Author Archives: admin


Gamida Cell Closes $10 Million E Financing Round Earmarked to Support the Global Commercialization of the Company’s …

Clinical outcome of the Phase III clinical study of StemEx is expected in Q4/2012, with a market launch planned for 2013

JERUSALEM--(BUSINESS WIRE)--Gamida Cell announced today that it has closed an internal E financing round of $10 million. All major shareholders participated.

The investors were unanimous in their decision to reinvest, understanding the importance of bringing StemEx to market as well as maintaining the companys leadership role in the stem cell industry. Gamida Cell is a game changer.

The financing will be used to support the global commercialization of the companys lead cell therapy product, StemEx, in development as an alternative therapeutic treatment for patients with blood cancers, such as leukemia and lymphoma, who can be cured by bone marrow transplantation but do not have a matched bone marrow donor. The company is currently seeking a strategic partner to join in the global commercialization of StemEx.

The financing will also support the continued development of the companys pipeline of products, primarily the NiCord clinical trial for sickle cell disease and thalassemia.

Mr. Reuven Krupik, chairman of the board of Gamida Cell said, The investors were unanimous in their decision to reinvest, understanding the importance of bringing StemEx to market as well as maintaining the companys leadership role in the stem cell industry. Gamida Cell is a game changer.

The international, multi-center, pivotal registration, Phase III clinical trial of StemEx completed enrollment in February 2012. Clinical outcome is expected in Q4/2012. The market launch of StemEx is planned for 2013. StemEx is likely to be the first allogeneic stem cell product in the market. StemEx is being developed by the Gamida Cell-TEVA joint venture.

Dr. Yael Margolin, president and chief executive officer of Gamida Cell said, With the continued support of our shareholders and the analysis of the clinical results of the StemEx trial just around the corner, we are now focused on submitting the BLA.

StemEx is a graft of an expanded population of stem/progenitor cells, derived from part of a single unit of umbilical cord blood and transplanted by IV administration along with the remaining, non-manipulated cells from the same unit. Competing products in development use two units. As the average cost of a cord blood unit in the U.S. is $40K, StemEx is expected to be a significantly less expensive treatment option. StemEx is also expected to be available in the market several years before any of the competing products.

About Gamida Cell

Read the original post:
Gamida Cell Closes $10 Million E Financing Round Earmarked to Support the Global Commercialization of the Company’s ...

Scientists discover clues to muscle stem cell functions

ScienceDaily (May 15, 2012) A study conducted by Children's Hospital & Research Center Oakland scientists identifies how skeletal muscle stem cells respond to muscle injury and may be stimulated to improve muscle repair in Duchenne Muscular Dystrophy, a severe inherited disease of muscle that causes weakness, disability and, ultimately, heart and respiratory failure.

The study, led by Julie D. Saba, MD, PhD, senior scientist at Children's Hospital Oakland Research Institute (CHORI), shows that a lipid signaling molecule called sphingosine-1-phosphate or "S1P" can trigger an inflammatory response that stimulates the muscle stem cells to proliferate and assist in muscle repair. It further shows that mdx mice, which have a disease similar to Duchenne Muscular Dystrophy, exhibit a deficiency of S1P, and that boosting their S1P levels improves muscle regeneration in these mice. A research report describing the study findings will be published online on May 14, 2012 in the journal Public Library of Science ONE (PLoS ONE).

Skeletal muscle is the biggest "organ" system of the human body. It is important for all human activity. Muscles can be injured by trauma, inactivity, aging and a variety of inherited muscle diseases. Importantly however, skeletal muscle is one of the few tissues of the human body that has the potential to fully repair itself after injury. The ability of muscles to regenerate themselves is attributed to the presence of a form of adult stem cells called "satellite cells" that are essential for muscle repair. Normally, satellite cells lie quietly at the periphery of the muscle fiber and do not grow, move or become activated. However, after muscle injury, these stem cells "wake up" through unclear mechanisms and fuse with the injured muscle, stimulating a complicated process that results in the rebuilding of a healthy muscle fiber.

S1P is a lipid signaling molecule that controls the movement and proliferation of many human cell types. Other scientists had shown previously that S1P can activate satellite cells, but they did not know how this occurred.

