Author Archives: admin


FDA report faults Houston stem-cell company

The Sugar Land company involved in Gov. Rick Perry's unlicensed adult stem-cell procedure is rife with basic manufacturing problems, according to the U.S. Food and Drug Administration.

In a report one expert called a blow to the entire adult stem-cell industry, the FDA found that Celltex Therapeutics Corp. cannot guarantee the sterility, uniformity and integrity of stem cells it takes from people and then stores and grows for eventual therapeutic reinjection.

"You have not performed a validation of your banking and thawing process to assure viability" of the stem cells, reads the April 27 report, meaning that the company cannot verify the cells are alive.

The FDA report, which followed an April 16-27 inspection of Celltex, was released under the Freedom of Information Act Monday to the Houston Chronicle and a University of Minnesota bioethicist who complained in February that Celltex is a potential danger to patients and not in compliance with federal law.

The report, partially redacted, was not accompanied by a warning letter.

A former FDA official who asked not to be identified, however, said the deficiencies - 79 in all, from incorrectly labeled products to failed sterility tests - are so serious that Celltex risks being shut down if it does not remedy the problems quickly.

Adult stem cells are cells in the body that multiply to replenish dying cells. Long used to treat leukemia and other cancers, they have shown promise for tissue repair in many other diseases in the last decade, although most scientists in the field consider them not ready for mainstream use.

Rules take effect July 8

Celltex has been in the public eye since it was revealed that Perry's Houston doctor treated him with his own stem cells during back surgery last July and in follow-up appointments. His stem cells were stored and grown at Celltex.

Perry subsequently called for Texas to become the nation's leader of adult stem cell medicine, which he touts as an ethical alternative to embryonic stem cells. Perry worked with his Houston doctor and a state representative to write legislation intended to commercialize the therapy in Texas.

See the rest here:
FDA report faults Houston stem-cell company

Magnet helps target transplanted iron-loaded cells to key areas of heart

Optimal stem cell therapy delivery to damaged areas of the heart after myocardial infarction has been hampered by inefficient homing of cells to the damaged site. However, using rat models, researchers in France have used a magnet to guide cells loaded with iron oxide nanoparticles to key sites, enhancing the myocardial retention of intravascularly delivered endothelial progenitor cells.

The study is published in a recent issue of Cell Transplantation (21:4), now freely available online.

"Cell therapy is a promising approach to myocardial regeneration and neovascularization, but currently suffers from the inefficient homing of cells after intracavitary infusion," said Dr. Philippe Menasche of the INSERM U633 Laboratory of Surgical Research in Paris. "Our study was aimed at improving and controlling homing by loading human cord-blood-derived endothelial progenitor cells (EPCs) for transplant with iron oxide nanoparticles in order to better position and retain them in the hearts of myocardial-injured test rats by using a subcutaneously implanted magnet."

The researchers found that the cells were sufficiently magnetic to be able to be remotely manipulated by a magnet subsequent to implantation.

According to the researchers, an objective assessment of the technique to enhance the homing of circulating stem cells is the ability to track their fate in vivo. This was accomplished by visualization with MRI.

"We found a good correlation between MRI non-invasive follow-up of the injected cells and immunofluoresence or quantitative PCR data," said Dr. Menasche. The researchers concluded that further studies were needed to follow cell homing at later time points. They noted that the magnitude of homing they experienced may have been reduced by the relatively small number of cells used, owing to their large size and the subsequent risk of coronary thrombosis.

"In a rat model of myocardial infarction, this pilot study suggested homing of circulating stem cells can be improved by magnetic targeting and warrants additional benchwork to confirm the validity of concept," said Dr. Menasche. "There is also a need to optimize the parameters of targeting and assess the relevance of this approach in a clinically relevant large animal model."

"This study highlights the use of magnets to target transplanted cells to specific sites which could increase their regenerative impact. Factors to still be extensively tested include confirming the safety of the cells containing the magnetic particles and whether this process alters the cell's abilities" said Dr. Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation.

More information: Chaudeurge, A.; Wilhelm, C.; Chen-Tournoux, A.; Farahmand, P.; Bellamy, V.; Autret, G.; Mnager, C.; Hagge, A.; Larghro, J.; Gazeau, F.; Clment, O.; Menasch, P. Can Magnetic Targeting of Magnetically Labeled Circulating Cells Optimize Intramyocardial Cell Retention? Cell Transplant. 21 (4):679-691; 2012.

