Author Archives: admin


New FDA-approved stem cell study gives hope to family

LABELLE, Fla.- Two-year old Madeline Conner was born with the inability to hear. But new advances in medical science could offer hope in the form of a stem cell research study.

"I really wanted her in it. It was our one shot," said her mother, Stephanie Conner.

Conner heard about a new FDA-approved stem cell study for hearing loss. She knew right away her little girl was the perfect candidate.

"It's a group of ten kids and she's the first one and the only one so far," she said.

The trial is a collaboration between Children's Memorial Hermann Hospital in Houston and the California-based Cord Blood Registry. "This is the first study FDA regulated looking at the safety and benefit of cord blood stem cells for treatment of acquired sensorineural hearing loss. Which is loss that has to do with the damage of the inner ear and nerve fibers that go to the brain," said Principal Investigator, Dr. Fakhri.

Stem cells, saved from Madeline's own umbilical cord, were injected into her arm.

"We expect that it will be safe. You are using your own blood stem cells as if it was your own transfusion," stated Dr. Fakhri. "It was actually a one-time treatment, just one infusion. Then we keep going, We go four times total, just so they can check her and compare all the testing they did before hand to see if there has been any improvement," said her mom.

In theory, the treatment will adjust Madeline's immune system and will help her body repair itself. In reality, researchers say they have no idea if it will work.

"We've definitely seen a lot of improvement. It's hard to say if it's 100 percent because of this or that. It's just our observation," said Madeline's parents.

"We can not expect what the results will be, but potentially it can repair and restore normal hearing," Fakhri said.

Visit link:
New FDA-approved stem cell study gives hope to family

Critical process in stem cell development identified

ScienceDaily (July 5, 2012) Scientists at the Gladstone Institutes have discovered that environmental factors critically influence the growth of a type of stem cell -- called an iPS cell -- that is derived from adult skin cells. This discovery offers newfound understanding of how these cells form, while also advancing science closer to stem cell-based therapies to combat disease.

Researchers in the laboratory of Gladstone Senior Investigator Shinya Yamanaka, MD, PhD, have for the first time shown that protein factors released by other cells affect the "reprogramming" of adult cells into stem cells known as induced pluripotent stem cells, or iPS cells. The scientists -- who collaborated on this research with colleagues from the University of California, San Francisco (UCSF) -- announce their findings July 5 online in Cell Stem Cell.

In 2007, Dr. Yamanaka discovered a recipe of specific proteins to add to human skin cells as a way to induce them into becoming iPS cells -- which act very much like embryonic stem cells. Many see iPS cell technology as a new platform for drug discovery and the study of disease fundamentals -- while avoiding the ethical issues surrounding research involving embryonic stem cells. But questions remain about the most efficient way to cultivate iPS cells.

"We've reinforced our hypothesis that the cell's environment is vital to the reprogramming process," said Dr. Yamanaka, who did his postdoctoral studies at Gladstone in the 1990s, returning here in 2007 as a senior investigator. "We can now expand our understanding of cell development -- and use iPS cells to model conditions such as Alzheimer's and heart disease."

Normally when researchers convert skin cells into iPS cells, the cells rest on a special layer of materials in a petri dish. The layer includes "feeder" cells that provide nutrients required for the iPS cells to grow and reproduce. In this study, performed at the Roddenberry Center for Stem Cell Biology & Medicine at Gladstone, scientists generated human iPS cell lines by using a method in which the feeder layer secretes a protein called LIF. Dr. Yamanaka, who invented this so-called "Kyoto" method, also directs the Center for iPS Cell Research and Application at Kyoto University and is a professor at UCSF, with which Gladstone is affiliated. UCSF collaborators on this research include co-senior author Barbara Panning, PhD, and Karen Leung, PhD.

