Author Archives: admin


Malta opposing EU financing for stem cell research on embryos

Stem cell therapy may one day be used to cure disorders such as Fragile-X syndrome, or Cystic fibrosis and other genetic maladies.

Matthew Vella

The Maltese government wants the European Commission to abandon plans to provide funds for research activities on stem cells that involve "the destruction of human embryos".

In a declaration on the ethical principles for the Horizon 2020 programme, which is an 80 billion fund for the EU's programme for research and innovation to create new jobs, the Maltese government said it wanted more detailed guidelines on the bioethical principles that will guide research programmes.

Horizon 2020 will allow the financing of research on human stem cells - both adult and embryonic - as long as it is permitted by the national laws of member states.

The fund however will not finance human cloning, genetic modification, or the creation of human embryos intended for the purpose of research or stem cell procurement.

The European Commission does not explicitly solicit the use of human embryonic stem cells, but Horizon 2020 allows the use of human stem cells according to the objectives of the research, and only if it has the necessary approvals from the member states.

The Maltese declaration echoes previous statements by the Commission of Catholic Bishops of the EC (Comece), which said Horizon 2020 did not include greater protection of human embryos from stem cell research.

Malta says it does not want any such embryos to be used for stem cell research. The statement by the Maltese government said the Horizon 2020 programme "does not take sufficiently into account the therapeutic potential of human adult stem cells."

Malta wants Europe to commit to a reinforcement of research on human adult stem cells, and that Europe should abstain from financing matters of fundamental ethical principles, which differ among member states.

Read more from the original source:
Malta opposing EU financing for stem cell research on embryos

29 Johns Hopkins stem cell researchers awarded funding

Public release date: 30-May-2012 [ | E-mail | Share ]

Contact: Vanessa McMains vmcmain1@jhmi.edu 410-502-9410 Johns Hopkins Medical Institutions

This year the Maryland Stem Cell Research Fund awarded 29 of 40 grants to Johns Hopkins researchers for the study of stem cell metabolism and regulation, the creation of new cell models for human diseases such as schizophrenia and Rett syndrome, which previously could be studied only in animals, and the development of new potential therapies.

Researchers whose preliminary data promised greater discoveries were awarded Investigator-Initiated grants. Jeff Bulte, Ph.D., professor of radiology, biomedical engineering and chemical and biomolecular engineering and a member of the Institute for Cell Engineering, hopes to develop a cell therapy for treatment of type 1 diabetes an autoimmune disorder in which the immune system kills the insulin-producing cells that help regulate blood sugar. By developing cloaked stem and insulin-producing cells that can evade immune system detection, Bulte and his team hope to replace damaged cells and restore insulin levels in patients.

Grants were awarded to:

Several Johns Hopkins investigators were awarded Exploratory grants for researchers either new to the stem cell field or with untested but promising new ideas. Miroslaw Janowski , M.D., Ph.D., a research associate in radiology, plans to develop a stroke treatment by guiding newly introduced brain cells with magnets through blood vessels to the site of injury.

Exploratory grants were awarded to:

Postdoctoral trainees also will receive funding for research projects. A fellow in biomedical engineering, Pinar Huri, Ph.D., will use her award to develop bone grafts with blood vessels inside made from fat tissue-derived stem cells. The grafts would be used in patients with severely damaged bone in need of reconstructive surgery.

Postdoctoral grants were awarded to:

###

See the original post here:
29 Johns Hopkins stem cell researchers awarded funding

Breast stem-cell research: Receptor teamwork is required and a new pathway may be involved

Public release date: 30-May-2012 [ | E-mail | Share ]

Contact: Dian Land dj.land@hosp.wisc.edu 608-261-1034 University of Wisconsin-Madison

MADISON Breast-cancer researchers at the University of Wisconsin-Madison have found that two related receptors in a robust signaling pathway must work together as a team to maintain normal activity in mammary stem cells.