Journal reference: Cell Transplantation

Go here to see the original:
Magnet helps target transplanted iron-loaded cells to key areas of heart

HemoGenix® FDA Master File to Measure Blood Stem Cell Potency for Cellular Therapy Products:

COLORADO SPRINGS, Colo.--(BUSINESS WIRE)--

HemoGenix announced today that FDA CBER has given HemoGenix its first Master File Number for an in vitro blood stem cell potency, quality and release assay (HALO-96 PQR) (1)for cellular therapy products(2)used for stem cell transplantation purposes. HALO-96 PQR is the first commercially available stem cell potency assay for cellular therapy products. It incorporates the most sensitive readout available to measure changes in the cells energy source (ATP) as a function of the potential for stem cells to proliferate. Potency and quality of stem cell therapeutic products are required to be measured prior to use to help predict the engraftment of the cells in the patient. At the present time, tests such as cell number, viability and a stem cell marker called CD34 are routinely used. However, none of these tests specifically measure stem cells and none determine the stem cell biological activity required for a potency assay. The only cell functionality test presently used in this field, especially for umbilical cord blood transplantation, is the colony-forming unit (CFU) assay, which is subjective, non-validated and has been used since the early 1970s. HALO-96 PQR changes this paradigm. It is particularly needed in the umbilical cord blood stem cell transplantation field by providing an application-specific test incorporating all of the compliance characteristics required not only by regulatory agencies(3) and standards organizations, but also the cord blood community(4).

Stem cell potency is one of the most important parameters necessary for any therapeutic product, especially stem cells. Without it, the dose cannot be defined and the transplantation physician has no indication as to whether the product will engraft in the patient. The number of cord blood units collected and stored and the number of cord blood stem cell transplantations have increased exponentially over the last 12 years. During this time, significant advancements have been made in pre- and post stem cell transplantation procedures. Yet the tests used during the preparation and processing of the cells have remained unchanged and do not even measure the biological functionality of the stem cells being transplanted. Indeed, the standards organizations responsible for applying regulatory guidance to the community have so far failed to allow any new and alternative assays to be used during cord blood processing. HALO-96 PQR is the first test that actually quantitatively characterizes and defines the stem cells in cord blood, mobilized peripheral blood or bone marrow as high quality and potent active ingredients for release prior to transplantation. Presently, approximately 20% engraftment failure is encountered in cord blood transplantation. HALO-96 PQR could help reduce the risk of engraftment failure by providing valuable and time-sensitive information on the stem cells prior to use. HALO-96 PQR complies with the guidelines not only with the cord blood community, but also with regulatory agencies thereby providing a benefit to both the stem cell transplantation center and the patient, said Ivan Rich, Founder and CEO of HemoGenix (www.hemogenix.com).

About HemoGenix, Inc.

HemoGenix is a privately held Contract Research Service and Assay Development Laboratory based in Colorado Springs, Colorado. Specializing in predictive in vitro stem cell toxicity testing, HemoGenix provides its services to small, medium and many of the largest biopharmaceutical companies. HemoGenix has developed several assays for stem cell therapy and regenerative medicine applications. These and other patented and proprietary assays are manufactured and produced in Colorado Springs and sold worldwide. HemoGenix has been responsible for changing the paradigm and bringing in vitro stem cell hemotoxicity testing into the 21st century. With HALO-96 PQR the company is now also changing the paradigm to become a leader in stem cell therapy assays. To this end, HemoGenix is a member of the Alliance for Regenerative Medicine and working with other companies to decrease risk and improve safety for the patient.

Literature Cited

Original post:
HemoGenix® FDA Master File to Measure Blood Stem Cell Potency for Cellular Therapy Products:

FDA Criticizes Perry’s Stem Cell Lab

HOUSTON (AP) - The U.S. Food and Drug Administration has issued a new report criticizing the Texas company that stored adult stem cells from Texas Gov. Rick Perry for use in an experimental procedure for his back pain, according to a newspaper report Monday.

An FDA report obtained by the Houston Chronicle said CellTex Therapeutics cannot guarantee the stem cells it takes from patients remain sterile and alive. The nine-page report dated April 27 says the lab, located in the Houston suburb of Sugar Land, does not have procedures to prevent contamination of products that are supposed to be sterile.

The report also says the lab didnt have written records of investigations into the failure of a batch of cells. It also says the lab has not marked some lab products properly.