The researchers then analyzed LIF's importance in the growth of female iPS cells. Female iPS cells contain two copies of the X-chromosome, which is one of two sex chromosomes. While males carry one X and one Y-chromosome, females' two X-chromosomes could result in a potentially toxic double dose of genes -- except for a unique evolutionary mechanism whereby one of the two X's is silenced in a process known as "X-inactivation." This process, which occurs early during the development of the embryo, ensures that females, like males, have one functional copy of the X-chromosome in each cell. But exactly how X-inactivation happens is unknown.

To research this, Gladstone scientists generated female iPS cells on feeder layers without LIF and found that one of the X-chromosomes in each iPS cell remained silent. Those iPS cells that grew on a layer of cells with the LIF protein, however, grew with two activated X-chromosomes. Then, by taking a cell from a non-LIF cell layer and transferring it to a LIF-cell layer, the iPS cell's inactive X-chromosome switched on and became even more like embryonic stem cells. These results are crucial for future studies of how iPS cells grow and mature. And because this iPS technology lets scientists create stem cells from patients with a specific disease, this new finding could lead to a far-superior human model for studying disease and testing new drugs.

"These results will make it possible to readily generate stable, double-active, higher-quality X-chromosome iPS cells, and study the process more closely," said Gladstone Research Scientist Kiichiro Tomoda, PhD, who is the paper's lead author "Our findings also reinforce work from other Gladstone scientists showing that the cell environment is critical to the reprogramming process."

Other scientists who participated in this research at Gladstone include Kirsten Eilertson, PhD, Mark White, Salma Sami, Bruce Conklin, MD and Deepak Srivastava, MD. Funding came from a variety of sources, including the California Institute for Regenerative Medicine, the National Institutes of Health, the Roddenberry Foundation and the L.K. Whittier Foundation.

Share this story on Facebook, Twitter, and Google:

View original post here:
Critical process in stem cell development identified

Mrs. Itana, a diabetic nephropathy from Papua New Guinean for Stem Cells and TCM Treatment – Video

02-07-2012 21:07 Mrs Itana was diagnosed with diabetic nephropathy 15 years ago and in February, 2012 she was told by her doctor her kidneys did not work well and dialysis was necessary. Before she came to China for STEM CELL and TRANDITIONAL CHINESE MEDICINE TREATMENT, she was hospitalized in local couple of times because she was very weak and had short of breath, heart failure and so many. After the first stem cells transplant, she felt she was back 16 years old person and so energetic. Therefore, she wants to share his treatment experiences to all kidney disease patients and wish her words and successful experience can be widely spread out. And, more of the cancer patients can seek for the proper treatment in China. And yet, in her country Mrs Itana only has one choice -- kidney transplant.

See the article here:
Mrs. Itana, a diabetic nephropathy from Papua New Guinean for Stem Cells and TCM Treatment - Video

Adult stem cells from bone marrow: Cell replacement/tissue repair potential in adult bone marrow stem cells in animal …

ScienceDaily (July 3, 2012) searchers from the University of Maryland School of Maryland report promising results from using adult stem cells from bone marrow in mice to help create tissue cells of other organs, such as the heart, brain and pancreas -- a scientific step they hope may lead to potential new ways to replace cells lost in diseases such as diabetes, Parkinson's or Alzheimer's.

The research in collaboration with the University of Paris Descartes is published online in the June 29, 2012 edition of Comptes Rendus Biologies, a publication of the French Academy of Sciences.

"Finding stem cells capable of restoring function to different damaged organs would be the Holy Grail of tissue engineering," says lead author David Trisler, PhD, assistant professor of neurology at the University of Maryland School of Medicine.

He adds, "This research takes us another step in that process by identifying the potential of these adult bone marrow cells, or a subset of them known as CD34+ bone marrow cells, to be 'multipotent,' meaning they could transform and function as the normal cells in several different organs."

