

LAKE TAHOE, Nev. Results of some preclinical trials have shown that low doses of the antidiabetic drug metformin may effectively destroy cancer stem cells, a group of cells that are considered to be responsible for tumor initiation and, because they are resistant to standard chemotherapies, tumor relapse.

In addition, when metformin was combined with a standard chemotherapy used for pancreatic cancer, the combination treatment was able to efficiently eradicate both cancer stem cells and more differentiated cancer cells, which form the bulk of the tumor, according to data presented by Christopher Heeschen, M.D., Ph.D., at the American Association for Cancer Research's Pancreatic Cancer: Progress and Challenges conference, held in Lake Tahoe, Nev., from June 18-21, 2012. Heeschen is professor for experimental medicine at the Spanish National Cancer Research Centre in Madrid, Spain.

Most clinical trials of pancreatic cancer conducted during the last 15 years have failed to show marked improvement in median survival, suggesting that the selected approaches were not sufficient for several reasons, according to Heeschen. In recent years, researchers have identified cancer stem cells which, as opposed to the cancer cells that make up the bulk of the tumor, are a small subset of cells that are resistant to conventional therapy.

"Therefore, efficiently targeting these cells will be crucial for achieving higher cure rates in patients with pancreatic cancer," he said. "Our newly emerging data now indicate that metformin, a widely used and well-tolerated drug for the treatment of diabetes, is capable of efficiently eliminating these cells."

Specifically, the researchers found that metformin-pretreated cancer stem cells were particularly sensitive to alterations to their metabolism through the activation of AMPK. In fact, metformin treatment resulted in the death of cancer stem cells. In contrast, treatment of more differentiated cancer cells with metformin only arrested the cells' growth.

"As the cancer stem cells represent the root of pancreatic cancer, their extinction by reprogramming their metabolism with metformin in combination with the stalling of the proliferation of more differentiated cells should result in tumor regression and long-term, progression-free survival," Heeschen said.

The researchers generated data to support this idea when they treated immunocompromised mice implanted with a diverse set of patient-derived tumors with a combination of metformin and gemcitabine, the standard chemotherapeutic treatment for pancreatic cancer. They found that the treatment resulted in reduced tumor burden and the prevention of relapse as compared with treatment with either drug alone.

"Intriguingly, in all tumors treated with metformin to date, relapse of disease was efficiently prevented and there were no noticeable adverse effects," Heeschen said.

See the original post here:
Metformin treatment caused cancer stem cell death in pancreatic cancer cell lines

Pluristem Therapeutics' Cell Therapy Broadens Addressable Markets – Demonstrates Systemic Effectiveness of …

HAIFA, Israel, June 19, 2012 (GLOBE NEWSWIRE) -- Pluristem Therapeutics, Inc. (PSTI) (TASE:PLTR) announced today at the 2012 Bio International Convention the results of a pre clinical study it conducted measuring the effectiveness of its Placental eXpanded (PLX) cells when administered intramuscularly(IM). Cell therapies are traditionally delivered through intravenous (IV) injections for systemic effect. However, Pluristem's latest findings show that its PLX cells can be effective when injected by needle, into the muscle. Avoiding the use of an IV is simple and more cost-effective. This opens far larger markets for treatments in a wide range of potential outpatient settings and local clinics.

"The ability for IM injections of PLX cells has significant market implications that potentially broaden the indications and frequency with which our cell therapy can be used. We look forward to conducting additional testing of this very promising approach," said Zami Aberman, Chairman and CEO of Pluristem.

The study found that Intramuscularly administered PLX cells are safe, effective, easy to inject and provided systemic therapeutic benefits in a wide range of hematological disorders, as well as primary and secondary bone marrow failure, such as in radiation sickness and possibly for some complications from chemotherapy and radiotherapy.

The results of the study demonstrated a significant survival and recovery rate of bone marrow and peripheral blood counts in animals pre-irradiated by high lethal doses. These findings indicate that the IM route of administration of PLX cells stimulate the hematopoietic stem cells (HSCs) of the bone marrow to produce red and white blood cells as well as platelets crucial for the treatment of hematological disorders. The study was conducted in cooperation with the Sharett Institute of Oncology at Hadassah Hospital in Jerusalem.

"Pluristem is extremely pleased at how convincingly this study's data demonstrates that our PLX cells have the ability to stimulate the HSCs involved in rescuing bone marrow. With PLX cells, we may be able to reverse the traditional mindset that if you want to get a systemic effect, you need to inject the cells intravenously," said Liat Flaishon, MD. PhD. BD Director and the Head of the Radiation project at Pluristem.

"We had announced on May 9, 2012 the successful treatment of a pediatric patient whose bone marrow graft was rescued using our PLX cells. This data demonstrates the basis for the successful treatment. In the treatment conducted by Professor Reuven Or from the Bone Marrow Transplantation Unit at Hadassah, PLX cells were given to this patient intramuscularly as well," added Dr. Flaishon.

Prof. Raphael Gorodetsky, Head of the Laboratory of Biotechnology and Radiobiology in the Cancer Research Laboratories of Sharett Institute of Oncology at Hadassah Hospital, has been conducting the animal studies of Pluristem's PLX cells in the past several months. In these studies PLX cells and control medium were administered intramuscularly to C3H mice previously irradiated by a total body dose of 770cGy. The company previously reported initial results from these studies with respect to Acute Radiation Syndrome.

The key results of the Study include:

- After an initial sharp fall, a significant increase in the total number of bone marrow cells extracted from the major bones at 23 days was recorded: from~16million cells/mouse to ~32 million cells/mouse in the PLX treated (p<0.001). Non-irradiated animals had an average of 40 million cells.

- at 23 days a significant increase in the total number of red blood cells was recorded from 3.5 in the surviving controls to 6 million cells/microliter, in comparing the PLX (p<0.001). Non-irradiated animals had an average of 7 million cells/microliter.

Excerpt from:
Pluristem Therapeutics' Cell Therapy Broadens Addressable Markets - Demonstrates Systemic Effectiveness of ...