The deficiencies identified reflect significant problems, serious issues, said Paul Knoepfler, an associate professor at the University of California-Davis School of Medicine, in an interview with the newspaper. If I were a patient, they would scare me off big time.

CellTex was thrust into the news last year when Perry, then running for the Republican nomination for president, revealed that he had stem cells taken from fat in his body, grown in a lab and then injected into his back during a July operation to address his back pain.

Perrys stem cells were stored and grown at CellTex, the Chronicle reported. The firm is co-owned by Dr. Stanley Jones, Perrys friend who performed the operation.

Subsequently, the Texas Medical Board approved new rules on similar experimental stem cell therapies. Perry appointed the board. The FDA has not approved any adult stem cell therapies for orthopedic use, but experimentation by doctors in the U.S. and abroad is common.

Some scientists tout possible benefits of stem cell treatments, including treatment for heart disease, diabetes and some cancers. Others argue adult stem cell experimentation actually increases the risk of cancer and can cause blood clots.

A Perry spokeswoman called Perrys surgery a success and reaffirmed his commitment to adult stem cell research. She said the FDA report was between the agency and CellTex.

CellTex CEO David Eller said the company invited the FDA inspection, which took place over nearly two weeks in April, according to the report.

See original here:
FDA Criticizes Perry’s Stem Cell Lab

FDA: Stem cell lab used by Perry has problems

The U.S. Food and Drug Administration has issued a new report criticizing the Texas company that stored adult stem cells from Texas Gov. Rick Perry for use in an experimental procedure for his back pain, according to a newspaper report Monday.

An FDA report obtained by the Houston Chronicle ( http://bit.ly/MwEHjI) said CellTex Therapeutics cannot guarantee the stem cells it takes from patients remain sterile and alive. The nine-page report dated April 27 says the lab, located in the Houston suburb of Sugar Land, does not have procedures to prevent contamination of products that are supposed to be sterile.

The report also says the lab didn't have written records of investigations into the failure of a batch of cells. It also says the lab has not marked some lab products properly.

"The deficiencies identified reflect significant problems, serious issues," said Paul Knoepfler, an associate professor at the University of California-Davis School of Medicine, in an interview with the newspaper. "If I were a patient, they would scare me off big time."

CellTex was thrust into the news last year when Perry, then running for the Republican nomination for president, revealed that he had stem cells taken from fat in his body, grown in a lab and then injected into his back during a July operation to address his back pain.

Perry's stem cells were stored and grown at CellTex, the Chronicle reported. The firm is co-owned by Dr. Stanley Jones, Perry's friend who performed the operation.

Subsequently, the Texas Medical Board approved new rules on similar experimental stem cell therapies. Perry appointed the board. The FDA has not approved any adult stem cell therapies for orthopedic use, but experimentation by doctors in the U.S. and abroad is common.

Some scientists tout possible benefits of stem cell treatments, including treatment for heart disease, diabetes and some cancers. Others argue adult stem cell experimentation actually increases the risk of cancer and can cause blood clots.

A Perry spokeswoman called Perry's surgery a "success" and reaffirmed his commitment to adult stem cell research. She said the FDA report was between the agency and CellTex.

CellTex CEO David Eller said the company invited the FDA inspection, which took place over nearly two weeks in April, according to the report.

Read the rest here:
FDA: Stem cell lab used by Perry has problems

FDA report faults Houston-area stem-cell company

The Sugar Land company involved in Gov. Rick Perry's unlicensed adult stem-cell procedure is rife with basic manufacturing problems, according to the U.S. Food and Drug Administration.

In a report one expert called a blow to the entire adult stem-cell industry, the FDA found that Celltex Therapeutics Corp. cannot guarantee the sterility, uniformity and integrity of stem cells it takes from people and then stores and grows for eventual therapeutic reinjection.

"You have not performed a validation of your banking and thawing process to assure viability" of the stem cells, reads the April 27 report, meaning that the company cannot verify the cells are alive.

The FDA report, which followed an April 16-27 inspection of Celltex, was released under the Freedom of Information Act Monday to the Houston Chronicle and a University of Minnesota bioethicist who complained in February that Celltex is a potential danger to patients and not in compliance with federal law.

The report, partially redacted, was not accompanied by a warning letter.

A former FDA official who read it, however, said the deficiencies - 79 in all, from incorrectly labeled products to failed sterility tests - are so serious that Celltex risks being shut down if it does not remedy the problems quickly. The former official asked not to be identified.