University of Maryland researchers previously developed a special culturing system to collect a select sample of these adult stem cells in bone marrow, which normally makes red and white blood cells and immune cells. In this project, the team followed a widely recognized study model, used to prove the multipotency of embryonic stem cells, to prove that these bone marrow stem cells could make more than just blood cells. The investigators also found that the CD34+ cells had a limited lifespan and did not produce teratomas, tumors that sometimes form with the use of embryonic stem cells and adult stem cells cultivated from other methods that require some genetic manipulation.

"When taken at an early stage, we found that the CD34+ cells exhibited similar multipotent capabilities as embryonic stem cells, which have been shown to be the most flexible and versatile. Because these CD34+ cells already exist in normal bone marrow, they offer a vast source for potential cell replacement therapy, particularly because they come from a person's own body, eliminating the need to suppress the immune system, which is sometimes required when using adults stem cells derived from other sources," explains Paul Fishman, MD, PhD, professor of neurology at the University of Maryland School of Medicine.

The researchers say that proving the potential of these adult bone marrow stem cells opens new possibilities for scientific exploration, but that more research will be needed to see how this science can be translated to humans.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

Go here to see the original:
Adult stem cells from bone marrow: Cell replacement/tissue repair potential in adult bone marrow stem cells in animal ...

Study results: Adult stem cells from bone marrow

Public release date: 3-Jul-2012 [ | E-mail | Share ]

Contact: Sharon Boston sboston@umm.edu 410-328-8919 University of Maryland Medical Center

Baltimore, MD July 3, 2012. Researchers from the University of Maryland School of Maryland report promising results from using adult stem cells from bone marrow in mice to help create tissue cells of other organs, such as the heart, brain and pancreas - a scientific step they hope may lead to potential new ways to replace cells lost in diseases such as diabetes, Parkinson's or Alzheimer's. The research in collaboration with the University of Paris Descartes is published online in the June 29, 2012 edition of Comptes Rendus Biologies, a publication of the French Academy of Sciences.

"Finding stem cells capable of restoring function to different damaged organs would be the Holy Grail of tissue engineering," says lead author David Trisler, PhD, assistant professor of neurology at the University of Maryland School of Medicine.

He adds, "This research takes us another step in that process by identifying the potential of these adult bone marrow cells, or a subset of them known as CD34+ bone marrow cells, to be 'multipotent,' meaning they could transform and function as the normal cells in several different organs."

University of Maryland researchers previously developed a special culturing system to collect a select sample of these adult stem cells in bone marrow, which normally makes red and white blood cells and immune cells. In this project, the team followed a widely recognized study model, used to prove the multipotency of embryonic stem cells, to prove that these bone marrow stem cells could make more than just blood cells. The investigators also found that the CD34+ cells had a limited lifespan and did not produce teratomas, tumors that sometimes form with the use of embryonic stem cells and adult stem cells cultivated from other methods that require some genetic manipulation.

"When taken at an early stage, we found that the CD34+ cells exhibited similar multipotent capabilities as embryonic stem cells, which have been shown to be the most flexible and versatile. Because these CD34+ cells already exist in normal bone marrow, they offer a vast source for potential cell replacement therapy, particularly because they come from a person's own body, eliminating the need to suppress the immune system, which is sometimes required when using adults stem cells derived from other sources," explains Paul Fishman, MD, PhD, professor of neurology at the University of Maryland School of Medicine.

The researchers say that proving the potential of these adult bone marrow stem cells opens new possibilities for scientific exploration, but that more research will be needed to see how this science can be translated to humans.

"The results of this international collaboration show the important role that University of Maryland School of Medicine researchers play in advancing scientific understanding, investigating new avenues for the development of potentially life-changing treatments," says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs at the University of Maryland and the John Z. and Akiko K. Bowers Distinguished Professor and dean of the University of Maryland School of Medicine.

This project builds on three decades of collaboration between the American and French researchers, particularly Dr. Bernard Pessac of the University of Paris Descartes and Dr. Trisler at the University of Maryland. Researchers from the Multiple Sclerosis Center of Excellence at the Baltimore Veterans Administration Medical Center also contributed to the study.