Mammary stem cells produce various kinds of breast cell types. They may also drive the development and growth of malignant breast tumors.

Published recently in the Journal of Biological Chemistry, the research also suggests that a new signaling pathway may be involved, a development that eventually could take cancer-drug manufacturers in a new direction.

"We wanted to know if we could use this knowledge to inform us about what might be the transition that occurs to start tumor growth and maintain it," says senior author Dr. Caroline Alexander, professor of oncology at the McArdle Laboratory for Cancer Research at the School of Medicine and Public Health.

The paper describes new information about the Wnt signaling pathway. Wnt signaling underlies numerous activities in normal development, but when the system is unregulated, cancer often occurs.

"Wnt signaling is very important for both stem cells and tumor growth. We need to know the details of the signaling process so that we can use the positive aspects of Wnt signaling for regenerative medicine, and eliminate the negative cancer-causing aspects," says Alexander, a member of the UW Carbone Cancer Center (CCC).

Regenerative biologists typically add Wnt proteins together with other agents to guide the differentiation of lung, bone and heart stem cells, she notes.

The UW researchers zeroed in on two related Wnt receptors on the cell surface--LRP5 and LRP6. The receptors normally respond to Wnt ligands that approach cells to initiate a signaling cascade inside.

Original post:
Breast stem-cell research: Receptor teamwork is required and a new pathway may be involved

Gaborone could have stem cell storage facility this year

Gaborone could have stem cell storage facility this year

LAWRENCE SERETSE Correspondent

Speaking to Mmegi this week, Mngqibisa said Parliament was set to pave the way for the facility by means of legislation in July and that Cryo-Save intended approaching government about storing stem cells for every Motswana.

"Stem cells are the basic building blocks of our bodies and are often referred to as 'master cells,'" she said.

"And because stem cells have the potential to become almost any other cell in the body, stem cell therapies are the way of the future."

Stem cell treatment is applied to over 70 diseases and disorders, among them leukemia, lymphoma, blood cancers and bone marrow disorders like aplastic anaemia and sickle cell disease.

Mngqibisa said patients requiring a haemopoietic stem transplant will receive cells from one or three sources of bone marrow, circulating blood or umbilical cord blood.

"It is much easier to match transplant patients with immune naive cord blood stem cells than with the other sources of stem cells," she explained. "Umbilical cord blood stem cells are the most naive stem cells, hence they are best harvested from the baby at birth before they are exposed to infections and immune reactions."

She said transplant patients recovered better when they received stem cells from a related donor rather than from an unrelated donor. Brain tumors, lung cancer, plasma cell leukemia, anaemia and osteopetrosis.

Multiple sclerosis and diabetes can also help in tissue building like skin burn repairs. The newborn may be able to use his or her cord blood for some of the conditions on a long list, but not all. In some cases, a matching sibling stem cell would be the first choice.

View post:
Gaborone could have stem cell storage facility this year

LA BioMed's Dr. Patricia Dickson researching treatments for neurodegenerative disorders

Public release date: 30-May-2012 [ | E-mail | Share ]

Contact: Diana Soltesz diana@dsmmedia.com 818-592-6747 Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (LA BioMed)

LOS ANGELES (May 30, 2012) Patricia Dickson, M.D., principal investigator at The Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (LA BioMed), is co-principal investigator of a project that was just awarded a $5.5 million grant from the California Institute for Regenerative Medicine (CIRM). The goal of the project is to develop a stem cell based therapy for the treatment of mucopolysaccharidosis I (MPS I), a fatal pediatric lysosomal storage disease that causes neurodegeneration as well as defects in other major organ systems. Dr. Dickson is working with lead investigator Philip H. Schwartz, Ph.D., senior scientist at the CHOC Children's Research Institute and managing director of the facility's National Human Neural Stem Cell Resource.