"We have been studying S1P signaling for many years," states Dr. Saba. "In 2003, we published a report demonstrating that fruit fly mutants with defective S1P metabolism were unable to fly because they developed a muscle disease or "myopathy" that led to degeneration of their flight muscles. Based on that observation, I became convinced that S1P signaling played an important role in muscle stability and homeostasis, not just in flies but in mammals, including humans."

Dr. Saba's team has discovered how S1P is able to "wake up" the stem cells at the time of injury. It involves the ability of S1P to activate S1P receptor 2, one of its five cell surface receptors, leading to downstream activation of an inflammatory pathway controlled by a transcription factor called STAT3. They showed that S1P is rapidly produced in the muscle immediately after injury, leading to an S1P "signal." S1P, acting through S1P receptor 2, leads to activation of STAT3, resulting in changes in gene expression that cause the satellite cell to leave its "sleeping" state and start to proliferate and assist in muscle repair.

"These findings are important especially for certain muscle diseases or "myopathies" that can affect children," states Dr. Saba. The most common and one of the most severe myopathies is Duchenne Muscular Dystrophy, a disease that affects young boys and often leads to death from respiratory and heart failure in a patient's twenties. Although patients with Duchenne Muscular Dystrophy start out life with enough satellite cells to repair the patients' degenerating muscles, over time the satellite cells fail to keep up with the rate of muscle degeneration. "We found that mdx mice, which have a disease similar to Duchenne Muscular Dystrophy, are deficient in S1P. We were able to increase the S1P levels in the mice using a drug that blocks S1P breakdown. This treatment increased the number of satellite cells in the muscles and improved the efficiency of muscle regeneration after injury."

If these findings are also found to be true in humans with Duchenne Muscular Dystrophy, it may be possible to use similar approaches to boost S1P levels in order to improve satellite cell function and muscle regeneration in patients with the disease. Drugs that block S1P metabolism and boost S1P levels are now being tested for the treatment of other human diseases including rheumatoid arthritis. If these studies prove to be relevant in Duchenne patients, it may be possible to use the same drugs to improve muscle regeneration in these patients. Alternatively, new agents that can specifically activate S1P receptor 2 could also be beneficial in recruiting satellite cells and improving muscle regeneration in muscular dystrophy and potentially other diseases of muscle.

This work was supported by grants from the Muscular Dystrophy Association, the National Institutes of Health and a fellowship award from the California Institute of Regenerative Medicine.

Share this story on Facebook, Twitter, and Google:

See the original post here:
Scientists discover clues to muscle stem cell functions

Stem cell co Gamida Cell raises $10m

Stem cell therapies developer Gamida Cell Ltd. has raised $10 million in its fifth financing round from all its investors. The company will use the proceeds to support the global commercialization of its lead cell therapy product, StemEx, as an alternative therapeutic treatment for patients with blood cancers, such as leukemia and lymphoma, who can be cured by bone marrow transplantation but do not have a matched bone marrow donor.

Gamida Cell is developing StemEx with Teva Pharmaceutical Industries Ltd. (Nasdaq: TEVA; TASE: TEVA), and it is seeking a strategic partner for the product's global commercialization.

The company will also use the proceeds for the further development of other products, primarily a clinical trial of its NiCord treatment for sickle cell anemia and thalassemia.

Gamida Cell chairman Reuven Krupik said, The investors were unanimous in their decision to reinvest, understanding the importance of bringing StemEx to market as well as maintaining the companys leadership role in the stem cell industry. Gamida Cell is a game changer."

Gamida Cell completed enrollment for a pivotal Phase III clinical trial of StemEx in February, and expects results in the fourth quarter. The company plans to launch the product in 2013, and it could be the first allogeneic stem cell product in the market.

The company's current investors include Elbit Imaging Ltd. (Nasdaq: EMITF; TASE: EMIT), Clal Biotechnology Industries Ltd. (TASE: CBI), Israel Healthcare Venture, Teva, Amgen, Denali Ventures and Auriga Ventures.

Published by Globes [online], Israel business news - http://www.globes-online.com - on May 15, 2012

Copyright of Globes Publisher Itonut (1983) Ltd. 2012

Go here to read the rest:
Stem cell co Gamida Cell raises $10m

Vet undertakes stem cell surgery

Animal stem cell regenerative therapy is the newest service at the Animal Hospital of Tiffin.