Adult stem cells are cells in the body that multiply to replenish dying cells. Long used to treat leukemia and other cancers, they have shown promise for tissue repair in many other diseases in the last decade, although most scientists in the field consider them not ready for mainstream use.

Rules take effect Friday

Celltex has been in the public eye since it was revealed that Perry's Houston doctor treated him with his own stem cells during back surgery last July and in follow-up appointments. His stem cells were stored and grown at Celltex.

Perry subsequently called for Texas to become the nation's leader of adult stem cell medicine, which he touts as an ethical alternative to embryonic stem cells. Perry worked with his Houston doctor and a state representative to write legislation intended to commercialize the therapy in Texas.

See the original post:
FDA report faults Houston-area stem-cell company

TaiGen Biotechnology Out-Licensed China Rights of Novel Antibiotic, Nemonoxacin, to Zhejiang Medicine

TAIPEI, June 25, 2012 /PRNewswire-Asia/ -- TaiGen Biotechnology Company, Limited ("TaiGen") and Zhejiang Medicine Company, Limited ("ZMC") today announced that they have signed an exclusive agreement to manufacture and commercialize nemonoxacin, a novel broad-spectrum antibiotic, in China (excluding Hong Kong, and Macau). Nemonoxacin is a novel broad-spectrum non-fluorinated quinolone antibiotic under development for respiratory infections. TaiGen will be responsible for completing the Phase 3 clinical trial for community acquired pneumonia ("CAP") in China. ZMC will be responsible for manufacturing, sales and marketing of nemonoxacin in China through its wholly-owned subsidiary, XinChang Pharmaceuticals. TaiGen will retain full development and commercialization rights outside the licensed territory including Taiwan, the United States, European Union, and Japan. Under the terms of the agreement, TaiGen will receive an upfront payment of US$ 8 million from ZMC and will receive additional milestones as well as royalties on product sales. The term of the agreement is 20 years.

Nemonoxacin has demonstrated efficacy and safety in CAP and diabetic foot infection in multinational and multi-center clinical trials conducted by TaiGen. In particular, nemonoxacin has excellent activity against drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and quinolone-resistant MRSA. Nemonoxacin is taken once-a-day and available in both oral and intravenous formulations. Currently, TaiGen is completing a Phase 3 CAP trial with more than 500 patients from Taiwan and mainland China and expects to file new drug applications in Taiwan and mainland China simultaneously in early 2013.

China is one of the major antibiotic markets in the world. According to IMS, the sales of antibiotics in 2011 were approximately US$ 11 billion (RMB 68 billion) and account for almost 20% of the total pharmaceuticals sales. Rate of antibiotic resistant infections in China is among the highest in the world.

Mr. Li Chun Bo, Chairman of the ZMC, commented, "We are impressed with nemonoxacin's broad spectrum activity towards drug-resistant bacteria, in particular, MRSA, and excellent safety profile. We are excited to establish this partnership with TaiGen because of its reputation as a premier research-based biotech company in Asia. This partnership will break new ground for cross-strait collaboration in the pharmaceutical industry. Nemonoxacin will be a major addition to ZMC's antibiotic product line and significant profit driver".

Dr. Ming-Chu Hsu, President and Chief Executive Officer of TaiGen, said, "China is the world's fastest growing pharmaceutical market. It is poised to overtake Japan as the second largest pharmaceutical market. We are extremely please to establish our nemonoxacin partnership with ZMC, a first-class pharmaceutical company and major player in the Chinese antibiotics market. With nemonoxacin, TaiGen and ZMC together will bring new medicine to treat unmet medical needs in China. This partnership will not only set a new record for pharmaceutical licensing involving a Taiwanese and a mainland Chinese company but hopefully will also become a model of the future collaborations," Dr. Hsu also added, "With the conclusion of the partnership in China, we will actively pursue nemonoxacin licensing discussions in other territories such as European Union."

About Zhejiang Medicine

Zhejiang Medicine Company, Limited is a leading pharmaceutical company in China specializing in sales and distribution of pharmaceuticals and manufacturing of active pharmaceutical ingredients (vitamins and antibiotics). Its sales revenue in 2011 is US $740 million (RMB 4.8 billion). ZMC is a leader in the Chinese antibiotic market with levofloxacin, vancomycin, and teicoplanin in the product line. ZMC's Lai Li Xin, a branded levofloxacin, is one of the top selling antibiotics in China with 2011 sales exceeding US $110 million (RMB 735 million). In addition to pharmaceuticals sales, ZMC is also known for its manufacturing quality. Its vancomycin active pharmaceutical ingredient has obtained GMP qualification from US Food and Drug Administration (FDA) and exported to western countries. ZMC is publicly listed in the Shanghai Stock Exchange (600216) and has a market capitalization of RMB 11 billion.