For nearly a decade, Dr. Dickson's research at LA BioMed has focused on enzyme replacement therapy for mucopolysaccharidosis, a group of metabolic disorders caused by the absence or malfunctioning of enzymes needed to break down molecules - called glycosaminoglycans - which help build bone, cartilage, connective tissue and other essential parts of the body. As part of this study, she and her colleagues will begin with proof-of-principle experiments for MPS I.

"Dr. Dickson has been at the forefront of mucopolysaccharidosis research for many years, working tirelessly to help develop therapies for MPS I," said David I. Meyer, Ph.D., president and CEO of LA BioMed. "We congratulate her on her continued success, and for her role in this project which could be an important breakthrough for children suffering from neurodegenerative disorders."

"The unique aspect of this research is that it uses a single donor for the transplantation of stem cells into the body and the brain, which allows the best treatment for both physical and neurological disease and avoids rejection of neural stem cell grafts by the host immune system," said Dr. Dickson. "Pediatric neurodegenerative diseases are generally neglected in stem cell research, but stand the greatest chance of success. The high probability of success, along with the need to alleviate suffering in children, is why we believe the first applications of stem cell therapies should be for these kids."

Dr. Schwartz, Dr. Dickson and project collaborators are working to address two critical issues in the development of a therapeutic candidate based on stem cells: that early intervention is not only required but is indeed possible in this patient population, and that the concept of immune tolerance is also required, where the immune system is trained to attack only real threats in the body but not the body's own cells or tissues.

To date, there is still a significant unmet medical need to better impact and prevent the neurodegenerative processes in this disease. If successful in MPS I, this technique can be expanded to help treat other neurodegenerative disorders due to lysosomal storage.

###

About LA BioMed

Follow this link:
LA BioMed's Dr. Patricia Dickson researching treatments for neurodegenerative disorders

Stem Cell Therapy: Healing Force of the future – Video

29-05-2012 11:48 In this episode of Breakthrough Medicine, experts from the University of Miami's Interdisciplinary Stem Cell Institute (ISCI) use adult stem cells to repair organs and save lives. In this episode of Breakthrough Medicine, experts from the University of Miami's Interdisciplinary Stem Cell Institute (ISCI) use adult stem cells to repair organs and save lives. A heart attack victim receives his own stem cells in hopes of repairing his damaged heart muscle, and after all other methods have failed, patients with chronic wounds turn to a revolutionary study that heals broken skin. Can you be saved by your own cells? Watch to find out how unlocking the powers of adult stem cells is changing medicine.

Go here to see the original:
Stem Cell Therapy: Healing Force of the future - Video

UCI researcher wins large research grant

A UC Irvine stem cell researcher won a $4.8-million grant to fund research toward a treatment for multiple sclerosis.

The California Institute for Regenerative Medicine awarded immunologist Thomas Lane, of the campus' Sue and Bill Gross Stem Cell Research Center, an Early Transitional Award last week to create a new line of neural stem cells to treat multiple sclerosis, according to a UCI press release.

"I am delighted that [the California Institute] has chosen to support our efforts to advance a novel stem cell-based therapy for multiple sclerosis," Peter Donovan, director of the research center, said in the release.

Lane is collaborating with Jeanne Loring, director of the Center for Regenerative Medicine at the Scripps Research Institute in La Jolla, and Claude Bernard, a multiple sclerosis researcher at Monash University in Australia.

The research project "really embodies what [the California Institute] is all about, which is bringing science together to treat horrible diseases like multiple sclerosis," said Lane, who is a professor of molecular biology and biochemistry.

Multiple sclerosis is a central nervous system disease that causes inflammation and a loss of myelin, a fatty tissue that insulates and protects nerve cells.

The three are working on a stem cell treatment that will stop myelin loss while promoting the growth of new myelin to mend damaged nerves.

Loring creates the neural stem cells, said Lane, while he is testing the therapeutic effects the cells have on multiple sclerosis cells in animals.

The stem cells are already having a positive effect and the scientists are trying to understand why. They hope to identify the cells that have the most promise before going to clinical trials.