Link:
Study results: Adult stem cells from bone marrow

Cryo-Cell Leadership Sets the Record Straight on Efforts to Date

OLDSMAR, Fla., July 3, 2012 (GLOBE NEWSWIRE) -- via PRWEB - Cryo-Cell International, Inc. [OTCQB Symbol: CCEL] updated shareholders with results achieved by the current Board's leadership, which is being challenged for control of the company by previous Board members Ki Yong Choi and his brother-in-law.

In the last six months, the implementation of a national outside sales force resulted in increased referrals from obstetricians. In addition, product offerings were expanded and the corporate message was changed to emphasize Cryo-Cell's position as the industry founder. These changes required an investment which Cryo-Cell's Board believes will generate significant future value for the company's shareholders.

The current management team signed a contract with Cryo-Cell International's former affiliate, Cryo-Cell de Mexico (Mexico), whereby Mexico agreed to pay the Company nearly $1.9 million over a three year period.1 Under the previous Board, on which Choi served, Mexico terminated its contract with Cryo-Cell due to a breach by Cryo-Cell, potentially costing the company up to $4.8 million in future royalty payments.

In fiscal 2012, during its first year, the current leadership and Board negotiated the termination of some perpetual revenue sharing agreements (RSAs), a move that should save the company nearly $500,000 annually. RSAs were put in place to provide seed-stage financing and cost the company nearly $1.4 million in interest payments in 2011. The previous Board, on which Choi served, did not terminate any RSAs.

Cryo-Cell Chairman David Portnoy noted that he and Director Jonathan Wheeler M.D. purchased Cryo-Cell common stock in 2012 because they are confident about the company's future as a result of the Board's continuing efforts.

Shareholders are urged to vote for the company's slate of Board nominees by completing the white voting card. The shareholder meeting is set for July 10, 2012, in Oldsmar, Florida.

1 Cryo-Cell International Inc. Form 10-Q Financial Statement Footnote #5 filed with the Securities and Exchange Commission April 16, 2012.

About Cryo-Cell International, Inc.

Cryo-Cell International, Inc. was founded in 1989. In 1992, it became the first private cord blood bank in the world to separate and store stem cells. Today, nearly 500,000 parents worldwide trust Cryo-Cell to preserve their newborns' stem cells. Cryo-Cell's mission is to provide clients with state-of-the-art stem cell cryopreservation services and support the advancement of regenerative medicine. Cryo-Cell operates in a facility that is compliant with Good Manufacturing Practice and Good Tissue Practice (cGMP/cGTP). It is ISO 9001:2008 certified and accredited by the American Association of Blood Banks. Cryo-Cell is a publicly traded company, OTC:QB Markets Group Symbol: CCEL.

Forward-Looking Statements

Read this article:
Cryo-Cell Leadership Sets the Record Straight on Efforts to Date

Ireland could be stem cell research hub

Tuesday, July 03 16:25:12

Ireland has the capacity to be an international centre for commercialisation in the field of regenerative medicine, delegates at an international stem cell conference in NUI Galway heard today.

Reflecting this potential, new Irish company Orbsen Therapeutics is developing proprietary technologies designed to isolate stem cells. The NUI Galway spin-out is targeting the rapidly maturing and expanding regenerative medicine market, which is expected to grow to $118 billion next year.

Frank Barry is Professor of Cellular Therapy at NUI Galway, Director of Orbsen Therapeutics, and organiser of the Mesenchymal Stem Cell Conference, which opened yesterday.

Mesenchymal stem cells (MSCs) are a type of adult stem cell, and this event brings together the world's leading scientists in the field to discuss their latest ideas and findings. This is the first major stem cell conference to take place in Ireland, and is looking at all aspects of adult stem cells, from basic biology to manufacturing to clinical trials and therapeutics.