"We are the official first site for the therapy in Ohio," said veterinarian Bob McClung.

The technology uses an adult animal's stem cells to heal itself.

Veterinarian Mike Brothers performed the surgery Monday on his dog, Tucker, a 2-year-old labrador retriever. It was the second surgery performed at the clinic.

Brothers said his dog's joint problems are hereditary and he's had problems since he was a puppy.

"What we've been able to do is slow down the arthritis," Brothers said. The cause of the degeneration will continue, but the fatty tissue removed from the dog can be used for future treatments.

From a piece of fatty tissue of the size removed from Tucker, McClung estimated $3.2 billion stem cells were harvested.

Each injection uses about 90 million cells, so there will be enough of the material for future treatments.

"We have basically 2 billion cells to bank," he said. "We use cryo-preservation."

In the freezing process, the cells are gradually cooled to prevent damage and stored in liquid nitrogen at temperatures of minus 80 to minus 90 degrees Fahrenheit.

Link:
Vet undertakes stem cell surgery

Research and Markets: Stem Cell Research Products: Opportunities, Tools & Technologies 2012 (Updated)

DUBLIN--(BUSINESS WIRE)--

Research and Markets (http://www.researchandmarkets.com/research/lffnp7/stem_cell_research) has announced the addition of the "Stem Cell Research Products: Opportunities, Tools & Technologies 2012 (Updated)" report to their offering.

Stem cells are primitive cells found in all multi-cellular organisms that are characterized by self-renewal and the capacity to differentiate into any mature cell type. Several broad categories of stem cells exist, including embryonic stem cells, derived from blastocysts; fetal stem cells, obtained from aborted fetuses; adult stem cells, found in adult tissues; cord blood stem cells, isolated from umbilical tissue; dental stem cells, derived from deciduous teeth; cancer stem cells, which give rise to clonal populations of cells that form tumors or disperse in the body; and animal stem cells, derived from non-human sources.

In a developing embryo, stem cells can differentiate into all of the specialized embryonic tissues. In adult organisms, stem and progenitor cells act as a repair system for the body, replenishing specialized cells. Of interest to researchers is the potential for use of stem cells in regenerative medicine to treat conditions ranging from diabetes, to cardiovascular disease and neurological disorders. Additionally, the ability to use stem cells to improve drug target validation and toxicology screening is of intense interest to pharmaceutical companies. Stem cells are also being studied for their ability to improve both the understanding and treatment of birth disorders.

To facilitate research resulting from interest in these far-ranging applications, a large and growing stem cells research products market has emerged. Large companies selling stem cell research products include Life Technologies, BD Biosciences, Thermo Fisher Scientific, and Millipore, although dozens of other suppliers exist as well. Products offered by these companies include: antibodies to stem cell antigens, bead-based stem cell separation systems, stem cell protein purification and analysis tools, tools for DNA and RNA-based characterization of stem cells, stem cell culture and media reagents, stem cell specific growth factors and cytokines, tools for stem cell gene regulation, a range of stem cell services, tools for in vivo and in vitro stem cell tracking, and stem cell lines.

This report explores current market conditions and provides guidance for companies interested in developing strategically positioned stem cell product lines.

Featured elements of this report include:

- What are novel stem cells research products that can be developed?

- What stem cells types are most frequently used by research scientists?

- Which species of stem cells do scientists prefer and what are the factors driving this preference (access, pricing, funding, handling advantages)?

See the rest here:
Research and Markets: Stem Cell Research Products: Opportunities, Tools & Technologies 2012 (Updated)

International Stem Cell Corporation Scientists to Present Pre-Clinical Research Results at American Society of Gene …

CARLSBAD, Calif.--(BUSINESS WIRE)--

International Stem Cell Corporation (OTCBB: ISCO.OB - News) (www.internationalstemcell.com) today announced that several of its leading scientists will present experimental results from three of ISCOs pre-clinical therapeutic programs.

Firstly, the application of A9 dopaminergic neurons derived from human parthenogenetic stem cells (hpSC) for the treatment of Parkinsons disease. Demonstrating functional dopaminergic neurons in vivo represents an important milestone towards the goal of creating well characterized populations of cells that could be used to develop a treatment for Parkinsons.