"I really want to thank the [California Institute] for allowing, and for funding, us," Lane said.

Here is the original post:
UCI researcher wins large research grant

Stemedica Stem Cells Approved for Clinical Trials in Mexico for Chronic Heart Failure

SAN DIEGO, May 29, 2012 (GLOBE NEWSWIRE) -- via PRWEB - Stemedica Cell Technologies, Inc. announced today that its strategic partner in Mexico, Grupo Angeles Health Services, has received approval from Mexico's regulatory agency, COFEPRIS, for a Phase I/II single-blind randomized clinical trial for chronic heart failure. COFEPRIS is the Mexican equivalent of the United States FDA. The clinical trial, to be conducted at multiple hospital sites throughout Mexico, will utilize Stemedica's adult allogeneic ischemia tolerant mesenchymal stem cells (itMSC) delivered via intravenous infusion. The trial will involve three safety cohorts at different dosages, followed by a larger group being treated with the maximum safe dosage. The COFEPRIS approval is the second approval for the use of Stemedica's itMSCs. COFEPRIS approved Stemedica's itMSCs in 2010 for a clinical trial for ischemic stroke. These two trials are the only allogeneic stem cell studies approved by COFEPRIS.

Grupo Angeles is a Mexican company that is 100% integrated into the national healthcare development effort. The company is comprised of 24 state-of-the-art hospitals totaling more than 2,000 beds and 200 operating rooms. Eleven thousand Groupo Angeles physicians annually treat nearly five million patients a year. Of these, more than two million are seen as in-patients. In just over two decades, Groupo Angeles has radically transformed the practice of private medicine in Mexico and contributed decisively to reform in the country's health system. Grupo Angeles hospitals conduct an estimated 100 clinical trials annually, primarily with major global pharmaceutical and medical device companies.

"We are pleased that we will be working with the largest and most prestigious private medical institution in Mexico to study Stemedica's product for this indication. If successful, our stem cells may provide a treatment option for the millions of patients, both in Mexico and internationally, who suffer from this condition," said Maynard Howe, PhD, CEO of Stemedica Cell Technologies, Inc.

Roberto Simon, MD, CEO of Grupo Angeles Health Services, noted, "We are proud to be the first organization to bring regulatory-approved allogeneic stem cell treatment to the people of Mexico. We envision that this type of treatment may well become a standard for improving cardiac status for chronic heart failure patients and are pleased to be partnering with Stemedica, one of the leading companies in the field of regenerative medicine."

Nikolai Tankovich, MD, PhD, President and Chief Medical Officer of Stemedica commented, "For the more than five million North Americans who suffer from chronic heart failure, this is an important trial. Our ischemia tolerant mesenchymal stem cells hold the potential to improve ejection fraction--the amount of blood pumped with each heart beat--and therefore, dramatically improve quality of life."

For more information about Stemedica please contact Dave McGuigan at dmcguigan(at)stemedica(dot)com. For more information about Grupo Angeles and the chronic heart failure trial please contact Paulo Yberri at pyberri(at)angelesehealth(dot)com.

About Stemedica Cell Technologies, Inc. Stemedica Cell Technologies, Inc.(http://www.stemedica.com) is a specialty bio-pharmaceutical company committed to the manufacturing and development of best-in-class allogeneic adult stem cells and stem cell factors for use by approved research institutions and hospitals for pre-clinical and clinical (human) trials. The company is a government licensed manufacturer of clinical grade stem cells and is approved by the FDA for its clinical trials for ischemic stroke. Stemedica is currently developing regulatory pathways for a number of medical indications using adult allogeneic stem cells. The Company is headquartered in San Diego, California.

This article was originally distributed on PRWeb. For the original version including any supplementary images or video, visit http://www.prweb.com/releases/stemedica-clinical-trial/chronic-heart-failure/prweb9550806.htm

View original post here:
Stemedica Stem Cells Approved for Clinical Trials in Mexico for Chronic Heart Failure