Stem cells hold great promise as an alternative to drugs and surgical procedures for treating a wide range of medical conditions including heart disease, arterial disease of the limbs, diabetes complications, arthritis and other inflammatory conditions. The treatment potential of stem cells is linked to their natural capacity to dampen inflammation and promote healing, repair and regeneration of damaged tissues.

According to Professor Barry: "Ireland has a strong research base in adult stem cell therapy and has the capcacity for advanced stem cell bioprocessing. There is huge potential in this market and we anticipate that there will be extraordinary growth over the next 5-10 years. There are currently over 400 regenerative medicine products on the market with many more in development." Orbsen Therapeutics has developed a clear pipeline of clinical indications which they hope, using their proprietary technologies, to bring through to clinical trial over the coming years. These include osteoarthritis, acute lung injury syndrome, diabetic foot ulcer, critical limb ischemia and others."

"Combining the utility, novelty and the value of its technologies, Orbsen is well placed to take advantage of the many opportunities in this fast moving and important emerging market", said Brian Molloy, CEO of Orbsen Theraepeutics."

Orbsen Therapeutics Limited was formed as a spin out company to develop and commercialise new intellectual property built up by researchers at the SFI-funded Regenerative Medicine Institute (REMEDI) at NUI Galway.

Scientists at NUI Galway are investigating how adult stems cells might be used to develop new treatments for vascular disease, osteoarthritis and lung injury. The University has become a leading centre of translational research in adult stem cells involving its National Centre for Biomedical Engineering Science (NCBES) and REMEDI.

Read more:
Ireland could be stem cell research hub

Stem Cell Therapy Shown to be Effective in Treating Liver Cirrhosis

SHENZHEN, China, July 3, 2012 /PRNewswire-Asia/-- A study conducted by Beike Biotechnology Company (http://www.beikebiotech.com) in conjunction with physicians and researchers at two Chinese hospitals, documents the effectiveness of cord blood-derived stem cells in treating primary biliary cirrhosis (PBC). The study, which was published in the April 2012 issue of the Stem Cell Discovery, was the first of its kind. Researchers noted that additional clinical trials would be required before stem cells can become an accepted therapy for liver cirrhosis.

Prof. Jin-hui Yang, Director of the Department of Hepatology in the 2nd Affiliated Hospital of Kunming Medical College stated, "Given the severity of liver cirrhosis and its related conditions, and the limited number of options available to treat those who suffer from it, this finding represents an important, potentially significant breakthrough."

PBC is a chronic, progressive liver disease that leads eventually to fibrosis and cirrhosis of the liver. It affects 1 in 1,000 women over the age of 40.Approximately one-third of those who suffer from PBC and its related conditions do not respond well to Ursodeoxycholic acid (UDCA) treatment, which is the only currently FDA-approved standard medical treatment for the condition. Many of those patients ultimately require liver transplantation.

Beike Chairman, Dr. Sean Hu, commented, "With a growing body of research that demonstrates the effectiveness of cord blood-derived stem cell therapies in treating a broad range of chronic conditions, this latest study is a milestone in the continuing effort to gain broad acceptance and recognition of regenerative medicine as a mainstream treatment option.We look forward to conducting more comprehensive clinical trials to attempt to validate the positive outcomes we have already observed."

The case study reported in the Stem Cell Discovery involved a 58 year old woman suffering from PBC who developed an incarcerated hernia and uncontrolled hydrothorax after undergoing UDCA treatment.One week after completing two stem cell transplantations with no observed adverse effects, the patient showed improvement in both liver function and in her general condition. She was released from the hospital but continued to receive twice-daily UDCA treatments. Six months after her discharge, doctors observed continued improvements in her liver function and overall condition.