About TaiGen Biotechnology

TaiGen Biotechnology is a leading research-based and product-driven biotechnology company in Taiwan with a wholly-owned subsidiary in Beijing, mainland China. TaiGen has full discovery research capacity in Taiwan and clinical development in mainland China/Taiwan/US. In addition to nemonoxacin, TaiGen has two other in-house discovered new chemical entities in clinical development under IND with US FDA: TG-0054, a chemokine receptor antagonist for stem cell transplantation and chemosensitization, in Phase 2 and TG-2349, a HCV protease inhibitor for treatment of chronic hepatitis infection, in Phase 1. Both TG-0054 and TG-2349 are currently in clinical development in the US.

Disclaimer

Here is the original post:
TaiGen Biotechnology Out-Licensed China Rights of Novel Antibiotic, Nemonoxacin, to Zhejiang Medicine

Research and Markets: Translational Regenerative Medicine – Oncology, CNS and Cardiovascular-Rich Pipeline Features …

DUBLIN--(BUSINESS WIRE)--

Research and Markets (http://www.researchandmarkets.com/research/skdhnn/translational_rege) has announced the addition of the "Translational Regenerative Medicine - Oncology, CNS and Cardiovascular-Rich Pipeline Features Innovative Stem Cell and Gene Therapy Applications" report to their offering.

More Guidelines Needed to Grow Regenerative Medicine Market, Report Finds

Standardized research guidelines are needed to control and encourage the development of gene therapy and stem cell treatments, according to a new report by healthcare experts GBI Research.

The new report* shows how regenerative medicine is seen as an area with high future potential, as countries need ways to cope with the burden of an aging population.

The stem cell market alone is predicted to grow to around $5.1 billion by 2014, while gene therapy has also shown promise despite poor understanding of some areas of regenerative medicine and a lack of major approvals (the only approvals to date being made in Asia).

Up until now, securing research within clinics has been difficult, with a high number of failures and discontinuations throughout all phases of clinical study. Stem cell therapy uses bone marrow transplants as an established treatment method, but the development of the therapy into further applications and has not yet become common practice.

Similarly, tissue engineering has been successful in the areas of skin and bone grafts, but translation into more complex therapies has been an issue for researchers. Although scientific possibilities are ever-increasing, the true potential of regenerative medicine has yet to be demonstrated fully.

A desire to discover new and innovative technologies has encouraged governments in the UK and Singapore to focus directly on regenerative medicine as a future potential economy booster.

Companies Mentioned:

The rest is here:
Research and Markets: Translational Regenerative Medicine - Oncology, CNS and Cardiovascular-Rich Pipeline Features ...

Dr. Ulrich Friedrichson, MD,PHD – Cell Therapy Introduction – Video

25-06-2012 00:49 ProGenaCell physicians provide advanced cellular therapy to patients suffering from all known degenerative diseases. For over 70 years cell therapy has been used safely and effectively in such diverse regions as the European Union, former USSR, Republic of China, Middle East, Pacific Rim, Central and South America, Baja California and more recently the United States under select clinical trials. ProGenaCell provides patients with autologous stem cells (patient's own cells), adult progenitor xenocells, and organ extracts & growth factors. These "cellular products" are delivered to physicians who have been approved to prescribe and administer cellular therapies to patients in need. All cellular products are lawfully manufactured, and regulated under strict European Union guidelines. Visit us:

The rest is here:
Dr. Ulrich Friedrichson, MD,PHD - Cell Therapy Introduction - Video

NeoStem Awarded NIAID Research Grant for the Development of VSEL Technology for Radiation Exposure

NEW YORK, June 25, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE MKT:NBS) ("NeoStem" or the "Company"), a cell therapy company, today announced that it has been awarded a two year grant totaling $595,252 for the "Development of Human, Autologous, Pluripotent Very Small Embryonic Like (VSELs) Stem Cells as a Countermeasure to Radiation Threat" from the National Institute of Allergy and Infectious Diseases (NIAID), a division of the National Institutes of Health (NIH). This peer reviewed grant was awarded to support research to be headed by Denis O. Rodgerson, Ph.D., Director of Stem Cell Science for NeoStem and Mariusz Ratajczak, M.D., Ph.D., who is the head of the Stem Cell Biology Program at the James Graham Brown Cancer Center at the University of Louisville and co-inventor of VSELTM Technology.