Secondly, the differentiation of hpSC and embryonic stem cells into cornea-like constructs for use in transplantation therapy and the in vitro study of ocular drug absorption. There are approximately ten million people worldwide who are blind as a result of damage to their cornea. Generating human corneas from a pluripotent stem cell source should increase the likelihood that people will receive treatment in the future even in the absence of suitable tissue from eye banks.

Lastly, the in vivo and in vitro characterization of immature hepatocyte derived from hpSC. Such cells could be used to develop a treatment for individuals with a liver that has been damaged by disease or sufferers of genetic disorders that inhibit normal liver function. In both cases, implanting healthy hepatocyte cells could treat the underlying disease and prolong the life of the individual.

These results not only show the progress we have made in these important programs, but also demonstrate the broad application of human parthenogenetic stem cells in the development of treatments for incurable diseases, says Dr. Ruslan Semechkin, Vice President of Research and Development.

The presentations will take place at the 15th Annual Meeting of American Society of Gene and Cell Therapy, in Philadelphia at 3:30 p.m. on Thursday, May 17th.

About International Stem Cell Corporation

International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology (www.lifelinecelltech.com), and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com or follow us on Twitter @intlstemcell.

To receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0

See the original post:
International Stem Cell Corporation Scientists to Present Pre-Clinical Research Results at American Society of Gene ...

Joseph Estrada defies age, shares how he did it: Stem cell therapy

By Cathy C. Yamsuan Philippine Daily Inquirer

Former President Joseph Erap Estrada had always maintained that giving generously to friends and forgiving opponents are the secrets to staying young.

But time has a way of catching up with even the most formidable leading men.

Since he entered national politics 25 years ago, Estrada has struggled with the attributes of old ageweight gain, a painful knee here, a cataract there.

He needed some kind of elixir of youth to put to right what nature has put asunder. And to get back on his feet in time to serve the people, he said which has no age limit.

So he did it, and is very open about it. What is it?

At the prodding of friends, the 75-year-old Estrada flew to Frankfurt, Germany, last month to undergo fresh cell therapy (also known as stem cell treatment), an innovative albeit controversial procedure where fresh cells from donor animals are injected into the human body to treat diseases or reverse the aging process.

Fresh cell therapy operates under the principle of like heals like.

The fresh cells from a donor animals organ are infused into the human counterpart.

Substances in the donors blood are supposed to reactivate the human bodys immune system and defense mechanism, a reaction that would eventually rebuild and revitalize aging tissues.

Read more here:
Joseph Estrada defies age, shares how he did it: Stem cell therapy

In The Know: Stem cell therapy

Philippine Daily Inquirer

Former President and current Pampanga Rep. Gloria Macapagal-Arroyo, who was suffering from a mineral deficiency in her bones arising from two corrective surgeries last September, wanted to seek alternative stem cell therapy abroad.

However, she was barred from leaving the country last November after Justice Secretary Leila de Lima refused to honor the temporary restraining order issued by the high court on the inclusion of Arroyo and her husband Jose Miguel Mike Arroyo in the immigration bureaus watch list.

In the wake of Arroyos supposed plan to try the radical technology at stem cell centers abroad to cure what her doctors here described as a rare bone disease, a province mate and a colleague of the former President filed a bill to put up a stem cell center in the country.

Pampanga Rep. Carmelo F. Lazatin, a member of the minority bloc in Congress, has filed House Bill No. 5287 mandating the establishment of a research facility to explore the benefits of stem cell technology as a potential cure for incurable diseases.

Blank cells

Stem cells, the foundation of every organ, tissue and cell within the human body, are like blank cells that do not yet have a specific physiological function, according to Harvard Stem Cell Institute (HSCI).

But when proper conditions in the body or in the laboratory occur, stem cells develop into specialized tissues and organs, HSCI explains in its website, adding that there are two sources of stem cells used in research: the adult stem cells and embryonic stem cells.

Adult stem cells are found in differentiated tissues and organs throughout the body while embryonic stem cells are obtained from the inner cell mass of a blastocyst, the ball of cells formed when the fertilized egg or zygote divides and forms two cells, then again to form four and so on, HSCI said.