To review the full text of the published study, please visit: http://www.scirp.org/journal/PaperInformation.aspx?paperID=18710. Study authors included physicians and researchers from the 2nd Affiliated Hospital of Kunming Medical College, Beike Biotechnology Company, and the Yunnan Provincial 1st People's Hospital in Kunming, China.

About Beike Biotechnology Company

Shenzhen Beike Biotechnology Co., Ltd. is China's leading biotechnology company focusing on the production of adult stem cells for use in medical therapies. Headquartered in Shenzhen (near Hong Kong) with a flagship regenerative medicine facility at the China Medical City in Jiangsu province, Beike produces a full line of stem cell products derived from umbilical cord, cord blood and autologous bone marrow.

For any questions regarding this release, please call:

Contact Person: T. Gutmann Phone Number: +86-532-6677-6659

Original post:
Stem Cell Therapy Shown to be Effective in Treating Liver Cirrhosis

ACT Announces Second Patient with Stargardt’s Disease Treated in EU Clinical Trial

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (ACT; OTCBB: ACTC), a leader in the field of regenerative medicine, today announced treatment of the second patient in its Phase 1/2 clinical trial for Stargardts macular dystrophy (SMD) using retinal pigment epithelial (RPE) cells derived from human embryonic stem cells (hESCs). The surgery was performed on Friday, June 29 at Moorfields Eye Hospital in London, the same site as the first patient treatment in January, by a team of surgeons led by Professor James Bainbridge, consultant surgeon at Moorfields and Chair of Retinal Studies at University College London. The procedure was successfully performed without any complications. ACT and Moorfields Eye Hospital recently received clearance from the Data and Safety Monitoring Board (DSMB) to treat the final two patients in the first cohort of this clinical trial.

We are very pleased to continue our forward momentum with both our U.S. trials and our European trial, commented Gary Rabin, chairman and CEO. It was less than a month ago that we received DSMB approval to treat the second and third patients in our E.U. trial, and it is very gratifying to have already completed dosing of the second. It is a pleasure to be working with Professor Bainbridge and the rest of his team at Moorfields Eye Hospital, and we continue to be encouraged by the steady progress of the trial thus far.

The Phase 1/2 trial is designed to determine the safety and tolerability of hESC-derived RPE cells following sub-retinal transplantation in patients with SMD at 12 months, the studys primary endpoint. It will involve a total of 12 patients, with cohorts of three patients each in an ascending dosage format. It is similar in design to the U.S. trial for SMD that was initiated in July 2011.

The European Medicines Agency's (EMA) Committee for Orphan Medicinal Products (COMP) has officially designated ACT's human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells as an orphan medicinal product for the treatment of Stargardt's Macular Dystrophy (SMD).

More information on the status of the companys clinical trials will be posted today on Mr. Rabins Chairmans blog.

About Stargardts Disease Stargardts disease or Stargardts Macular Dystrophy is a genetic disease that causes progressive vision loss, usually starting in children between 10 to 20 years of age. Eventually, blindness results from photoreceptor loss associated with degeneration in the pigmented layer of the retina, called the retinal pigment epithelium, which is the site of damage that the company believes the hESC-derived RPE may be able to target for repair after administration.

About Advanced Cell Technology, Inc. Advanced Cell Technology, Inc. is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.

Forward-Looking Statements Statements in this news release regarding future financial and operating results, future growth in research and development programs, potential applications of our technology, opportunities for the company and any other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words will, believes, plans, anticipates, expects, estimates, and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including: limited operating history, need for future capital, risks inherent in the development and commercialization of potential products, protection of our intellectual property, and economic conditions generally. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in the companys periodic reports, including the report on Form 10-K for the year ended December 31, 2011. Forward-looking statements are based on the beliefs, opinions, and expectations of the companys management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. Forward-looking statements are based on the beliefs, opinions, and expectations of the companys management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. There can be no assurance that the Companys clinical trials will be successful.

Here is the original post:
ACT Announces Second Patient with Stargardt’s Disease Treated in EU Clinical Trial