This award will fund studies to investigate the potential of very small embryonic-like stem cells as a countermeasure to radiological and nuclear threat. The product candidate, which is an autologous stem cell therapy derived from the patient's own stem cells, will be developed to rescue patients who have been exposed to radiation due to nuclear accident or terrorist threat and to treat cancer patients who have undergone radiation therapy and who consequently have compromised immune systems. The award includes $295,252 for the first year and $300,000 for the second year of the project.

Dr. Denis O. Rodgerson, Director of Stem Cell Science for NeoStem, said, "We are very excited to add radiation treatment to the growing list of indications for which our VSELTM Technology is being evaluated. Those exposed to acute high-dose radiation have compromised immune systems such that the virulence and infectivity of biological agents is dramatically increased. Death can occur within 1-6 weeks following radiation exposure. Currently there is only one intervention that saves a fatally irradiated person -- a rescue through stem cell transplantation. VSELs might be an ideal cell therapy to regenerate the body's immune system and repair other tissues damaged by radiation exposure. Most importantly, early studies show VSELs are resistant to lethal radiation which destroys other immune system restoring stem cells in the body, making autologous treatment post-exposure possible."

Dr. Robin L. Smith, Chairman and CEO of NeoStem, added, "NeoStem is pleased that the NIAID is funding this cutting edge technology that we hope will reinvent the treatment landscape for acute radiation syndrome. We plan to continue to pursue NIH SBIR grants to fund our VSEL technology platform development with non-dilutive capital."

About VSELTM Technology

NeoStem has a worldwide exclusive license to VSELTM Technology. Research by Dr. Mariusz Ratajczak, M.D., Ph.D., and others at the University of Louisville provides compelling evidence that bone marrow contains a heterogeneous population of stem cells that have properties similar to those of an embryonic stem cell. These cells are referred to as very small embryonic-like stem cells. This finding opens the possibility of capturing some of the key advantages associated with embryonic stem cells without the ethical or moral dilemmas and without some of the potential negative biological effects associated with stem cells of embryonic derivation. The possibility of autologous VSEL treatments is yet another important potential benefit to this unique population of adult stem cells. VSELTM Technology offers the potential to go beyond the paracrine effect, yielding cells that actually differentiate into the target tissue creating true cellular regeneration.

About NeoStem, Inc.

NeoStem, Inc. ("we," "NeoStem" or the "Company") continues to develop and build on its core capabilities in cell therapy to capitalize on the paradigm shift that we see occurring in medicine. In particular, we anticipate that cell therapy will have a large role in the fight against chronic disease and in lessening the economic burden that these diseases pose to modern society. Our January 2011 acquisition of Progenitor Cell Therapy, LLC ("PCT") provides NeoStem with a foundation in both manufacturing and regulatory affairs expertise. We believe this expertise, coupled with our existing research capabilities and collaborations, will allow us to achieve our mission of becoming a premier cell therapy company. Our PCT subsidiary's manufacturing base is one of the few current Good Manufacturing Practices ("cGMP") facilities available for contracting in the burgeoning cell therapy industry. Amorcyte, LLC ("Amorcyte"), which we acquired in October 2011, is developing a cell therapy for the treatment of cardiovascular disease. Amorcyte's lead compound, AMR-001, represents NeoStem's most clinically advanced therapeutic and Amorcyte is enrolling patients for a Phase 2 trial to investigate AMR-001's efficacy in preserving heart function after a heart attack. We also expect to begin a Phase 1 clinical trial by 2012/2013 to investigate AMR-001's utility in arresting the progression of congestive heart failure and the associated comorbidities of that disease. Athelos Corporation ("Athelos"), which is approximately 80%-owned by our subsidiary, PCT, is engaged in collaboration with Becton-Dickinson that is exploring the earlier stage clinical development of a T-cell therapy for autoimmune conditions. In addition, our pre-clinical assets include our VSELTM Technology platform as well as our MSC (mesenchymal stem cells) product candidate for regenerative medicine.

For more information on NeoStem, please visit http://www.neostem.com.

Forward-Looking Statements

View post:
NeoStem Awarded NIAID Research Grant for the Development of VSEL Technology for Radiation Exposure