In 2008, the Vatican issued a sweeping document on bioethical issues titled Dignitas Personae or The Dignity of the Person, taking into account recent developments in biomedical technology and reinforcing the Churchs opposition to embryonic stem cell research, in vitro fertilization, human cloning and genetic testing on embryos before implantation.

More here:
In The Know: Stem cell therapy

Stem cell collaboration could set stage for company’s growth

A stem cell breakthrough at UCLA could mark a big step for a biopharmaceutical company to use its proprietary technology to forge partnerships with pharmaceutical companies and other research institutions.

Fibrocell Sciences technology isolates, purifies and multiplies a patients fibroblast cells, connective skin cells that make collagen. In a research collaboration with the company, UCLA used the technology to isolate, identify and increase the number of different skin cell types, which lead to two rare adult stem cell-like subpopulations being identified in adult human skin SSEA3-expressing regeneration-associated cells associated with skin regeneration after injuries and mesenchymal adult stem cells.

The findings could have broad applications for personalized medicine. Currently, adult stem cells are derived from adipose tissue and bone marrow. Using mesenchymal stem cells would be less invasive and could be more efficient. Mesenchymal stem cells are being used in research to develop osteoblasts, or bone cells; chondrocytes, or cartilage cells; and adipocytes, or fat cells.

David Pernock, the chairman and CEO of Fibrocell, said the move could mark a significant step in the companys growth.

Advertisement

Pernock added: Once we have shown we can produce these stem cells in meaningful quantities safely and efficiently, I think well be in a position where companies would want to partner with us to develop them for a variety of indications.

In addition to collaborations, the company has been developing its own therapeutics.

The company launched its first U.S. Food and Drug Administration-approved therapy Laviv last year. The therapy uses individuals fibroblast cells to reduce nasolabial fold wrinkles, folds on both sides of the face that start from the outer corners of the nose down to the corners of the mouth. It is also advancing its acne therapy through phase 3 clinical trials and its burn scar therapy through phase 2 trials.

Pernock joined the company two years ago from GlaxoSmithKline. He said the developments under way at the company indicate it is growing and expects to add engineering staff to its Exton, Pennsylvania office later this year.

Read more from the original source:
Stem cell collaboration could set stage for company’s growth

Harvard Stem Cell Institute Sees Growth

At its founding eight years ago, the Harvard Stem Cell Institute had fewer than ten principal faculty members, according to Benjamin D. Humphreys, co-director of the HSCI Kidney Program. Today, that number has ballooned to more than 80.

In the past decade, Harvard has increasingly poured resources into groundbreaking research in one of the largest collections of stem cell research labs in the country.

According to HSCI co-director Douglas A. Melton, a professor in the stem cell and regenerative biology department, there are more than 800 Harvard affiliates in stem cell science scattered throughout roughly 80 laboratories. The largest concentration of stem cell researchers are located in Harvards Sherman Fairchild Building, which reopened in August of 2011 after it underwent a two-year demolition and reconstruction project to accommodate the stem cell and regenerative biology department.

In the past decade, Harvard has focused on centralizing this research with the creation of HSCI and the stem cell and regenerative biology department.

HSCI consists of scientists and practitioners interested in stem cell research from all over the Harvard community, including the Faculty of Arts and Sciences, the medical school, and 11 teaching hospitals and research institutions including the Childrens Hospital Boston and the Massachusetts General Hospital.

So far, HSCI has given out more than $100 million to its researchers, according to Humphreys.

"[Harvard has] definitely made a tangible commitment to stem cell research," Humphreys said. "The results are that we are leaders in certain areascertainly I can speak of the kidneynot even just in the U.S., but worldwide in terms of stem cell research in the kidney."

With important potential applications such as the generation of cells and tissues that could be used for cell-based therapies, stem cells are at the forefront of scientific research. Stem cells, which can differentiate into specific cell types, offer the possibility of a renewable source of replacement cells and tissues to treat some of the most serious diseases.

"What were doing at the HSCI Kidney Group is working collaboratively to identify new therapeutic strategies that will help slow disease progression," said Humphreys.

Still, Humphreys added that much more research is necessary before scientists can use stem cells to their fullest potential.

Go here to read the rest:
Harvard Stem Cell Institute Sees Growth